S. Borade and L. Zheng

ACHIEVEMENT DESCRIPTION

MAIN RESULT:

- Single letter solution for very noisy BC channel and slope of capacity region for general cases
- Relation between rate tradeoff and SVD of divergence translation matrix

$$B = \left[\sqrt{P_Y}\right]^{-1} W \left[\sqrt{P_X}\right]$$

HOW IT WORKS:

Divergence translation over channel, joint distribution, and linear mapping

ASSUMPTIONS AND LIMITATIONS:

- Very noisy, local approximation
- Canonical example of variation analysis of distributions
- Layered coding over networks

Our approach provides new opportunities for traditional network information theory problems, security, multi-terminal source coding.

Local approximation to K-L divergence

· K-L ---- quadratic

Network information

K-L divergence

solution

theory with optimization of

rarely analytical solution

• global vs. local optimum

K-L divergence too

complicated

structure of optimal

- Information geometry ---- Euclidean geometry
- Large Deviation ---- CLT

$$D(P||Q) \approx \sum_{i} \frac{1}{2Q_i} (Q_i - P_i)^2$$

Geometric view of distributions, related to robust Hypo-testing, compress sensing

What is Euclidean?

- Motivation:
 - Most information theoretic problems are optimization of KL divergence;
 - Finding the structure of the optimal solutions is important: eg. multi-letter → single letter;
 - The geometry of distributions is in general difficult;
 - Local approximation = Euclidean geometry is the simplest special case
- Local approximation of divergence:

$$D(P||Q) = -\sum_{i} P_{i} \log \frac{Q_{i}}{P_{i}} = -\sum_{i} P_{i} \log \left(1 + \frac{Q_{i} - P_{i}}{P_{i}}\right)$$

$$\leq \approx -\sum_{i} P_{i} \left[\left(\frac{Q_{i} - P_{i}}{P_{i}}\right) - \frac{1}{2}\left(\frac{Q_{i} - P_{i}}{P_{i}}\right)^{2}\right]$$

$$= \sum_{i} \frac{1}{2P_{i}} (Q_{i} - P_{i})^{2} \approx \sum_{i} \frac{1}{2Q_{i}} (Q_{i} - P_{i})^{2}$$

$$\stackrel{\Delta}{=} \|P - Q\|_{P}^{2} \approx \|P - Q\|_{Q}^{2}$$

Mutual Information as Variance

lacksquare Consider a DMC $W: \mathcal{X} \to \mathcal{Y}$

$$I(X;Y) = I(P_X;W) = E_{P_X}[D(W(\cdot|x)||P_Y(\cdot))]$$

 $\approx E_{P_X}[\|W(\cdot|x) - P_Y(\cdot)\|_{P_0}^2]$

- Local approximation valid for very noisy channel: $W(\cdot|x) \sim P_0, \forall x$.
- Mutual information as a variance.
- lacksquare Optimal output P_Y as circular center.

A Picture of Error Exponent

- Assume random code P_x over channel W
 - Correct codeword \mathbf{x}_0 and received string $\mathbf{y} \sim \text{i.i.d. } P_{XY}$
 - e^{nR} incorrect codewords $\mathbf{x}_i, \mathbf{y} \sim$ i.i.d. $(P_X P_Y)$.
 - Independence vs. conditional independence

With a little bit "cheating"

$$R = D(P^*||P_X P_Y) \approx k \cdot t^2$$

$$E_r = D(P^*||P_{XY}) \approx k \cdot (1-t)^2$$

$$I(X;Y) = D(P_{XY}||P_X P_Y) \approx k$$

$$\Rightarrow \sqrt{R} + \sqrt{E_r} = \sqrt{C}$$

Source Coding Helper Problem

Csiszar & Korner:

- lacksquare X,Y are joint DMS with $P_{XY}=P_X\cdot W$.
- ullet Goal: lossless reconstruction \hat{Y}
- ullet Helper observes X, summarize into U, send rate

$$R_X = I(U;X)$$

ullet Source coding Y with side information U,

$$R_Y = H(Y|U)$$

$$\max_{U \leftrightarrow X \leftrightarrow Y: I(U;X) \le R_X} I(U;Y)$$

- Not convex optimization;
- Multi-letter problem in general.

