

Abstract

A gambler starts with \$1. He then plays a sequence of gambles. We pose the following questions:

• What does he lose in a fair gamble?

$$1 \rightarrow X, X \ge 0, EX = 1$$

- Can private randomness help?
- Can he strategically combine a series of unfair gambles to reduce his loss?

Definition: Lorenz curve

- Worst 20% of fishermen catch 10% of fish.
- Best 20% of fishermen catch 30% of fish.

Defintion from wikipedia

The Lorenz curve is a graph showing the proportion of the distribution assumed by the bottom y%. It is often used to represent income distribution, where it shows for the bottom x% of households, what percentage y% of the total income they have.

Definition: Lorenz curve continued

Definition

Let $X \sim F(X), X \ge 0$ be a random variable with cdf F(x). Then the Lorenz curve is

$$L(u) = \int_0^u F^{-1}(v) dv$$

Graph to be placed.

Examples

Gambling increases inequality

- Let F_1 and F_2 correspond to the laws of the random variables X_1 and X_2 respectively, $X_1, X_2 \ge 0$, $EX_1 = EX_2 = 1$.
- Let the corresponding Lorenz Curves be denoted L_1 and L_2 respectively.

Theorem

There is a sequence of fair binary gambles that starts from distribution X_1 and ends up with a distribution X_2 iff

Tom Cover

 $L_1(u) \geq L_2(u) \quad \forall u \in [0,1].$

(1)

Achievability proof

- Let $U_1 = F_1(X_1)$. Also, let $X'_1 = F_2^{-1}(U_1)$.
- If $X'_1 = X_1$ then do nothing.
- If $X'_1 < X_1$, find the minimum $u > U_1$ such that $L_1(u) L_2(u) = L_1(U_1) L_2(U_2)$ and label it U''_1 .
- Let $X_1'' = F_2^{-1}(U_1'')$.
- Gamble to the two points X'_1 and X''_1 with the proper weights such that it is a fair gamble.
- In the opposite case where $X'_1 > X_1$, do the same thing using the maximum $u < U_1$ meeting the named condition.

Lorenz curve gives partial ordering:

 $F_1(x) \preceq F_2(x) \Leftrightarrow L_1(u) \ge L_2(u)$

(Graph to be placed)

definition

We define

 $L_1 \cup L_2 = \max\{L_1(u), L_2(u)\}$ $L_1 \cap L_2 = \text{Convex Hull of } L_1, L_2$

Tom Cover

ittice of Gambles

Lattice of Gambles continued

Thus $X \equiv 1$ (L(u) = u) is the maximal element. **Example:** (Insert figure showing <u>f</u> and \overline{f} .)

Some randomness is free

• Suppose the casino offers binary fair bets:

$$X \rightarrow \begin{cases} 2X, \text{ prob}rac{1}{2} \\ 0, \text{ prob}rac{1}{2} \end{cases}$$

- Suppose a gambler starts with \$1.
- Suppose that he wants to achieve a uniform distribution unif[0, 2] on his wealth after gambling.

There is more than one possible gambling strategy to achieve this.

Some randomness is free

Method 1:

- Bet $\$\frac{1}{2}$, then bet $\$\frac{1}{4}$, then $\$\frac{1}{8}$, ...
- After infinite bets the distribution of wealth is unif[0,2].

Tom Cover

Here, the gambler must place on the casino's table a total of

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$$

Method 2:

- Generate $Y \sim$ unif[0, 1]. ("Air" bet)
- Bet \$Y. ("physical" bet)

Here, the gambler places on the table a total amount

$$E(Y) = \frac{1}{2} < 1$$

Tom Cover

Let $f : [0,1] \rightarrow [0,1]$ be a binary gamble menu offered by a casino, that is, for each $x \in [0,1]$,

$$x \rightarrow \begin{cases} 1, \text{ prob } f(x) \\ 0, \text{ prob } 1 - f(x) \end{cases}$$

The gambling menu is fair if f(x) = x.

Definition

A gambling menu is **stable** if it cannot be gamed to produce a more attractive menu.

Tom Cover

Fair Prices of Unfair Gambles Continued

Theorem

Necessary and sufficient condition for a stable gambling menu:

$$orall \ a,b, heta \in [0,1] ext{ where } b > a \ f(a+(b-a) heta) \geq f(a)+(f(b)-f(a))f(heta).$$

Example:

- Suppose f(x) = px, p < 1, that is, the casino charges a fixed fraction p in expected value. This is not price stable.
- A clever gambler would use an infinite sequence of very low probability and low cost gambles to achieve $f(x) = 1 (1 x)^p$. This is price stable!

Conclusions

- Lattice of fair gambles
- Wealth from gambles converges in distribution
- Gambles divide into "air" gambles and "physical" gambles.
- What do you lose when you gamble?
 Answer: Position you can never get back.

References

R. Aaberge, Axiomatic Characterization of the Gini Coefficient and Lorenz Curve Orderings, Journal of Economic Theory vol.101, pp.115- 132, 2001.

Economico-Giuricici della R, Universita de Cagliari, 1912.