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Objective: embed extra (e.g. covert)
information in packet timings as they
traverse queuing networks in MANETSs
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Theory: only the P2P problem solved!

Practice: only recently (Coleman, Kiyavash
08) has practical P2P coding been
instantiated
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A Converse for Tandem Queue Capacity

Use Point Process Entropy + Algebraic
Approach on Counting Functions
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How it works: Two-stage coding scheme.

1.Encode counts (s) at O rate.
2. Conditioned on s: a memoryless channel
ey insight:

H(Z|X,S) independent of X for the tandem queue!
Simple max-entropy argument (just like AWGN):
Poisson inputs!

Assumptions and limitations:

*Packet losses due to congestion heterogeneity
not modeled
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IMPACT

NEXT-PHASE GOALS

/,- Introduces new insights
into the algebraic
structure of queuing
timing channels

* Enables simple

AWGN) proof of “Bits
Through Queues”

converse for the tandem
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* Also enables first known
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*Develop achievability
scheme to match the
converse

*Extend this approach to
more timing-channel
MANET architectures
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AWGN Channels

‘ Queuing Timing Channels Afford New Degrees of Freedom in MANETs and are Analogous to




" ESTC (1)
encoder X X X Q v, Vo Vs
Fig. 1. Conveying information through packet timings in a queueing system.
Single Server Queue:
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a) Related Work on Proving C(\, p):

decoder

&)
(2)

o Original Anantharam & Verdu ’96: “Bits through Queues”: proved closed-form structure

of C'(\, ) by considering the probabilistic dynamics relating n packet arrivals to n packet

departures of an ESTC. Required information density arguments

o Bedekar & Azizoglu ’98: “The information-theoretic capacity of discrete-time queues’:

analogous proof technique (requiring information density arguments) as in CT case.

« Prabhakar & Gallager *03: focused on information rates but never explicitly showed achiev-

ability of these rates

« Sundarasen & Verdu ’06: took a point process approach but still require information densities

to illustrate achievability.

A. Methodology of Our Approach

We illustrate that one can reason about this channel coding problem completely from a

traditional memoryless channel perspective, by exploiting a few key properties:

1) The numerical entropy rate of any finite-rate point process tending to 0 (Lemma 0.2),

2) The memoryless nature of the channel departure likelihood, when conditioned upon a

process whose entropy rate tends to 0 (equation (12)).

3) The maximum-entropy nature of the Poisson process (Lemma 0.1).

The reasoning of this paper is completely dual to that of the two-stage lossy compression

scheme developed in [7]. Such two-stage compression schemes for non-stationary independent-

increments processes date back to Rubin [8] (for Poisson processes) and [9], [10] (for Wiener

processes).



B. Notation on Point Processes

« Define I'r to be the set of all counting functions on [0, 7]:
I'r = {y:[0,T] — Z,, vy is nondecreasing, and right-continuous }. 3)
« Point process ) with occurrence times {), )s,...}. Counting function (Y; : ¢t > 0):
Y,=sup{neN:Y, <t}.

« The entropy on [0, 7] of a point process ) with arrival times {), )%, ...} is defined [11]

as the sum of its numerical entropy and its positional entropy:

hT(y) = H(YT) +h(yl7"'7yYT‘YT)7

where H(-) is discrete entropy, h(-) is differential entropy, and {)i,..., )y, } are the
locations (in time) of the arrivals on [0, 7.
« We define the rate r()) of a point process ) to be A if

lim % =\

T—o0 T
o Poisson processes are known to have desirable extremal entropic properties [11]:
Lemma 0.1: The Poisson process of rate A is maximum-entropy over all rate-\ point

processes, and has entropy on [0, 7| given in closed form by

hr(Y) =TA(1 —logA).

Lemma 0.2: For any point process ) such that r()) < oo,

. 1
Tlgrolo TH (Yr) =0.

C. The Likelihood of a Point Process

Point process ): H, = o-algebra generated by {Y, : 7 € [0,%)}.
y 2 i Z0a Y= 1H)

A—0 A '

T
pr(y) = exp {/ log \idy; — )\tdt} (5)
0

“4)



D. Queuing Timing Channels: the ESTC

« service times are i.i.d. and exponentially distributed:
Ae = plig,>o (6)
Qr = Xi+Qo-Y (N

where () is the initial condition, i.e. the state of the queue at time 0.

