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A framework for incorporating channel and other time varying, random phenomena into NUM




NUM — Background

NUM Model
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NUM Quantities

e Concave utility functions U(r)

— Model upper layer protocols
* Sourceratesr
* Routing matrix A
* Fixed link capacities c
But,
*Single Period
*Traffic

eLink states
*Not tied to random channel



Stochastic NUM
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Stochastic NUM

Formally

max E[ U(r;(G))]

S.t.

Comments

Channel state G revealed

Seek policies
— Source rate r(G)
— Link Rate R(G,S(G))
Subject to constraints
— Queue stability

— Average Tx Power
— State constraints a.s.

State based routing A(G)



Method of Solution: FROEC

Dual Decomposition

max E|D U(r;(G))] + ME[A(G)r;(G) — R;(G, S)] + 2E|S;(G) — 5]
Realization based approach

— |terative unbiased estimates of Lagrange multipliers

— Converges in E[] and in Probability

— Learns p(G) = A

Price Interpretations for Lambdas

— Trade offs in average “ link utilization” vs. average power

— Trade offs in state, G, based backpressure, Tx power,
capacity using estimates of lambda



Single Link — Protocol Control

* Upper layer protocols know channel G and command

link. max  E[U(r(G))]
S.t.

r(G) = R(G, 5(G))

E[S(G) <5

Si(G) =0

* Results:

R(G,S(G)) = aW(0); W Lambert function and 0 = [_K:f\?]a
S(G) —1 N

S @W(0)]*SA  K(BERgapget)SG
* Where we assume
R(G,S(G)) = f{( SNR) where f is concave e.g.

— log (1 + K(BER) S(ﬁ))G)




Single Link — Decupled Layers
(Power vs. Backlog Tradeoffs)

* Buffer between upper layers and link
max E[U(r(G))]

S.t.

e Results:

— FROEC: Lagrange “price” estimates trade off between
backpressure and Tx power dynamically

— Closed form solution (AM)
* Fixed source rates r(G)=r

* Rate adaptation )
R:{l%(G)SGzNM

N o
0 otherwise.




Rate in dB

Comparisons

Decoupling helps E[U(r)] < U(E|[r])
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Interfering Links

* Dual Decomposition
max E[DU(r;(G))] + ATE[A(G)ri(G) — R;(G, S)] + MTE[S;(G) — 5]
— Solution has constant source rates (source/link decoupled)

e Set {)\;} marginal utility with change in average rate
region. Set {\}} marginal value of link power limits

* FROEC estimates trade off between backpressure on

link i and Tx power on link j for a given realization at
time k. {/\a(al...ek)}

(G ... Gy)




