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Upper Bounds for MANET

• Fano’s inequality is insufficient for some simple networks

• How about this network?
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A Simple Problem Where Fano Fails

• “Detect-one” problem [Moulin arxiv 09]

Error is declared if both m1 and m2 are incorrectly decoded
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The Gel’fand-Pinsker Problem

• Communication with side information at transmitter [GP’80]

iid channel state sequence s – e.g., known interference at encoder

• Applications to broadcast MIMO and other multiuser

communication problems
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Multiuser Gel’fand-Pinsker Problem

• Channel state sequence s known to both transmitters
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• Application to multiuser communications:
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• Achievable region obtained by Somekh-Baruch and Merhav’04

• Capacity region is an open problem. Blame Fano?
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Strong Converse (Wolfowitz’57)

• Use either Pmax
e = maxm Pe(m) or P avg

e = 2−NR ∑
m Pe(m)

• Shannon used P avg
e only

• ε-capacity C(ε) = sup{R s.t. Pe ≤ ε},
• Weak converse: inf0<ε<1 C(ε) = C = maxpX I(X; Y )

• Strong converse: sup0<ε<1 C(ε) = C

• For compound DMCs and Pmax
e criterion [CK 1980]

inf
0<ε<1

C(ε) < sup
0<ε<1

C(ε)
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Verdú-Han’94: General Formula for Capacity

• arbitrary p(y|x), not necessarily stationary or information-stable

• Fano fails

• Capacity: C = supX I(X;Y) where

I(X;Y) = p − lim inf
1

N
log

p(y|x)

p(y)

upper bound established using a variation of Wolfowitz (1957)
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Strong Converse for MAC

• Error criteria:

P avg
e = 2−N(R1+R2)

∑
m1,m2

Pe(m1, m2) Ahlswede′82

Pmax
e = max

m1,m2
Pe(m1, m2) more natural & simpler

• same capacity region Ravg for strong & weak converse under P avg
e criterion

• But Rmax ⊂ Ravg in general [Dueck’78]

• Can enlarge Rmax using external randomness ⇒ Rmax = Ravg
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Strong Converse for DMC (Wolfowitz’57)

• Decoding sets {Dm}, empirical pmf pX , reference pmf r(y)

• “Typical” set for each 1 ≤ m ≤ 2NR:

Aδ(m) = {y :
1

N
log

pN (y|x(m))

rN (y)︸ ︷︷ ︸
Î(x(m);y) = empirical m.i.

< I(X;Y ) + δ}

• Pmax
e ≤ ε ⇒ lower bound on prob. that m is correctly decoded:

1 − ε ≤
∑

y∈Dm

pN (y|x(m)) =
∑

y∈Dm∩Aδ(m)

+
∑

y/∈Aδ(m)︸ ︷︷ ︸
≤κ for well−chosen r(y)

1 − ε − κ ≤ 2N(I(X;Y )+δ)
∑

y∈Dm∩Aδ(m)

rN (y)

• Sum over 1 ≤ m ≤ 2NR ⇒ (1 − ε − κ)2NR ≤ 2N(I(X;Y )+δ)

⇒ R < maxpX I(X;Y ) + δ + o(1)
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Strong Converse for DMC (Wolfowitz’61)

• Useful for deriving more precise asymptotics (limited N)

• There exists no (N,MN , ε) code such that

|MN | ≥ 2NC+K
√

N and Pe ≤ ε

• There exists a (N,MN , ε) code such that

|MN | ≥ 2NC−K′√N and Pe ≤ ε

• Relates to recent work by Verdú (2008) and Hayashi (2008)
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Strong Converse for Gelfand-Pinsker Channel

(ISIT 2009 submission)

• Think of s as interference known to encoder but not decoder

• GP’80: C = max
pX|US

[I(U ;Y ) − I(U ;S)], achieved by random binning

• Strong converse yields coding interpretation for U

• Define alphabet U , function f : U × S → X ,

and virtual DMC p(y|u, s) =
∑

x p(y|x, s)1{x = f(u, s)}
• Wlog define codewords as {u(m, s)} with xi = f(ui, s) for 1 ≤ i ≤ N

• Indeed can always adopt trivial choice U = X and x = f(x, s)
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Multiuser Gel’fand-Pinsker Channel
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• Think of s as interference known to both encoders but not decoder

• Random binnning achieves the following rate region [Somekh’04]

For a pmf P of the form pS pT pX1V1|ST pX2V2|ST pY |X1X2S , let

Rin(L, P ) be the region of rate pairs (R1, R2) that satisfy

R1 < I(V1; Y |V2, T ) − I(V1; S|V2, T )

R2 < I(V2; Y |V1, T ) − I(V2; S|V1, T )

R1 + R2 < I(V1, V2; Y |T ) − I(V1, V2;S|T )

where the alphabets for V1 and V2 have arbitrarily large cardinality L
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Weak Converse for Multiuser GP Channel

• For a pmf P of the form pS pT pV1V2|ST pX1|V1ST pX2|V2ST pY |X1X2S ,

let Rout(L, P ) be the region of rate pairs (R1, R2) that satisfy

R1 < I(V1; Y |V2, T ) − I(V1; S|V2, T )

R2 < I(V2; Y |V1, T ) − I(V2; S|V1, T )

R1 + R2 < I(V1, V2; Y |T ) − I(V1, V2;S|T )

where the alphabets for V1 and V2 have cardinality L.

• No rate pair outside ∪L≥1R
out(L, P ) is achievable

• Apparently Rin ⊂ Rout
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Strong Converse for Multiuser GP Channel

• Rin is the capacity region of the multiuser GP channel.

• Furthermore, in the definition of Rin it suffices to consider pXiVi|ST

of the form pVi|ST 1{Xi = fi(Vi, S)} for i = 1, 2

• Two basic ideas of the proof:

– Extend methods from single-user case

– Use of the Pmax
e criterion eliminates the need of Dueck and

Ahlswede’s wringing techniques
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Conclusion

• Strong converses are a powerful alternative to Fano-based weak

converses

• Use of Pmax
e criterion is simpler and arguably more natural for

multiuser communications

• Method should be applied to a suite of problems with increasing

difficulty, including degraded broadcast channel, etc.
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