For specific realizations of y € I'r and = € I'p:

T
pr (ylz,q0) = exp {/ log (111g,>0) dy — l‘l{qt>0}dt}
0

,unyyO exp {fOT _Ml{xt+q0—yt>0}dt} lf Tt + qgo — Yt Z O \V/ t S [07 T]

0 otherwise

Note that this can be expressed as

pr(ylz,q0) = Zr(y)exp { /0 ) —pp (T4 + qo — Y1) dt} (8a)
Zply) & prr (8b)

0 u=20
plu) £ <1, u>0, (8¢)

oo, u<0

E. Memoryless Nature of Channel Dynamics Given Queue States

Succinct explanation of ESTC: X — () — ). Specifically, for x € I',,r and y € [',,7, associate

re It = (‘%17 s 7jn)’ j’b = (mt""(i_l)T S [O’T]) (9)
yey" = (G, 0n), Ui =S (Y+G-nr = t € 10,T7) (10)
" = (@17 . 7q~n)7 Gi £ q¢i-1)T — 4o (11)

where z; € I'r and y; € I'r.
It follows directly from (8) that given knowledge of {§;}!~,, this induces a memoryless

channel:

pur(@@",q") = []pr@la, a) (12)
=1



I. A CONVERSE FOR THE SINGLE-SERVER ESTC

For the single-server ESTC, we first compute the information capacity over all input processes
that satisfy the constraint that r(X’) = \. Note that for the converse, we can simply use a genie-
aided decoder, that has Q" at the decoder. As a consequence, from (12), it follows that this is

a memoryless channel, and thus for any 7', from Fano’s inequality [14] it must be that

1 o
R < —Ip(X™Y"™Q"
T (XY Q")

1 .
< sup =Ir(X;YQ)
p(X)EXp]=AT T
p(Q):E[Q]<oco

Now allowing 7" — oo so that we are conditioning on less and less genie-adided information

(Q"), we have:

R < C(\p),
1
CA\p) = sup  liminf —=I7(X;Y|Qo)
p(X)r(X)=x T=ee T

P(Q):E[Qo]<o0

. N o pr (Y]X, Qo)
Ip(X;Y[Qo) = E{l ng (Y(Qo) pr (X|Qo)}.

Note that because

Ir(X:Y1Qo) — Ir(X:Y) = I(Qui X|Y) — I(Qo; X) (13)

and limp_ o % = (0 because F[@y] < oo and Lemma 0.2 below, the probability distribution

of the initial state Qo will not affect C'(\, ). So we now assume Qg = 0 to calculate C'(\, p):
1

C(A\pu)= sup liminf =I7(X;Y). (14)
pX)r()=x T—oo T

It will be shown in Section III that C'(A, 1) = Alog(%) and it is achieved with p(X’) corre-

sponding to a Poisson process of rate \.



II. ACHIEVABILITY FOR THE SINGLE-SERVER ESTC: A TWO-STAGE CODING APPROACH

We now show that we can achieve the rate C'(\, ;). We use a simple two-stage coding scheme,

using a Poisson process of rate A as the input.

« Forie {1,...,n}: define

W, 2 X — X ur. (15)
C; & XiT:ZI/T/i' (16)
k=1

First communicate W" = {W,...,W,} & C" = {C4,...,C,}. Note that

p(y"|w") = Hp(ﬂi@i—l, w;)

i=1
and so the capacity of this channel is defined in terms of its information rate.

Since r(X) = A, for sufficiently large 7', each W, is a non-negative random variable of
mean approximately A7". Since we are constraining the process X such that r(X) = A,
Lemma 0.2, it follows directly that

Corollary 2.1: For each i € {1,...,n}, limp_ @ = 0.

Thus it follows that we can communicate {W,} with 0 rate using a Poisson-\ input.

« Note that given the information W™ at the decoder, since
Qir = Qo + Xir — Yir,

the decoder now has Q™ at its disposal. Constructing X to be a Poisson process, it follows

that we can achieve C'(\, i) as discussed in Section III.



