Dynamic Network Utility Maximization

Stephen Boyd Argyrios Zymnis Dan O'Neill Andrea Goldsmith Electrical Engineering Department, Stanford University

Network Utility Maximization

maximize
$$U(f)$$
 subject to $Rf \leq c, \quad f \geq 0$

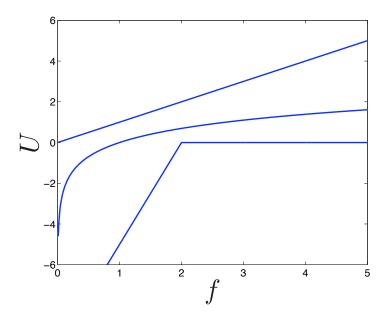
with variable f

- $f = (f_1, \dots, f_n)$ is vector of flow rates
- $U(f) = \sum_{i=1}^{n} U_i(f_i)$ is (separable) utility function
- $R \in \mathbf{R}^{m \times n}$ is routing matrix
- $c \in \mathbf{R}^m$ is link capacity vector

Network Utility Maximization

- a resource allocation problem
- convex problem if U_i are concave
- can solve via distributed iterative methods (dual decomposition)
- utility function U_i models utility derived from flow f_i
- single period; no concept of time
- if c (or U_i) 'change', iterative methods will 'adjust' f

Typical Utility Functions



- best effort (linear): U(f) = wf (w > 0 is weight)
- diminishing returns (logarithmic): $U(f) = \log f$
- contract with penalty (piecewise linear): $U(f) = u_c p(f_c f)_+$ u_c is contract utility; $(f_c f)_+$ is shortfall; p > 0 is penalty

Dynamic Network Utility Maximization

now we're going to explicitly add the concept of time

maximize
$$U(f(1),\ldots,f(T))$$
 subject to $R(t)f(t) \leq c(t), \quad f(t) \geq 0, \quad t=1,\ldots,T$

- $f(t) \in \mathbf{R}^n_+$ is vector of flow rates at time t
- R(t), c(t) are routing matrix, capacity vector at time t
 - capacity limits must hold at each time (no buffering)
 - captures time-varying network topology, link state, . . .
- we assume $U = \sum_i U_i(f_i(1), \dots, f_i(T))$ is separable across flows but not time

Dynamic Network Utility Maximization

- a multi-period resource allocation problem
- ullet convex problem if U_i are concave
- can solve by distributed iterative methods (dual decomposition)
 these are not obvious
- utility function U_i models utility derived from flow sequence $f_i(1), \ldots, f_i(T)$
- if U_i are also separable in time, can solve DNUM as T separate NUMs, once for each t

Typical (Dynamic) Utility Functions

- best effort: $U(f(1), \dots, f(T)) = \sum_t w(t) f(t)$ (w(t) are possibly time-varying weights)
- file transfer: need total flow S over period $[t_i, t_f]$

$$U(f(1),...,f(T)) = -p(S - (f(t_i) + \cdots + f(t_f)))_{+}$$

assesses (linear) penalty for shortfall

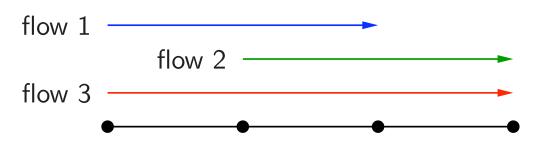
• streaming: need total flow S for successive k-long periods

$$U(f(1), \dots, f(T)) = -p (S - (f(1) + \dots + f(k)))_{+}$$
$$-p (S - (f(k+1) + \dots + f(2k)))_{+}$$
$$\vdots$$
$$-p (S - (f(T-k+1) + \dots + f(T)))_{+}$$

Typical (Dynamic) Utility Functions

- these utility functions cannot be represented in time-separable form
- they capture what the applications need *much better* than time-separable utilities

Example



- T=50 horizon
- c(t) is Markov
- 3 file transfers, with (linear) shortfall penalty

