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Approaches to Network Optimization*
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*Most prior work is for wired/static networks
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Optimization requires models and tools

Random Channel Evolution
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Models come from Thrusts 1 and 2

Capacity and Fundamental Limits
Capacity

m Time-varying capacity
regions define

underlying link rates

Delay
Upper

Bound

m Currently incorporating
generalized relaying at

PHY into model

Application and
Network Optimization
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On-Line Learning

m Samples network

m |teratively finds best control
policies

m  Application of stochastic
approximation
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Network Utility Maximization

m Maximizes a network utility function U,(r,) ]

m Assumes
Steady state
Reliable links
Fixed link capacities

m Dynamics are only in the queues

flow k
max ) Uk(}k)
S.t. Ar <R

T
/ Fixed link

routing
capacity



"
Wireless NUM

m Extends NUM to wireless networks
1 Random lossy links
1 Error recovery mechanisms
1 Network dynamics

m Network control as stochastic optimization
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Beyond WNUM
m \WWNUM Limitations

Adapts to channel and network dynamics

Cross-layer optimization of PHY and higher layers
But limited to elastic traffic flows

m MPNUM extends WNUM
Traffic can have defined start and stop times
Traffic QoS metrics can me met

General capacity regions can be incorporated
Multiple time periods explicitly captured



Multi-Period Stochastic Control of Networks
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The problem and issues

e goal: multi-period resource (e.g., flow rate, power) allocation
e resources (e.g., link capacities, channel states) vary randomly

e maximize utility (or minimize cost) that reflects different

e weights (priorities)
e desired/required target levels
e averaging time scales

for different flows

e unifies what we called before WNUM, DNUM, SNUM
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Dynamic utility and averaging time scale
e f;is flow in periodt,t=0,1,...
e U : R — R gives utility derived for a flow value
o fi=(1—-0)>"_,07fi_, is (first order) smoothed or averaged flow
o Tove = 1/log(1/60) gives smoothing time scale
e average smoothed utility is U = lim;_ . (1/%) EZ?IO U(f,)
e when U is not linear, U depends on smoothing time scale Tive

e our claim: flow utility should be judged dynamically, i.e., by a utility
function and an averaging time scale
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Example

Tove = 30
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Utility state

e represent smoothing via linear dynamical system
e f; € R" is vector of flows

° Ty11 =0z, + (I — O)f;, © = diag(0)

o (x:); = fi(t) is smoothed flow or utility state
e average smoothed utility is

U = lim (1/1) EZZU Tr)i

7=0 =1
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Stochastic flow control

e must have f; € R; (rate region)
e in general, R; is random process on sets; we'll assume R; are |ID

e stochastic flow control:

choose f; as function (policy) of R, x¢, to maximize U
e can solve in principle via DP
e can solve exactly in only a few special cases

e |ots of approximate solution methods
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Linear quadratic formulation

a special case for which we can get the exact solution
rate region is defined by (random) capacity ¢;: Ry = {2 | 112 = ¢;}

utilities are concave quadratic: U(z) = —(z — 2'*)1Q(x — 22")
(e.g., negative mean square deviation from target values)

leads to (nonstandard) linear quadratic stochastic control problem

e has random equality constraints
e value function is quadratic; can be found from a Riccati-like recursion
e optimal control law is messy, but affine in x4, ¢;



Optimal policy

e optimal policy is f; = Kx; + we; + s
e K, w, s found by complicated formulas and iterations
e 1K =0,1Tw=1, 1Ts =0, so we have 11 f; = ¢; (i.e., f; € Ry)

e interpretations:

e w gives the capacity allocation
e s is an offset
e K is the utility state to flow gain matrix
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(Simplest possible) example

e 2 flows share one link

e U(a) = —(a—1)? (i.e., target flow values are one)
e smoothing times T}y, = 1, T,y = 30

e link capacity c; is exponential with mean 1.5

e optimal policy:

5 = —0.652 0.570 0.978 —0.655
t= 1 0652 —0.570 |7t 0.022 | ¢ 0.655

e we'll compare with simple sharing: f; = [ 82 ] Ct
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Sample trajectories—smoothed flow
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Sample trajectories—flow
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Error histograms
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What’s next

e handling inequality constraints (e.g., fr > 0, Rf; < ¢;) via control
Lyapunov methods

e extension to multi-flow, multi-hop, store-and-forward (easy)
e approximating general concave utilities as quadratic

e decentralization
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