III. CALCULATION OF C'(\, 1) ANALOGOUSLY TO THE AWGN CHANNEL

Define S as the sequence of induced service times {S;,Ss, . ..} of a an ESTC queuing system

with X as the input and ) as the output. Specifically,
Si=YVi— maX(yi—h Xz’) (17)
For any X € I'r and 5) € I'r, note that
Ir(X;Y) = he(Y) = hr(V|X)
= (D) _H(ipre) ~hy (371,...,37%%;2). (18)

Define ]AT(/'?,:)}) and C'(\, 1) as

B(X:Y) 2 b ()= hr (Pr, Py, Ve, X)) (19)

- 1~ - -

C(A\p) =  sup liTminff[T(X;y) (20)
Pyr(X)=x * %

Note that by Lemma 0.2, we have that
Corollary 3.1:

C(A p) = C(A, p).
Now note that for any X" such that (X)) = A, we have:

Ip(X;Y) = hp(Y) — he V1, .., Yy | Y7, &)
=hr(Y) — hr (S, ..., Sy | Y7, X)
= hy (V) — hr (S, ..., Sy, |Ye) 1)
= hr(Y) — E[Yz](1 - log p) (22)
= lim inf rY) gfm — M1 — log p) (23)
< A1 —logA) — A(1 — log 1) (24)
— og (%) .

(21) follows because the service times are independent of the arrival process in an ESTC; (22)
follows because the service times in an ESTC are exponentially distributed of rate p; (23) follows
because for any stable queue, ()) = r(X) = A ; and (24) follows from Lemma 0.1; This bound
is tight because of Burkes’ theorem [15], [16]: a Poisson () arrival process to an ESTC results

in a Poisson (\) departure process.



IV. A CONVERSE FOR THE TANDEM QUEUE

Very difficult timing channel problem... We still enforce the arrival process X to satisfy
r(X) = A. Define

Qi = Qo+ X =Y,

Qo = Qoo+ Y — Z;

X Yy Z
ESTC 1 (u1) ESTC (p2)
Q1 Q2

Y

Fig. 2. The tandem queue

We note that analogous to above, the following relationship holds:
X =1 —Y—-Q2— Z.
Thus it follows that

pT(Z|$791,07Q2,0) I/ pT(Z’,%Q2,0)PT(y|x7qLo)-
yel'r

Note that it must be the case that z; > y, for all ¢ € [0, T, and also that y; > 2, for all ¢ € [0, T7.

Thus we can re-write this in terms of a convolution:

pr(z|z, q10,q20) = / pr(zly, a20)pr(Y|7, ¢10)- (25)
yelr:0<z—y<z—2z

= / pT(Z|y7 Q2,0)pT(y|95; lh,o). (26)

—y=0

where (26) follows by denoting, for z € I'r and y € I'y, x < y if x; < y, for all t € [0, 7.



Continuing on, we have:

long(z|a:, 41,0, 612,0)

= log

= log

/ m(z\y,qz,o)pT(ma:,ql,o)]

z—y=0

r Tr— T
/ 5" " exp {/ —p1 (e + qro — ye) — p2 (Y + G20 — 2t) dtH
LJ x 0

—y=0

= log |(p1p2)™" /x_zo pyt s exp {/OT —p1 (@ + qro — Ye) — p2 (Y + G20 — 21) dtH
I r—y=
= wrlog(pipe)
+ log /HO T st exp {/OT —p1 (T + @10 — Ye) — p2 (Yt + @20 — 21) dt}]
L a—y=
= xrlog(pips) + log { :z fi(u) fa(x — 2 — U)} (27)
= arlog(pipe) + log [ fi *_f2(33 —z)] (28)

for appropriately defined functions f; and f5 in (27) and (28).

Now it follows as a consequence that

1 :
71520 ThT(Z‘Xa Q10,Q20) = —Alog(pupe) — E{log fi * fo(X — Z)}
1
= Tlim ThT(Z\X, Q1,0,Q20) does not depend on Py
= max-entropy argument: Poisson inputs optimal

= precise converse: with genie info of zero entropy

V. DISCUSSION

o Conceptually simple, memoryless calculus to view the “Bits Through Queues” problem and

solve it

o Calculus enables first known non-trivial converse for tandem queue
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