Towards Strong Converses for MANETs

Pierre Moulin

University of Illinois at Urbana-Champaign Electrical and Computer Engineering

Stanford, Palo Alto, CA March 5, 2009

• Capacity region is an open problem. Blame Fano?

- ϵ -capacity $C(\epsilon) = \sup\{R \text{ s.t. } P_e \leq \epsilon\},$
- Weak converse: $\inf_{0 \le \epsilon \le 1} C(\epsilon) = C = \max_{p_X} I(X;Y)$
- Strong converse: $\sup_{0 < \epsilon < 1} C(\epsilon) = C$
- For compound DMCs and P_e^{max} criterion [CK 1980]

$$\inf_{0<\epsilon<1} C(\epsilon) < \sup_{0<\epsilon<1} C(\epsilon)$$

• Capacity: $C = \sup_{\mathbf{X}} \underline{I}(\mathbf{X}; \mathbf{Y})$ where

$$\underline{I}(\mathbf{X};\mathbf{Y}) = p - \liminf \frac{1}{N} \log \frac{p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y})}$$

upper bound established using a variation of Wolfowitz (1957)

Strong Converse for DMC (Wolfowitz'57)

- Decoding sets $\{\mathcal{D}_m\}$, empirical pmf p_X , reference pmf r(y)
- "Typical" set for each $1 \le m \le 2^{NR}$:

$$\mathcal{A}_{\delta}(m) = \{ \mathbf{y} : \underbrace{\frac{1}{N} \log \frac{p^{N}(\mathbf{y}|\mathbf{x}(m))}{r^{N}(\mathbf{y})}}_{\hat{I}(\mathbf{x}(m);\mathbf{y}) = \text{ empirical m.i.}} < I(X;Y) + \delta \}$$

• $P_e^{\max} \leq \epsilon \Rightarrow$ lower bound on prob. that *m* is correctly decoded:

$$1 - \epsilon \leq \sum_{\mathbf{y} \in \mathcal{D}_m} p^N(\mathbf{y} | \mathbf{x}(m)) = \sum_{\mathbf{y} \in \mathcal{D}_m \cap \mathcal{A}_{\delta}(m)} + \sum_{\mathbf{y} \notin \mathcal{A}_{\delta}(m)}$$

 $\leq \kappa$ for well-chosen r(y)

$$1 - \epsilon - \kappa \leq 2^{N(I(X;Y)+\delta)} \sum_{\mathbf{y} \in \mathcal{D}_m \cap \mathcal{A}_{\delta}(m)} r^N(\mathbf{y})$$

• Sum over $1 \le m \le 2^{NR} \Rightarrow (1 - \epsilon - \kappa)2^{NR} \le 2^{N(I(X;Y) + \delta)}$ $\Rightarrow R < \max_{p_X} I(X;Y) + \delta + o(1)$

- Think of **s** as **interference** known to encoder but not decoder
- GP'80: $C = \max_{p_{X|US}} [I(U;Y) I(U;S)]$, achieved by random binning
- Strong converse yields **coding interpretation** for U
- Define alphabet \mathcal{U} , function $f : \mathcal{U} \times S \to \mathcal{X}$, and virtual DMC $p(y|u, s) = \sum_{x} p(y|x, s) \mathbb{1}\{x = f(u, s)\}$
- Wlog define codewords as $\{\mathbf{u}(m, \mathbf{s})\}$ with $x_i = f(u_i, s)$ for $1 \le i \le N$
- Indeed can always adopt trivial choice $\mathcal{U} = \mathcal{X}$ and x = f(x, s)

- Think of **s** as **interference** known to both encoders but not decoder
- Random binnning achieves the following rate region [Somekh'04]
 For a pmf P of the form p_S p_T p_{X1V1|ST} p_{X2V2|ST} p_{Y|X1X2S}, let
 \$\mathcal{R}^{in}(L, P)\$ be the region of rate pairs (R₁, R₂) that satisfy

$$R_{1} < I(V_{1}; Y|V_{2}, T) - I(V_{1}; S|V_{2}, T)$$

$$R_{2} < I(V_{2}; Y|V_{1}, T) - I(V_{2}; S|V_{1}, T)$$

$$R_{1} + R_{2} < I(V_{1}, V_{2}; Y|T) - I(V_{1}, V_{2}; S|T)$$

where the alphabets for V_1 and V_2 have arbitrarily large cardinality L

Conclusion

- Strong converses are a powerful alternative to Fano-based weak converses
- Use of P_e^{\max} criterion is simpler and arguably more natural for multiuser communications
- Method should be applied to a suite of problems with increasing difficulty, including degraded broadcast channel, etc.