## Euclidean Information Theory

## S. Borade and L. Zheng

Network information K-L divergence

- rarely analytical solution
- global vs. local optimum
- structure of optimal solution

K-L divergence too complicated


Local approximation to K-L divergence

- K-L ---- quadratic
- Information geometry
---- Euclidean geometry
- Large Deviation ---- CLT
$D(P \| Q) \approx \sum_{i} \frac{1}{2 Q_{i}}\left(Q_{i}-P_{i}\right)^{2}$


## ACHIEVEMENT DESCRIPTION

## MAIN RESULT:

- Single letter solution for very noisy BC channel and slope of capacity region for general cases
- Relation between rate tradeoff and SVD of divergence translation matrix

$$
B=\left[\sqrt{P_{Y}}\right]^{-1} W\left[\sqrt{P_{X}}\right]
$$

HOW IT WORKS:
Divergence translation over channel, joint distribution, and linear mapping


## ASSUMPTIONS AND LIMITATIONS:

- Very noisy, local approximation
- Canonical example of variation analysis of distributions
- Layered coding over networks

Our approach provides new opportunities for traditional network information theory problems, security, multi-terminal source coding.

Geometric view of distributions, related to robust Hypo-testing, compress sensing

## What is Euclidean?

- Motivation:
- Most information theoretic problems are optimization of KL divergence;
- Finding the structure of the optimal solutions is important: eg. multi-letter $\rightarrow$ single letter;
- The geometry of distributions is in general difficult;
- Local approximation = Euclidean geometry is the simplest special case
- Local approximation of divergence:

$$
\begin{aligned}
D(P \| Q) & =-\sum_{i} P i \log \frac{Q_{i}}{P_{i}}=-\sum_{i} P_{i} \log \left(1+\frac{Q_{i}-P_{i}}{P_{i}}\right) \\
& \leq \approx-\sum_{i} P_{i}\left[\left(\frac{Q_{i}-P_{i}}{P_{i}}\right)-\frac{1}{2}\left(\frac{Q_{i}-P_{i}}{P_{i}}\right)^{2}\right] \\
& =\sum_{i} \frac{1}{2 P_{i}}\left(Q_{i}-P_{i}\right)^{2} \approx \sum_{i} \frac{1}{2 Q_{i}}\left(Q_{i}-P_{i}\right)^{2} \\
& \triangleq\|P-Q\|_{P}^{2} \approx\|P-Q\|_{Q}^{2}
\end{aligned}
$$

## Mutual Information as Variance

- Consider a DMC $W: \mathcal{X} \rightarrow \mathcal{Y}$

$$
\begin{aligned}
I(X ; Y)=I\left(P_{X} ; W\right) & =E_{P_{X}}\left[D\left(W(\cdot \mid x) \| P_{Y}(\cdot)\right)\right] \\
& \approx E_{P_{X}}\left[\left\|W(\cdot \mid x)-P_{Y}(\cdot)\right\|_{P_{0}}^{2}\right]
\end{aligned}
$$

- Local approximation valid for very noisy channel: $W(\cdot \mid x) \sim P_{0}, \forall x$.
- Mutual information as a variance.
- Optimal output $P_{Y}$ as circular center.



## A Picture of Error Exponent

- Assume random code $P_{x}$ over channel $W$
- Correct codeword $\mathrm{x}_{0}$ and received string y $\sim$ i.i.d. $P_{X Y}$
- $e^{n R}$ incorrect codewords $\mathbf{x}_{i}, \mathbf{y} \sim$ i.i.d. ( $P_{X} P_{Y}$ ).
- Independence vs. conditional independence
- With a little bit "cheating"

$$
\left.\begin{array}{rlrl}
R & =D\left(P^{*} \| P_{X} P_{Y}\right) & \approx k \cdot t^{2} \\
E_{r} & =D\left(P^{*} \| P_{X Y}\right) & \approx k \cdot(1-t)^{2} \\
; Y) & =D\left(P_{X Y} \| P_{X} P_{Y}\right) & \approx k
\end{array}\right\} \Longrightarrow \sqrt{R}+\sqrt{E_{r}}=\sqrt{C}
$$

## Source Coding Helper Problem

Csiszar \& Korner:


- $X, Y$ are joint DMS with $P_{X Y}=P_{X} \cdot W$.
- Goal: lossless reconstruction $\hat{Y}$
- Helper observes $X$, summarize into $U$, send rate

$$
R_{X}=I(U ; X)
$$

- Source coding $Y$ with side information $U$,

$$
R_{Y}=H(Y \mid U)
$$

$$
\max _{U \leftrightarrow X \leftrightarrow Y: I(U ; X) \leq R_{X}} I(U ; Y)
$$

- Not convex optimization;
- Multi-letter problem in general.


