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Distributed control and optimization algorithms in the presence of quantization




otivation

» Increasing interest in distributed optimization and control of ad hoc wireless
networks, which are characterized by:
— Lack of centralized control and access to information
— Time-varying connectivity

« Control-optimization algorithms deployed in such networks should be:
— Distributed relying on local information
— Robust against changes in the network topology

* Most focus in this area has been on the canonical consensus problem

« Goal: Given initial values of agents, establish conditions under which
through local interactions and computations, agents asymptotically agree
upon a common value

« Examples:
— Control of moving vehicles (UAVs): alignment of the heading angle

— Information processing in sensor networks: computing averages of initial
local observations (i.e., consensus on a particular value)

o EXisting work:
— No optimization of different objectives corresponding to multiple agents
— Assumes complete (unquantized) information available
— No constraints on agent values



« Consider a network with node set

V = 1,'.. ,m .fl($l7°":w7l) e
{ } y 7\\\\\\\ :;.,,ifg(l’l, e ..’L‘n)

« Agents want to cooperatively solve the / \'\
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performance measure known only by
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*Agents update and exchange information at discrete times to, %1, . ..
«Agent i information state is denoted by z‘(k) € R™ at time tk
Agent i Update Rule:(X = R")
' (k+1)=> al(k)a’ (k) — o' (k)d' (k)
j=1
a;'- (k) are weights, o*(k) is stepsize, d*(k) is subgradient of f; at z*(k)

Time-varying communication is modeled by matrix A (k) [columns a’(k)]



Assumption (Weights)

e There exists a scalar 0 < 1 < 1 s.t. for all 4, ai(k) > n for all k > 0. If

a5(k) > 0, then a’(k) > 7.
*(Doubly Stochastic Weights)
(a) D274 a5(k) =1 for all i and k.

(b) >, al(k) =1 for all j and k.

Assumption (Information Exchange)

« Agentiinfluences any other agent infinitely
often — connectivity

« Agentj send his information to neighboring
agent i within a bounded time interval —
bounded intercommunications
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- Compact representation of agent local-update relation: for & > s

2k +1) = Z[@(k,s)];xj(s)

k—1 m
- (Y[‘P(k‘,wr 1)]§Ozj(7")dj(7")) — o' (k)d; (k).

r=s \j=1
where ®(k,s) are transition maitrices from time s to k:

Ok, s) = A(s)A(s +1)--- A(k — 1)A(k) for all £ > s

 We analyze convergence properties of the distributed method
by establishing:
— Convergence of transition matrices (shown in July meeting)
— Convergence of stopped “subgradient updates”



Proposition: Let weights rule, connectivity, and bounded intercommu-
nication interval assumptions hold:

e The limit ®(s) = limy, o ®(k, s) exists for each s.

e The limit matrix ®(s) has identical columns and the columns are stochas-
tic, 1.e.,

O(s) = ¢(s)e’,

where ¢(s) € R™ is a stochastic vector for each s.

e For every i, |[®(k, s)]‘g, j = 1,...,m, converge to the same limit ¢;(s) as
k — oo with a geometric rate, 1.e., for all 7, 3 and all £ > s,

; 1+ n Po k—s
[Pk, )] — pi(s)]| <2 o (1- nBo) Bo

where 7 1s the lower bound on weights, B is the intercommunication in-
terval bound, and By = (m — 1)B.



Proposition: Let the subgradients of fi be uniformly bounded
by a constant L. Then for every i/, the averages ii(k)of estimates
2*(0),...,2%(k — 1) are such that

f ) < £ <\ 2mey

m dist?(y(0), X*) (g )

where f = ) . fi;, f" is the optimal value, and X* is the optimal set of the
problem, y(0) = L 3. 2(0), C =1+ 8mC} and

m 1+ n Po
1 —(1—nBo)yBs 1—nP’

Cy =1+

with 7 minimal weight, By = (m — 1)B, B intercommunication bound.

 Estimates are per iteration
» Capture tradeoffs between accuracy and computational complexity



« When agents can send only a finite number of bits

« Agent i estimate is given by
m

gk+1) = Z al(k)zh (k) — o' (k)d' (k)

ah(k+1) = [z*(k+1)]
|-] represents rounding down to the nearest integer multiple of 1/Q

 The consensus may not converge when rounding to the nearest integer
[Kashyap, Basar, and Srikant 06]

» The quantization effects can be viewed as errors in the original process
sz(k + 1) =2'(k+1) —e'(k), e'(k) =z'(k+1) = |z (k +1)]

 The error is bounded and it turns out it decreases to zero



Proposition: Let the subgradients of fi be uniformly bounded
by a constant L. Then for every i, the averages :?:QQ (k) of estimates

25(0), ..., x5 (k — 1) are such that

m dist?(y(0), X*)
2ak

fEGE) £+ + aL? (% + 2m01)

where f* is the optimal value of f = ). f;, X is the optimal set,

1 ; 8m vm
y(0) = m z@:wQ(O)a Co=1+ N (CYL+ ?) Cy
m 1+ nBo

C; =1+
1 | — (1 —pBo)ss 1—nP

. By=(m-1)B

e We have limg_,oo Cgp = 1 + 8mCy

e The estimate reduces to the one without quantization



* Agent/ has a nonempty closed convex constraint set X;

« We assume that the intersection set X = N, X; is nonempty

Agent | updates subject to his constraint set

si(E 1) = Py, [N 6 (k) 27(K)

*\We have under interior point
assumption on the intersection set X

sConvergence result

«Geometric rate estimate




onciusions

We presented a general distributed optimization method for general
performance measures

We provided convergence analysis and convergence rate estimates
— For unconstrained multi-agent optimization
— For constrained consensus

Future Work:
— Combination of optimization and constrained consensus
— Analysis of other guantization schemes, delays, and noise
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