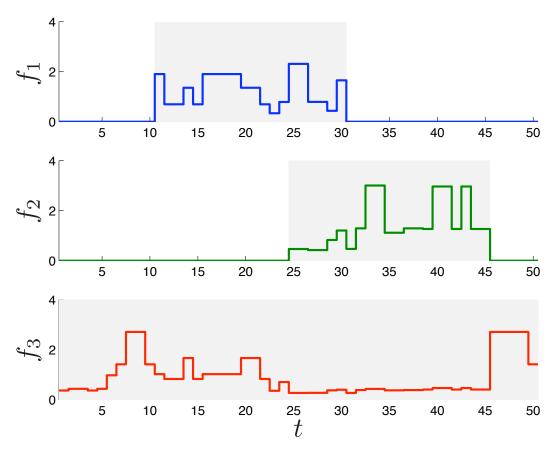
flow	start time t_i	stop time t_f	file size S
1	11	30	25
2	25	45	30
3	1	50	45

Markov Link Capacity Model



- three states: good (c=4), OK (c=2), bad (c=1)
- link capacities evolve independently
- mixing time about 5 periods
- equilibrium distribution is 0.6, 0.3, 0.1; average capacity is $\overline{c} = 3.2$
- all links start in OK state

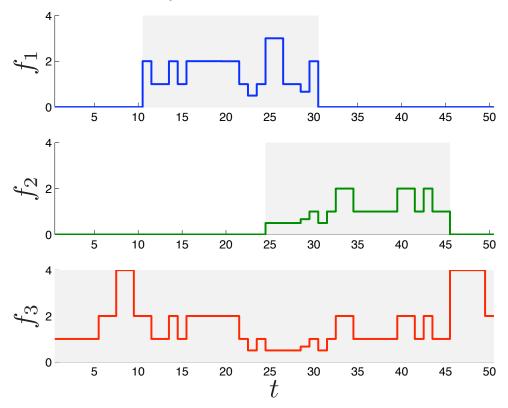
Optimal Flow Rates



shortfalls: 0, 0, 0; total penalty: 0

Flow Rates from (Separable) Log Utility

U is log utility over contract periods

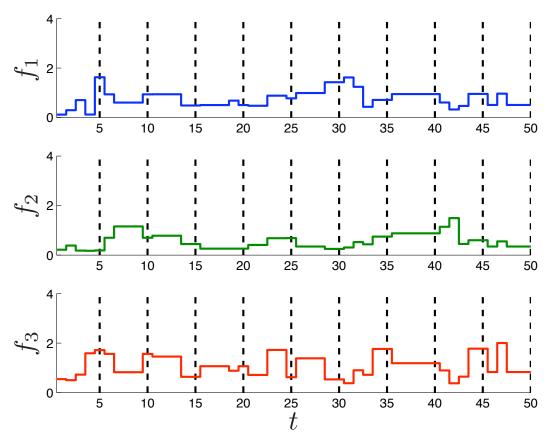


shortfalls: 0, 6.8, 0; total penalty: 6.8

Streaming

- need $S=1,\ 3,\ 2$ total flow (for $f_1,\ f_2,\ f_3$) in each of 10 successive 5-period long blocks
- we'll compare optimal flows with flows from (separable) log utility
- we'll judge by total penalty, fraction of block contract violations

Optimal Flows



0 block shortfalls (out of 30); total penalty: 0

Log Utility Flows

$$U = \sum_{i} \sum_{t} \log f(t)_{i}$$

$$\int_{0}^{4} \int_{10}^{4} \int_{15}^{4} \int_{20}^{4} \int_{25}^{4} \int_{30}^{4} \int_{35}^{40} \int_{45}^{45} \int_{50}^{40} \int_{5}^{40} \int_{10}^{45} \int_{15}^{40} \int_{20}^{45} \int_{25}^{40} \int_{30}^{45} \int_{35}^{40} \int_{45}^{45} \int_{50}^{40} \int_{5}^{40} \int_{10}^{45} \int_{15}^{40} \int_{20}^{45} \int_{25}^{40} \int_{30}^{45} \int_{35}^{40} \int_{45}^{45} \int_{50}^{40} \int_{5}^{40} \int_{10}^{45} \int_{15}^{40} \int_{20}^{45} \int_{25}^{40} \int_{30}^{45} \int_{35}^{40} \int_{45}^{45} \int_{50}^{40} \int_{5}^{40} \int_{10}^{45} \int_{15}^{40} \int_{20}^{45} \int_{25}^{40} \int_{35}^{40} \int_{45}^{45} \int_{50}^{40} \int_{5}^{40} \int_{10}^{45} \int_{15}^{40} \int_{20}^{45} \int_{25}^{40} \int_{35}^{40} \int_{45}^{45} \int_{50}^{40} \int_{5}^{40} \int_{45}^{40} \int_{50}^{40} \int_{45}^{40} \int_{45}^{40} \int_{50}^{40} \int_{45}^{40} \int_{45}^{40}$$

