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Optimal dynamic resource allocation with heterogeneous flows

MAIN RESULT:
 Explicit optimal control laws for resource

allocation in a system with quadratic cost,
linear dynamics, and random linear
constraints.

ASSUMPTIONS AND LIMITATIONS:
• Assumes that the f irst and second moments of

the resources are know n
• Utility is quadratic; dynamics must be linear

Current resource allocation
research focus on iterative
methods.
These automatically adapt
to changing data assuming
they are held constant.

Utility maximizing
estimation techniques
•Decentralized solutions
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ACHIEVEMENT DESCRIPTION
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S Formulate as stochastic
control problem

•Resource limits are random

•Allocate resources based
on availability and system
state

Stochastic allocation
of competing
network resources
i.e., bandwidth,
power, flow rates, etc.

Simple control laws
(linear coefficients
can be computed
ahead of time).

Target value, x =6

greedy algorithm trajectory

optimal trajectory

averaging input algorithm
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The problem

• wireless networks are characterized by extreme variation in availability of
resources, e.g., bandwidth, power, link capacities, connectivity, etc.
These issues have been dealt with in an ad hoc way in the past
(iterative methods)

• the goal: multi-period resource (e.g., flow rate, power) allocation

• resources (e.g., link capacities, channel states) vary randomly
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Our approach

• allocate resources (random resource limits) based on availability and
system state

• we form a (nonstandard) stochastic control problem to handle resource
allocation and dynamic utilites

• maximize utility (or minimize cost) that reflects different

• weights (priorities)

• desired/required target levels

• averaging time scales

for different flows

• unifies what we called before WNUM, DNUM, SNUM
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Dynamic utility and averaging time scale

• ft is flow in period t, t = 0, 1, . . .

• U : R → R gives utility derived for a flow value

• f̃t = (1 − θ)
∑t

τ=0 θτft−τ is (first order) smoothed or averaged flow

• Tavg = 1/ log(1/θ) gives smoothing time scale

• average smoothed utility is Ū = limt→∞(1/t)E
∑t

τ=0 U(f̃τ)

• when U is not linear, Ū depends on smoothing time scale Tavg

• our claim: flow utility should be judged dynamically, i.e., by a utility
function and an averaging time scale
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Stochastic flow control

• must have ft ∈ Rt (rate region)

• in general, Rt is random process on sets; we’ll assume Rt are IID

• stochastic flow control:

choose ft as function (policy) of Rt, xt, to maximize Ū

• can solve in principle via DP

• can solve exactly in only a few special cases

• lots of approximate solution methods
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Linear quadratic formulation: (nonstandard) stochastic

control problem

maximize Ū
subject to xτ+1 = Aτxτ + Bτfτ , 1

Tfτ = cτ , τ = 0, 1, . . . , T − 1

with variables f0, . . . , fT−1, x1, x2, . . . , xT where

• Ū = E
∑T−1

τ=0 U(xτ), U(xτ) are concave quadratic functions

• xτ ∈ Rn are utility states

• fτ ∈ Rm are flows

• cτ ∈ Rp are random capacities

• rate region is defined by (random) capacity cτ : Rτ = {z | 1Tz = cτ}

problem data are
Aτ ∈ Rn×n, Bτ ∈ Rn×m; first and second moments of cτ
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Solution via dynamic programming

• let Vt(z) be expected utility to go, in state xt = z, at time t, before ct

is revealed

• Vt is quadratic, defined by a (nonstandard) backward recursion

• expectation is over ct

• optimal policies are affine in xt, ct:

ft = Kxt + wct + s

• K, w, s found by backward recursion

• 1
TK = 0, 1

Tw = 1, 1
Ts = 0, so we have 1

Tft = ct
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(Simplest possible) example

• 2 flows share one link

• U(a) = −(a − 1)2 (i.e., target flow values are one)

• smoothing times T avg = 1, T avg = 30

• link capacity ct is exponential with mean 1.5

• optimal policy:

ft =

[

−0.652 0.570
0.652 −0.570

]

xt +

[

0.978
0.022

]

ct +

[

−0.655
0.655

]

• we’ll compare with simple sharing: ft =

[

0.5
0.5

]

ct
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Sample trajectories—smoothed flow
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Sample trajectories—flow
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What’s next

• handling inequality constraints (e.g., ft ≥ 0, Rft ≤ ct) via control
Lyapunov methods

• extension to multi-flow, multi-hop, store-and-forward (easy)

• approximating general concave utilities as quadratic

• decentralization
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