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Abstract

A gambler starts with $1. He then plays a sequence of gambles.
We pose the following questions:

What does he lose in a fair gamble?

1→ X ,X ≥ 0,EX = 1

Can private randomness help?

Can he strategically combine a series of unfair gambles to
reduce his loss?
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Definition: Lorenz curve

Worst 20% of fishermen
catch 10% of fish.

Best 20% of fishermen
catch 30% of fish.

0 20% 100%
0

10%

100%

 Percentage of fishermen

 P
er

ce
n

ta
g

e 
o

f 
fi

sh
 c

au
g

h
t

Lorenz Curve − Definition

Perfect Equality line

Lorenz curve

Defintion from wikipedia

The Lorenz curve is a graph
showing the proportion of the
distribution assumed by the
bottom y%. It is often used to
represent income distribution,
where it shows for the bottom
x% of households, what
percentage y% of the total
income they have.
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Definition: Lorenz curve continued

Definition

Let X ∼ F (X ),X ≥ 0 be a random variable with cdf F(x). Then
the Lorenz curve is

L(u) =

∫ u

0
F−1(v)dv

Graph to be placed.
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Examples

Example 1: Perfect Equality

0 0.5 1 1.5 2
0

0.5

1

x

f(
x)

A gambler starts with $1

0 0.5 1 1.5 2
0

0.5

1

x

F
(x

)

The cdf of his wealth

0 0.5 1 1.5 2
0

1

u

x
F

(x
)

Computing L(u) from the cdf
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Examples

Example 2: A discrete probability distribution, EX=1.
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Examples

Example 3: A more general distribution, EX=1.
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Gambling increases inequality

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 Fraction of population (u) 
 L

1
(u)≥L

2
(u) 

 F
ra

ct
io

n
 o

f 
w

ea
lt

h
 L

(u
) 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 Fraction of population (u)

 F
ra

ct
io

n
 o

f 
w

ea
lt

h
 L

(u
)

X ∼  F(X), X≥ 0, L(u) = ∫
0
uF−1(v)dv

Perfect equality line
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Gambling increases inequality

Let F1 and F2 correspond to the laws of the random variables
X1 and X2 respectively, X1,X2 ≥ 0,EX1 = EX2 = 1.

Let the corresponding Lorenz Curves be denoted L1 and L2
respectively.

Theorem

There is a sequence of fair binary gambles that starts from
distribution X1 and ends up with a distribution X2 iff

L1(u) ≥ L2(u) ∀u ∈ [0, 1]. (1)

Tom Cover Lattice of Gambles

Achievability proof

Let U1 = F1(X1). Also, let X ′1 = F−12 (U1).

If X ′1 = X1 then do nothing.

If X ′1 < X1, find the minimum u > U1 such that
L1(u)− L2(u) = L1(U1)− L2(U2) and label it U ′′1 .

Let X ′′1 = F−12 (U ′′1 ).

Gamble to the two points X ′1 and X ′′1 with the proper weights
such that it is a fair gamble.

In the opposite case where X ′1 > X1, do the same thing using
the maximum u < U1 meeting the named condition.
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Lattice of Gambles

Lorenz curve gives partial
ordering:

F1(x) � F2(x)⇔ L1(u) ≥ L2(u)

definition

We define

L1 ∪ L2 = max{L1(u), L2(u)}
L1 ∩ L2 = Convex Hull of L1, L2

(Graph to be placed)
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Lattice of Gambles continued

Thus X ≡ 1 (L(u) = u) is the maximal element.
Example:
(Insert figure showing f

¯
and f̄ .)
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Some randomness is free

Suppose the casino offers binary fair bets:

X →
{

2X , prob1
2

0, prob1
2

Suppose a gambler starts with $1.

Suppose that he wants to achieve a uniform distribution
unif[0, 2] on his wealth after gambling.

There is more than one possible gambling strategy to achieve this.
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Some randomness is free

Method 1:

Bet $1
2 , then bet $1

4 , then $1
8 , . . .

After infinite bets the distribution of wealth is unif[0, 2].

Here, the gambler must place on the casino’s table a total of

1

2
+

1

4
+

1

8
+ · · · = 1

Method 2:

Generate Y ∼ unif[0, 1]. (“Air” bet)

Bet $Y. (“physical”bet)

Here, the gambler places on the table a total amount

E (Y ) =
1

2
< 1
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Fair Prices of Unfair Gambles

Let f : [0, 1]→ [0, 1] be a binary gamble menu offered by a casino,
that is, for each x ∈ [0, 1],

x →
{

1, prob f (x)
0, prob 1− f (x)

The gambling menu is fair if f (x) = x .

Definition

A gambling menu is stable if it cannot be gamed to produce a
more attractive menu.
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Fair Prices of Unfair Gambles Continued

Theorem

Necessary and sufficient condition for a stable gambling
menu:

∀ a, b, θ ∈ [0, 1] where b > a

f (a + (b − a)θ) ≥ f (a) + (f (b)− f (a))f (θ).

Example:

Suppose f (x) = px , p < 1, that is, the casino charges a fixed
fraction p in expected value. This is not price stable.

A clever gambler would use an infinite sequence of very low
probability and low cost gambles to achieve
f (x) = 1− (1− x)p. This is price stable!
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Martingale Convergence

Let Sn be the sequence of R.V’s generated by fair gambles from
S0 = 1.

Theorem

Sn → S in distribution.

proof

Ln(u)↘ L(u)

FS(s) = L′−1(s)
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Conclusions

Lattice of fair gambles

Wealth from gambles converges in distribution

Gambles divide into “air” gambles and “physical” gambles.

What do you lose when you gamble?
Answer: Position you can never get back.
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