Euclidean Version of the Problem

$$\max_{U \leftrightarrow X \leftrightarrow Y: I(U;X) \le R_X} I(U;Y) \iff \max_{E_{P_U}} E_{P_U} \left[\|P_{Y|U}(\cdot|u) - P_Y(\cdot)\|_{P_Y}^2 \right] \\
E_{P_U} \left[\|P_{X|U}(\cdot|u) - P_X(\cdot)\|_{P_X}^2 \right] < R_x$$

- Linear relation, for any u, $P_{Y|U}(\cdot|u) = W_{|\mathcal{Y}|\times|\mathcal{X}|}P_{X|U}(\cdot|u)$
- lacksquare Solution by SVD of W.
- Compensate for the scaling: divergence translation matrix

$$B \stackrel{\Delta}{=} = \left[\sqrt{P_Y}\right]^{-1} W \left[\sqrt{P_X}\right]$$

New problem

$$\max E_{P_U}[\|B \cdot \underline{\mathbf{v}}_{X|u}\|^2]$$
 subject to $E_{P_U}[\|\underline{\mathbf{v}}_{X|u}\|^2] \le R_x$

SVD of Divergence Translation Matrix

Lemma 1: B has a singular value $\sigma_1 = 1$, corresponding to the input/ output singular vectors $[\dots \sqrt{P_X(x)} \dots]^T, [\dots \sqrt{P_Y(y)} \dots]^T$.

Lemma 2: All other singular values of B have $\sigma_i \leq 1$

Proposition

$$I(U;Y) \le \sigma_2^2 \cdot I(U;X)$$

with equality achieved by choosing $\underline{\mathbf{v}}_{X|u}$ along the singular vector of B, corresponding to the second largest singular value σ_2 .

$$P_{X|U}(\cdot|u) = P_X(\cdot) + \epsilon[\sqrt{P_X}] \cdot \underline{\mathbf{v}}_2$$

Multi-Letter Problem

$$\max I(U; \underline{Y})$$
 subject to $I(U; \underline{X}) \le nR_X$

- ullet P_X can be written as $P_X \otimes P_X \otimes \ldots \otimes P_X$.
- **●** Probability transition matrix $P_{Y|X} = W \otimes W \otimes ... \otimes W$
- **Divergence translation from** $P_{\underline{X}}$ to $P_{\underline{Y}}$: $B^{(n)} = B \otimes B \otimes \ldots \otimes B$.

Lemma: If $\underline{\mathbf{v}}_i, \underline{\mathbf{v}}_j$ are singular vectors of B, corresponding to singular values σ_i, σ_j , then $\underline{\mathbf{v}}_i \otimes \underline{\mathbf{v}}_j$ is a singular vector of $B \otimes B$, with singular value $\sigma_i \cdot \sigma_j$.

lacksquare Optimal choice: for all u

$$P_{X_1,X_2|U=u} = P_X \otimes P_X + [\sqrt{P_X \otimes P_X}] \cdot (\epsilon_1 \cdot \underline{\mathbf{v}}_1 \otimes \underline{\mathbf{v}}_2 + \epsilon_2 \cdot \underline{\mathbf{v}}_2 \otimes \underline{\mathbf{v}}_1)$$
$$= (P_X + \epsilon_1 \cdot [\sqrt{P_X}] \cdot \underline{\mathbf{v}}_2) \otimes (P_X + \epsilon_2 \cdot [\sqrt{P_X}] \cdot \underline{\mathbf{v}}_2)$$

Single letter solution optimal.

Euclidean Approach for Broadcasting Channels

General very noisy BC channel

• Divergence translation matrix from P_Y to P_Z :

$$B_{Y\to Z} = \left[\sqrt{P_Z}\right]^{-1} \cdot W_Z \cdot W_Y^{-1} \left[\sqrt{P_Y}\right]$$

- SV might > 1, related to the shape of capacity region.
- 3-user broadcasting with degraded message sets

- All channels are very noisy.
- Two levels of degraded messages, private message to Y only.
- Single letter "order optimal".

- Single letter solution optimal.
- Two different divergence translation matrices, from P_Y space, $B_{Y \to Z_1}$ $B_{Y \to Z_2}$ can have different singular vectors.