7 block shortfalls (out of 30); total penalty: 6.5

Stochastic Dynamic NUM

- so far, we've assumed future c(t), R(t), U are known
- this is the *prescient* model
- now suppose c(t) not perfectly known ahead of time
- we'll let $\hat{c}(t|\tau)$ be guess of c(t) at time τ ; for $\tau \geq t$, $\hat{c}(t|\tau) = c(t)$
- let's impose causality constraint: f(t) can only depend on $c(1), \ldots, c(t)$
- DNUM then reduces to (convex) stochastic control problem (with statistical model of c)

- much known about stochastic control
- prescient solution gives bound on performance of causal scheme
- no analytic solution, but several good heuristics
- model predictive control, a.k.a. rolling horizon control, can work well
- basic idea:
 - solve a DNUM problem at each step, using predictions for unknown future value
 - implement/execute only first value of f

Model Predictive Control

- let $f_{\rm mpc}(t)$ denote MPC flows
- for $\tau = 1, \dots, T$ get solution f^* of

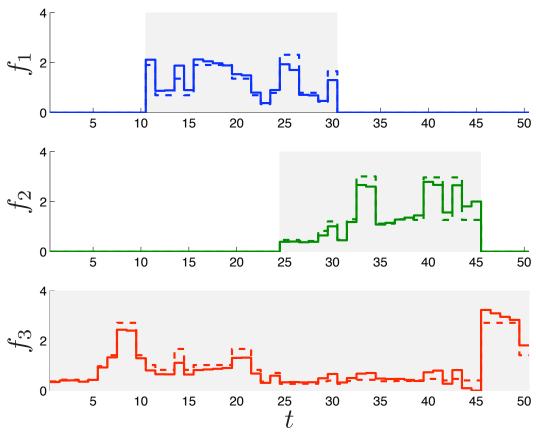
maximize
$$U(f(1),\ldots,f(T))$$
 subject to
$$R(t)f(t) \leq \hat{c}(t|\tau), \quad f(t) \geq 0, \quad t=1,\ldots,T$$

$$f(t) = f_{\mathrm{mpc}}(t), \quad t=1,\ldots,\tau-1$$

- then set $f_{\mathrm{mpc}}(\tau) = f^{\star}(\tau)$
- $f_{\text{mpc}}(t)$ depends only on $c(1), \ldots, c(t)$, *i.e.*, it is *causal*

Results: Rates for Contracts

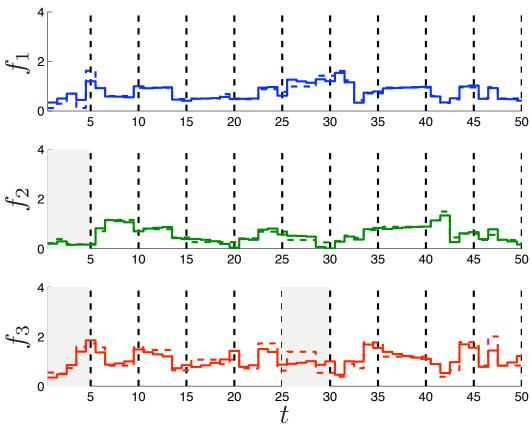
dashed prescient; solid MPC



shortfalls: 0, 0.1, 0; total penalty: 0.1

Results: Rates for Streaming

dashed prescient; solid MPC



3 block shortfalls (out of 30); total penalty: 0.4

Conclusions

- we think that the explicit idea of time (dynamics) needs to be introduced in the NUM framework
- this allows us to describe different requirements on traffic, urgency, and scheduling in a sensible way
- ullet many static NUM methods extends to DNUM, e.g., dual decomposition
- model predictive control gives causal control law