
MAIN RESULT: Depending on path loss and the
scaling of area relative to number of nodes, a novel
hybrid scheme is required to achieve capacity,
where multihop transmission (MH) is used between
“clusters” that employ hierarchical cooperation
(HC) via MIMO to realize each hop.

HOW IT WORKS: We study a scaling regime where:

n = # of nodes

n  = area

 = path loss exponent

Nodes are paired randomly into source-destination
pairs.  What is the max throughput?

In contrast to prior work, area is not constant (the
dense regime) or linear (the extended regime) in n.

We characterize the capacity of the system in terms
of  and .  When  > max{ 3, 2/  } and  < 1we
need the scheme described above.

For fixed , the scheme smoothly changes from
pure HC to pure MH as  increases.

ASSUMPTIONS AND LIMITATIONS:

Our model uses a path loss model analogous to
those used in the other work in this line

Of course it also employs a similar far field
assumption.

Although we have developed
capacity expressions, we do
not yet have complete
intuition for why the various
parameters interact as
described—in particular, does
there exist a single
description that captures the
range of schemes employed?

Once the analytical
development is complete, our
goal is to submit the results to
ISIT.

Previous work on the scaling
behavior of capacity of ad hoc
networks studied two
regimes: the dense regime,
where an increasing number
of nodes is placed in a fixed
area; and the extended
regime, where area and the
number of nodes scale
identically.

We aim to study a regime
where the scaling of area is
treated as a free parameter.

This is joint work with A.
Ozgur and O. Leveque
(EPFL) and D. Tse
(Berkeley).

The intermediate density scaling regime

We characterize the capacity of a
random ad hoc network model
when area scales independently
of the number of nodes.

The scaling regime we consider
reveals optimal communication
strategies as we vary the area
scaling and the path loss.

Develop scaling regimes to
obtain insights into better
schemes.

Determine robustness of
scaling results to channel
model definition.

Physical area is a fundamentally distinct parameter from network size,
and should be allowed to scale independently
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Motivating philosophy

We are interested in developing a parsimonious

characterization of the various operating regimes

for wireless networks,

and how these operating regimes depend on

engineering parameters such as:

– Number of nodes

– Power

– Area

– Path loss characteristics

Joint work with A. Ozgur, O. Leveque, D. Tse.



Prior results on scaling

Two main network models:

• Dense networks:
Area held constant, and number of nodes  1

• Extended networks:

Area increases proportional to number of nodes

Starting with Gupta and Kumar (2000),

where the dense network model was studied

under a multihop transmission strategy,

various works studied performance in these regimes.

Most recently Ozgur et al. (2007) characterized scaling laws

for capacity in both dense and extended networks.



Intermediate density model formulation

Our approach here: area should be a distinct parameter!

• We consider a random network model where

n nodes are located uniformly at random

in an area A.

As we only consider scaling behavior of capacity,
we assume A = n , where  ¸ 0.

• Nodes are grouped into random source-destination pairs,

with uniform traffic matrix.

• We assume that each node has a transmit power

constraint P  that does not scale with n, and that
the path loss exponent is .



We employ a cutset bound.

For presentation simplicity, consider 1-D.

Start by considering n  sources transmitting to

n  destinations, separated by n  nodes:

Using an analog of the argument in Ozgur et al.,

we can show that the capacity of this system

is exactly the cutset bound for the full 1-D network.

Upper bound on capacity

O(n ) nodes

S D

O(n ) nodes O(n ) nodes



Upper bound on capacity

By showing that independent transmissions

give the upper bound, then adding together

received power from all transmit nodes, we obtain:

C(S, D) · n  ¢ O(min{ n(1- )  + (1 - ), 1}).

Thus the best exponent is:

max0 ·  · 1 min {(2 - )  + (1 - ) , }

We refer to the optimizing value * as the

optimal cluster size.



Achievability

• When  > 1:

The network is “overextended”, but

capacity achieving schemes are identical

to extended network (cf. Ozgur et al.):
hierarchical cooperation with MIMO if  < 2,

multihop if  > 2.

• When  < 1:

If  < 1/  or  < 2,

then hierarchical cooperation is optimal.

If  > 1/  and  > 2:

Neither hierarchical cooperation nor multihop is optimal!



Achievability

We consider a scheme that uses multihop transmission at
the level of clusters; each hop is realized using
hierarchical cooperation via MIMO.

Suppose we use the optimal cluster size, and consider two
adjacent clusters of size n *.

These two clusters can be equivalently viewed as
a dense network with O(n *) nodes and
per node power constraint P¢ (A n * /n)- .

Our key insight is that this per node power constraint is
equal to P /n *, which is exactly the power threshold
needed to execute the hierarchical cooperation scheme
of Ozgur et al. in dense networks.

Thus between adjacent clusters, hierarchical cooperation
suffices to achieve throughput O(n ).



Summary

Treating area as a free parameter leads to a new,
“intermediate density” operating regime with a new
transmission scheme:
Multihop transmission between clusters,
with hierarchical cooperation via MIMO to achieve
cluster-to-cluster hops.

The diagram on the first slide is the generalization to 2-D,
and demonstrates how the optimal scheme depends on
the area scaling and the path loss exponent.

However, this is still not a complete story:
we are still investigating whether there is a unifying
perspective that resolves the different schemes present
in that diagram.


