STATUS QUO
Consider tracking times of meaningful events (point processes) in MANETs

‘How is lossy source coding of temporal information related to traditional notions of compression?
‘Verdu developed a notion [1] for Poisson processes X, but quantized reproductions x’ not Poisson

NEW INSIGHTS

Consider McFadden’s “Entropy of a point process” [2] formulation

The entropy on [0, 7] of a point process P with arrival times { P, P, ...} is defined

as the sum of its numerical entropy and its positional entropy:
hr(P):= H(M) + Ey|h( P, ..., Poa|M =m)|.

where M is a random variable denoting the number of arrivals in [0, 7|, H(-) is discrete
entropy, i(-) is differential entropy, and given M =m, {P,..., P, } are the. locations
(1n time) of the arrivals.

*Poisson process has maximum entropy he(P)

Gastpar et al [3]: d(x,x’)=-log p(x|x’) for a channel with p(x’|x) is In some sense ideal and canonical.

— TA(1 —log \).

Bernoulli source with Hamming Distortion <-> Binary Symmetric Channel
Gaussian source with Squared Error Distortion <-> AWGN Channel

Both have simple mutual information inequality proofs exploiting maximum entropy distributions, and can
be extended to multiterminal problems

Consider p(x|x’) for an Exponential Server Timing Channel (ESTC) queuing system (Bits through Queues [4])"

‘Wagner and Anantharam [5] embarked upon understanding the similarities between the BSC, AWGN, and
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where (1) follows because A is a Poisson process with rate A, and (2) follows because
of the argument below.

Note the following properties for &, namely.

) S=XoXisa pomt process with an av erage of A1 spikes; and
2) E[3;S] < D=2,and thus E[}, S;] <2~

L — U
Thus hp(S) is upper-bounded by the entropy of the maximum-entropy point process

among all point processes of duration ‘};—T and rate at most yz, which 1s a Poisson process

on [0, 2L] of rate L.

DISCUSSION
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ACHIEVEMENT DESCRIPTION

R(D) of Poisson Processes with Queuing Distortion Measure can be shown in complete analogy to Bernoulli

source w/ Hamming distortion and Gaussian source w/ Euclidean distortion. Also, reproduction is a Poisson

if 0 < AD < 1;

otherwise.

Achievability and Test-Channel

~ Generate codewords X according to a Poisson process with rate (A) on [0, 7|. For any
A, consider the output of an ESTC with rate ;> A 1n steady-state with input process
A, and denote the output process as A. Note that by Burke's theorem the departure

process A 1s also a Poisson process with rate A and thus, by defining D = % we have
that
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— A(1 —log A) — A(1 — log ) = Alog (*{) — _Alog D.

Note that this immediately suggests the following coding scheme. For a chosen D £
(0,1) and T" € (0. +0o0), given a realization x of Poisson process A" with rate A\, generate
2TR(D) jndependent realizations of a rate \ Poisson process X’ denoting the i*! realization
b\ x(i) for i = 1,2,..., 28 0P) Now choose x(i*) as the reproduction of x where

i* € argmin;_y o oTRD) d7(X,X(7)).

b sl g sy

ESTC channels by developing a distance metric for the M/M/1 queuing system that is analogous to
Hamming/Euclidean distances for BSC/AWGN channels - in that it is related to the logarithm of the
channel’s conditional distribution. Using this distance metric they were able to characterize the zero-rate
reliability of the ESTC. This led to our conjecture that an analogous rate-distortion problem with an
appropriate distortion measure should lead to an elegant set of mutual information inequalities, closed-
form lower bound, and an elegant “test-channel” to illustrate achievability.

Distortion Measure

Over 0,71, consider two point processes A" and X. Denote the arrival times of X
by {X,} and the arrival times of X by fX;}. We remind the reader that the associated

counting functions of X and X are N x(t) and Ny(t), respectively. For any two point
processes A and X such that Ny (T') = N4 (T'), and Ny (t) = Nx(t), vt € [0,T] define

S=4X¢ ;)(J

Structure of Rate-Distortion function same as Verdu [1] and Bedekar [6]. However:

‘Verdu'’s result [1] appears to focus more on extremal properties of the exponential distribution than on
queuing. Reproductions are not Poisson or even a renewal process.

*Timing constraints introduced here different than Verdu [1] and Bedekar [6]: reproductions must lead original

*Our proof technique, as compared to Bedekar [6], uses point process entropy, the maximum entropy property
of the Poisson process. and mutual information inequalities to show similarity to BSC/AWGN problems.

IMPLICATIONS, EXTENSIONS, AND FUTURE WORK

‘Extend this Gaussian/Bernoulli analogy to meaningful multi-user settings of interest to MANETSs

‘Explore deeper isomorphism of lossy source coding theorems involving maximum-entropy distributions

as the point process with inter-arrival times {S;} given by the induced service times of
a FCFS queueing system with X as the input and A as the output as shown in Figure 1.
Note the abuse of notation in that for the process &, the {5, }s are the inter-arrival times.
Specifically, S; = X; — max(X;_1, X; ) see Figure 2 tor the vahdity of this 1elat10nsh1p.
Note that the counting function for S, Ng(t) is uniquely defined on |0, Z x(T) g. i|.

With this definition, we can now Llehne the distortion between any two IQH]IZ‘T[ID[]% X
and X of point processes A and A'. Define

dr(x, %) = { LY i1 if Nx(T) = Ng(T) and Ng(t) > Nx(t), vt € [0,T]

‘Develop practical lossy source codes of point processes via:
a) duality between compression and channel coding
b)Recently developed practical capacity-approaching codes [7] for queuing channels
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