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Model

• n nodes V (n) placed uniformly at ran-
dom on [0,

√
n]2

• yv[t] =
∑

u∈V (n)\{v} hu,v[t]xu[t] + zv[t]

• Additive Gaussian noise zv[t]

• hu,v[t] = r
−α/2
u,v exp(

√
−1θu,v[t])

• Path loss exponent α > 2

• {θu,v[t]}u,v i.i.d. uniform over [0, 2π)

• Fast fading: {θu,v[t]}t stationary ergodic

• Slow fading: {θu,v[t]}t constant

• Full CSI at all nodes

Main Result

• Traffic matrix λ ∈ R
n×n

• Capacity region Λ(n) ⊂ R
n×n (set of all achievable λ)

• Partition [0,
√

n]2 into square-grids

• Grid at level ℓ has spacing 2−ℓ
√

n

• {Vℓ,i(n)}4ℓ

i=1 are the nodes in squares at level ℓ

Define

ΛG(n) ,

{

λ ∈ R
n×n
+ :

∑

u∈Vℓ,i(n)

∑

v/∈Vℓ,i(n)

(λu,v + λv,u) ≤ gα(4−ℓn)

∀ℓ ∈ {1, . . . , L(n)} ∪ {log(n)}, i ∈ {1, . . . , 4ℓ}
}

,

where

L(n) , 1
2 log(n)

(

1 − log−1/2(n)
)

, gα(r) ,

{

r2−min{3,α}/2 if r ≥ 1,

1 else.

Theorem. Under either fast or slow fading, for any α > 2, ε > 0,

Ω(n−ε)ΛG(n) ⊆ Λ(n) ⊆ O(nε)ΛG(n)

with probability 1 − o(1) as n → ∞.

Examples

Multiple Classes of Source-Destination Pairs

• K classes of source-destination pairs

• Pairs in class i randomly chosen at distance Θ(nβi) for some fixed
βi ∈ [0, 0.5]

• Source nodes in class i generate traffic at rate λi(n)

=⇒ λ∗
i (n) = Θ(nβi(2−min{3,α})±ε)

⇒ K = 1 and βi = 0.5 recovers uniform random source-destination
pairing

⇒ Compare to random source-destination pairing with ñ , n2βi

Traffic Variation with Source-Destination Separation

• Pair nodes uniformly at random into source-destination pairs

• λu,v = ρ(n)max{1, ru,v}β for constant β ∈ R

=⇒ ρ∗(n) =

{

Θ(n(2−β−min{3,α})/2±ε) if β ≥ −min{3, α},
Θ(n1±ε) else.

⇒ For β ≥ −min{3, α} long distance communication is the bottleneck

⇒ For β < −min{3, α} short distance communication is the bottleneck

Sources with Multiple Destinations

• K classes of source nodes

• Each source node in class i has Θ(nβi) destination nodes for some
constant βi ∈ [0, 1]

• Generates independent traffic at the same rate λi(n) for each of its
destinations

=⇒ λ∗
i (n) = Θ(n1−βi−min{3,α}/2±ε)

⇒ βi = 0 recovers uniform random source-destination pairing

⇒ Long distance communication is always the bottleneck

⇒ For a fixed source node, time sharing between its destinations is op-
timal (but not across source nodes)

Communication Scheme

• Two layer communication scheme

• Top or routing layer: routes data over a tree graph

• Bottom or physical layer: provides tree abstraction

• Achieves the entire capacity region (in scaling sense)

Routing Layer
• Construct a tree G = (VG, EG)

• V (n) ⊂ VG are the leaves of G

• Intermediate nodes in G “repre-
sent” nodes in Vℓ,i(n)

• Hierarchy induced by nesting of
grid structure

In the routing layer, messages are transmitted between u, v ∈ V (n) ⊂ VG

by routing them over G.

Physical Layer

• The physical layer provides the tree abstraction G

• To send a message along an edge e ∈ EG towards the root, the mes-
sage is “distributed” over the wireless network

• To send a message along an edge e ∈ EG away from the root, the
message is “concentrated” over the wireless network

• This distribution/concentration is performed using cooperative
communication (α ∈ (2, 3]) or multi-hop communication (α > 3).

=⇒

=⇒


