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 Typical optimal control problems have 

 a) time-horizon independent alphabets 

 b) sequential decision making 

 c) objective: minimize a sum of additive costs

 Typical information theory problems have 

 a) time-horizon dependent alphabets (e.g. one of 2^{nR} hypotheses)

 b) decision-making is once at the end (decode msg at end of 
transmission)

 c) objective: extremize mutual information.

 Observation:
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Problem setup
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 W is a Markov process

 Causal encoder
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 Cost:

 Objective: find optimal causal encoder/decoders 
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Theorem (structural result): there always exist optimal               of form

Result 1 (Gorantla, Coleman ‘11)
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• A form of separation theorem (sufficient statistics)

• W need not be stationary nor ergodic (mobility)

• Proof uses dynamic programming argument
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(Wi =Wi¡1 : i ¸ 1); W0 » unif[0;1]

W = [0;1]; Z =M([0;1]) z

An Example
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• Z lies in the space of beliefs on W

• Sequential information gain cost

• Theorem:

• For any encoder, optimal decoder is given by

• Total optimal cost is a constrained mutual information

• Proof: uses DP and 2nd law of thermodynamics

The Sequential Information Gain Cost
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Feedback communication: posterior matching

• Non-standard notion of communication

– Message point W on [0,1] line

– No block length, no FEC, no pre-specified rate

– Achieves capacity on arbitrary memoryless channels

– Optimal solution to our problem:



Achievability: HMMs and the stability of the nonlinear filter
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Subject to initial condition 

stability of the nonlinear filter



Nec & Suf Conditions on Achievability based on Stability of NLF

 Optimal solution to sequential information gain problem: (X,Y) form a 

Markov chain

 As a consequence:

 Theorem: achievability occurs if and only if

 Generalizes work of Shayevitz & Feder. 

 Sufficient conditions: X is ergodic and channel not degenerate.

 Relates message point communication to stability to nonlinear filter
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Converses Based on Dynamical Systems

– Motivation: under the PM scheme:



Converses Based on Dynamical Systems

Theorem: if R is achievable then 

Where the limsup in probability is defined in Han & Verdu 93



Conclusion

Lots of cool relationships between systems 

theory, control theory, and information 

theory  if we formulate problems 

carefully.
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