Equivalence Beyond Random Channels

Michelle Effros California Institute of Technology

Goal: Find the network capacity

Overview

O→ B

Factor network

Model components

Analyze capacity

BC

MA

→○

Bounding Networks

 $\mathcal{C}(\mathcal{N}_L) \subseteq \mathcal{C}(\mathcal{N}) \subseteq \mathcal{C}(\mathcal{N}_U)$

Any collection of connections that is feasible on \mathcal{N}_L is also feasible on \mathcal{N}

 ${\it @}$ Any collection of connections that is feasible on ${\cal N}$ is also feasible on ${\cal N}_U$

$\mathcal{C}(\mathcal{N}_L) \subseteq \mathcal{C}(\mathcal{N}) \subseteq \mathcal{C}(\mathcal{N}_U)$ Three strategies for tackling this question:

Calculate capacities

- Multiplicative bounds
- Additive bounds

1. Calculate Capacities

- Tools exist for bounding network coding capacities [Song et al. 2003], [Kleinberg et al. 2006], [Subramanian et al. 2008]
- Each solves an LP
- Complexity of LP grows with network size
- Only capacities of small networks can be bounded

Hierarchical Analysis [Ho, Effros, Jalali 2010]

d

g

a

C

LP finds minimal values of x_H, y_H, z_H to emulate N
Node 1 creates a units of flow type A, c units of C
Node 2 creates b units of B, e units of E, g units of G
a units of A + b units of B => d units of type D
c units of C + d units of D + e units of E => f units of F
Node 3 receives f units of F and g units of G

 \mathcal{N}_H

 z_H

 y_H

 x_H

 \mathcal{N}_{L}

 y_L

 z_L

 x_L

Hierarchical Network Capacity Analysis [Jalali, Ho, & Effros in preparation 2010]

Hierarchical Network Capacity Analysis

[Jalali, Ho, & Effros in preparation 2010]

 \subseteq

Hierarchical Network Capacity Analysis

[Jalali, Ho, & Effros in preparation 2010]

Bounding large networks by smaller networks => computational feasibility

M. Effros, May 26, 2010

2. Multiplicative Bounds [Effros, 2010]

Multiplicative bound on capacity $\mathcal{C}(\mathcal{N}_L) \supseteq \left(\min_{e \in E} \frac{C_L(e)}{C_U(e)}\right) \mathcal{C}(\mathcal{N}_U)$

Applies to all types of connections

Fails when topologies differ

3. Additive Bounds [Effros, 2010]

Succeeds even when topologies differ

Applies only when cuts characterize capacity (e.g., multicast, multi-source multicast, single-source with non-overlapping demands, single-source w/non-overlapping + multicast demands)

3. Additive Bounds (cont.) [Ho, Effros, Jalali 2010] [Jalali, Effros, Ho 2011]

Solution Can removing a single edge of capacity δ reduce the capacity by more than $1 \cdot \delta$?

No (so far...)

- When cut-set bounds are tight
- Single-source, arbitrary demands
- Networks with bottlenecks

When Cut-Set Bounds are Tight

Out capacities determine capacity

 ${\it @}$ Removing a single edge of capacity δ changes each cut capacity by at most δ

- For any R point in the capacity region of \mathcal{N}_U , there exists a corresponding sequence of codes
- The code of blocklength n carries $2^{n\delta}$ values on edge e, at least one of which is used for at least $2^{n(R-\delta)}$ input sequences
- Run the code for \mathcal{N}_U on \mathcal{N}_L by fixing that value on edge e
 and only transmitting those $2^{n(R-\delta)}$ input sequences
 M. Effros, January 26, 2011

Networks with Bottlenecks [Jalali, Effros, Ho 2011]

Ò

 \mathcal{N}_{II}

A code at rate R for N_U is used to build
MA code to node v
BC code from node v
Together give a code at rate R - δ for N_L

 \mathcal{N}_{T}