## Euclidean Version of the Problem

$$
\max _{U \leftrightarrow X \leftrightarrow Y: I(U ; X) \leq R_{X}} I(U ; Y) \Longleftrightarrow \begin{aligned}
& \max \quad E_{P_{U}}\left[\left\|P_{Y \mid U}(\cdot \mid u)-P_{Y}(\cdot)\right\|_{P_{Y}}^{2}\right] \\
& E_{P_{U}}\left[\left\|P_{X \mid U}(\cdot \mid u)-P_{X}(\cdot)\right\|_{P_{X}}^{2}\right]<R_{x}
\end{aligned}
$$

- Linear relation, for any $u, P_{Y \mid U}(\cdot \mid u)=W_{|\mathcal{Y}| \times|\mathcal{X}|} P_{X \mid U}(\cdot \mid u)$
- Solution by SVD of $W$.
- Compensate for the scaling: divergence translation matrix

$$
B \triangleq=\left[\sqrt{P_{Y}}\right]^{-1} W\left[\sqrt{P_{X}}\right]
$$

- New problem

$$
\max E_{P_{U}}\left[\left\|B \cdot \underline{\mathbf{v}}_{X \mid u}\right\|^{2}\right] \quad \text { subject to } \quad E_{P_{U}}\left[\left\|\underline{\mathbf{v}}_{X \mid u}\right\|^{2}\right] \leq R_{x}
$$

## SVD of Divergence Translation Matrix

Lemma 1: $B$ has a singular value $\sigma_{1}=1$, corresponding to the input/ output singular vectors $\left[\ldots \sqrt{P_{X}(x)} \ldots\right]^{T},\left[\ldots \sqrt{P_{Y}(y)} \ldots\right]^{T}$.

Lemma 2: All other singular values of $B$ have $\sigma_{i} \leq 1$

## Proposition

$$
I(U ; Y) \leq \sigma_{2}^{2} \cdot I(U ; X)
$$

with equality achieved by choosing $\underline{\mathbf{v}}_{X \mid u}$ along the singular vector of $B$, corresponding to the second largest singular value $\sigma_{2}$.

$$
P_{X \mid U}(\cdot \mid u)=P_{X}(\cdot)+\epsilon\left[\sqrt{P_{X}}\right] \cdot \underline{\mathbf{v}}_{2}
$$

## Multi-Letter Problem

$$
\max I(U ; \underline{Y}) \quad \text { subject to } I(U ; \underline{X}) \leq n R_{X}
$$

- $P_{\underline{X}}$ can be written as $P_{X} \otimes P_{X} \otimes \ldots \otimes P_{X}$.
- Probability transition matrix $P_{\underline{Y} \mid \underline{X}}=W \otimes W \otimes \ldots \otimes W$
- Divergence translation from $P_{\underline{X}}$ to $P_{\underline{Y}}: B^{(n)}=B \otimes B \otimes \ldots \otimes B$.

Lemma: If $\underline{\mathbf{v}}_{i}, \mathbf{v}_{j}$ are singular vectors of $B$, corresponding to singular values $\sigma_{i}, \sigma_{j}$, then $\underline{\mathbf{v}}_{i} \otimes \underline{\mathbf{v}}_{j}$ is a singular vector of $B \otimes B$, with singular value $\sigma_{i} \cdot \sigma_{j}$.

- Optimal choice: for all $u$

$$
\begin{aligned}
P_{X_{1}, X_{2} \mid U=u} & =P_{X} \otimes P_{X}+\left[\sqrt{P_{X} \otimes P_{X}}\right] \cdot\left(\epsilon_{1} \cdot \underline{\mathbf{v}}_{1} \otimes \underline{\mathbf{v}}_{2}+\epsilon_{2} \cdot \underline{\mathbf{v}}_{2} \otimes \underline{\mathbf{v}}_{1}\right) \\
& =\left(P_{X}+\epsilon_{1} \cdot\left[\sqrt{P_{X}}\right] \cdot \underline{\mathbf{v}}_{2}\right) \otimes\left(P_{X}+\epsilon_{2} \cdot\left[\sqrt{P_{X}}\right] \cdot \underline{\mathbf{v}}_{2}\right)
\end{aligned}
$$

- Single letter solution optimal.


## Euclidean Approach for Broadcasting Channels

- General very noisy BC channel

- Divergence translation matrix from $P_{Y}$ to $P_{Z}$ :

$$
B_{Y \rightarrow Z}=\left[\sqrt{P_{Z}}\right]^{-1} \cdot W_{Z} \cdot W_{Y}^{-1}\left[\sqrt{P_{Y}}\right]
$$

- SV might $>1$, related to the shape of capacity region.
- 3-user broadcasting with degraded message sets

- All channels are very noisy.
- Two levels of degraded messages, private message to $Y$ only.
- Single letter "order optimal".
- Single letter solution optimal.
- Two different divergence translation matrices, from $P_{Y}$ space, $B_{Y \rightarrow Z_{1}} \quad B_{Y \rightarrow Z_{2}}$ can have different singular vectors.

