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Models come from Thrusts 1 and 2
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Network Utility MaximizationNetwork Utility Maximization

Maximizes a network utility function U1(r1)
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Wireless NUM user videoWireless NUM
Extends NUM to wireless networks
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Beyond WNUMBeyond WNUM
WNUM Limitations
• Adapts to channel and network dynamics
• Cross-layer optimization of PHY and higher layers

B t li it d t l ti t ffi fl• But limited to elastic traffic flows

MPNUM extends WNUMMPNUM extends WNUM
• Traffic can have defined start and stop times
• Traffic QoS metrics can me metQ
• General capacity regions can be incorporated
• Multiple time periods explicitly captured
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The problem and issues

• goal: multi-period resource (e.g., flow rate, power) allocation

• resources (e.g., link capacities, channel states) vary randomly

• maximize utility (or minimize cost) that reflects different

• weights (priorities)
• desired/required target levels
• averaging time scales

for different flows

• unifies what we called before WNUM, DNUM, SNUM
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Dynamic utility and averaging time scale

• ft is flow in period t, t = 0, 1, . . .

• U : R → R gives utility derived for a flow value

• f̃t = (1 − θ)
∑t

τ=0 θτft−τ is (first order) smoothed or averaged flow

• Tavg = 1/ log(1/θ) gives smoothing time scale

• average smoothed utility is Ū = limt→∞(1/t)E
∑t

τ=0 U(f̃τ)

• when U is not linear, Ū depends on smoothing time scale Tavg

• our claim: flow utility should be judged dynamically, i.e., by a utility
function and an averaging time scale
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Example

Tavg = 30 Tavg = 1
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Utility state

• represent smoothing via linear dynamical system

• ft ∈ Rn is vector of flows

• xt+1 = Θxt + (I − Θ)ft, Θ = diag(θ)

• (xt)i = f̃i(t) is smoothed flow or utility state

• average smoothed utility is

Ū = lim
t→∞

(1/t)E
t

∑

τ=0

n
∑

i=1

U((xτ)i)
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Stochastic flow control

• must have ft ∈ Rt (rate region)

• in general, Rt is random process on sets; we’ll assume Rt are IID

• stochastic flow control:

choose ft as function (policy) of Rt, xt, to maximize Ū

• can solve in principle via DP

• can solve exactly in only a few special cases

• lots of approximate solution methods
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Linear quadratic formulation

• a special case for which we can get the exact solution

• rate region is defined by (random) capacity ct: Rt = {z | 1Tz = ct}

• utilities are concave quadratic: U(z) = −(x − xtar)TQ(x − xtar)
(e.g., negative mean square deviation from target values)

• leads to (nonstandard) linear quadratic stochastic control problem

• has random equality constraints
• value function is quadratic; can be found from a Riccati-like recursion
• optimal control law is messy, but affine in xt, ct
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Optimal policy

• optimal policy is ft = Kxt + wct + s

• K, w, s found by complicated formulas and iterations

• 1TK = 0, 1Tw = 1, 1Ts = 0, so we have 1Tft = ct (i.e., ft ∈ Rt)

• interpretations:

• w gives the capacity allocation
• s is an offset
• K is the utility state to flow gain matrix
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(Simplest possible) example

• 2 flows share one link

• U(a) = −(a − 1)2 (i.e., target flow values are one)

• smoothing times Tavg = 1, Tavg = 30

• link capacity ct is exponential with mean 1.5

• optimal policy:

ft =

[

−0.652 0.570
0.652 −0.570

]

xt +

[

0.978
0.022

]

ct +

[

−0.655
0.655

]

• we’ll compare with simple sharing: ft =

[

0.5
0.5

]

ct
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Sample trajectories—smoothed flow
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Sample trajectories—flow

0

1

2

3

4

0

1

2

3

4

(u
t
) 1

(u
t
) 2

t

ITMANET PI meeting 03/5–6/09 10



Error histograms

|xopt − xtar| |xs − xtar|
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What’s next

• handling inequality constraints (e.g., ft ≥ 0, Rft ≤ ct) via control
Lyapunov methods

• extension to multi-flow, multi-hop, store-and-forward (easy)

• approximating general concave utilities as quadratic

• decentralization
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