General Relaying for Multicast in Wireless Networks

Ivana Marić, Andrea Goldsmith and Muriel Medard

December Summary

Goals, Progress and Future Work

• GOALS: Analyze general relaying which allows combining of data streams at the relays for multicast in wireless networks

- •Can such schemes outperform the time-sharing approach?
- Which of the general encoding schemes has the best performance?

PROGRESS SINCE JULY: Evaluation and comparison of several joint encoding schemes

- •FUTURE:
- Generalize to Large Networks:

- Relay strategies such as block Markov encoding, sliding-window decoding, backward decoding become very involved in larger networks
 - Proposed joint encoding scheme, i.e., analog network coding) is simple ⇒ The achievable rates of the same coding scheme can be evaluated in a large network with M>2 destinations

Further work on small networks: - Obtain tighter bounds on the performance

- Further explore and propose cooperative schemes that incorporate joint relaying and network coding and result in improved or optimal performance

Time-Sharing vs. Joint Encoding

We want to consider general relaying which

 $X_3[n] = f_n(Y_3[n-1] ..., Y_3[1])$

Joint encoding of messages of multiple sources

Combining of symbols on the physical layer

allows for combining data

Such as:

- Traditional communication in wireless networks: multihop through logical point-to-point links
 - Other signals treated as interference
- Cooperative relaying strategies improve performance
 - Nodes do not discard interfering signals
 - Nodes cooperatively encode
- How to handle multiple streams?
- Combining of bits on the network layer One approach: time-sharing Relay switches between forwarding two streams as in routing,

but employs cooperative strategies instead of store-and-forward

Channel Model

Compound Multiaccess Channel with Dedicated Relay

- Smallest relevant multicast network
- Includes broadcasting and interference
- Power constraints at the nodes

Cooperative Strategies

1) Amplify-and-forward/analog network coding:

 This combines two data streams since: $X_3[n] = \alpha(h_{13}X_1[n-1]+h_{23}X_2[n-1]+Z_3[n-1])$

Received at the destination t:

 $X_3[n]=\alpha Y_3[n-1]$

 $Y_{t}[n] = h_{1t}X_{1}[n] + \alpha h_{13}h_{3t}X_{1}[n-1] + h_{2t}X_{2}[n] + \alpha h_{23}h_{3t}X_{2}[n-1] + W_{t}[n]$

- Achievable rates follow from the capacity of MAC with ISI [Cheng& Verdu, 1993]
- 2) Amplify-and-forward with no delay at the relay: $X_3[n]=\alpha Y_3[n]$

4) MAC/BC approach:

Sources transmit to the relay only. Relay decodes and broadcasts (W_1, W_2) to destinations using a single codebook. Rates constrained by the worse relay-destination channel.

3) Decode-and-forward:

Source t encodes using superposition coding

$$X_t = \sqrt{P_t} (\sqrt{\alpha_t} V_t + \sqrt{1-\alpha_t}) Q_t$$

Relay decodes (W_1, W_2) and encodes with two codebooks

$$X_3 = \sqrt{P_3} (\sqrt{\beta} V_1 + \sqrt{(1-\beta)} V_2)$$

 $0 \le \alpha_1, \alpha_2, \beta \le 1$

 Achievable rates follow from rates for MAC-DR [Kramer & Wijngaarden, 2000]

5) Network coding approach:

Sources time share in transmitting. Destination t decodes W_t . Relay decodes and broadcasts (W_1, W_2) to destinations using a single codebook. Destinations exploit side information.

$X_3 = f(W_1, W_2)$

Numerical Comparisons and Observations

Achievable Rates and Time Sharing Outer Bound

Symmetric scenario: $P_1 = P_2 = 5P_3$

Sum-Rate Performance

Achievable Rates

Sum-Rate in Half-Duplex

- DF outperforms AF and time-sharing outer bound
- AF outperforms outer bound only for no delay at the relay
- Sum rate bound obtained from Fano's inequality
- Time sharing outer bound loose for two reasons:
 - Due to a genie: no interference at receivers
 - •Relay knows W_2 a priori
- AF outperforms MAC/BC approach for most of the relay positions
- Half-duplex scenario: DF superior than AF in terms of sum-rate as long as relay is further away from destinations