

MUTUAL INFORMATION AND CHANNEL QUALITY

A lot of recent work related to behavior of the mutual information as a function of some "channel quality" parameter. Landmark result:

• Guo, Shamai, Verdú (2005): if $Y = \sqrt{\beta}X + Z$, where $Z \sim \mathcal{N}(0, 1)$, then

$$\frac{d}{d\beta}I(X;\sqrt{\beta}X+Z) = \frac{1}{2}\mathbf{E}\left\{\left(X-\mathbf{E}\left\{X\middle|\sqrt{\beta}X\right.\right.\right\}\right\}$$

Immediately implies that $I'(\beta) \ge 0$ — mutual information is a monotonically increasing function of the channel quality parameter β .

However, the derivation of this formula relies on the fact that the channel with lower β is a degraded version of the channel with a higher β — Markov chain condition:

$$X \to Y \to Y' \qquad \Leftrightarrow \qquad Y = \sqrt{\beta}X + Z, Y' = \sqrt{\beta'}Z$$

Our goal: find conditions for monotonicity of mutual information that apply to channel models for which such a Markov condition does not necessarily hold.

CHANNELS OF EXPONENTIAL FAMILY TYPE

Many important noisy channel models have can be cast in the exponential family form

$$P_{\beta}(y|x) = \frac{e^{-\beta\rho(x-y)}}{Z(\beta)}$$

- $\beta > 0$ is the channel quality parameter
- $Z(\beta) \triangleq \sum e^{-\beta \rho(x-y)}$ (assumed to be independent of x) is the partition function (This formalism is for DMC's; extension to continuous alphabets is analogous.)

Examples:

- Gaussian channel —
- Binary Symmetric Channel —

$$p_{\beta}(y|x) = \frac{e^{-\beta(x-y)}}{\sqrt{\pi/\beta}}$$

$$p_{\beta}(y|x) = \frac{e^{-\beta(x \ominus y)}}{1 + e^{-\beta}}$$

 $(\beta = 0: \text{ crossover probability} = 1/2; \beta \to \infty: \text{ crossover probability} \to 0)$ • Exponential Server Timing Channel (ESTC)

$$p_{\beta}^{T}(y|x,q_{0}) = \beta^{y_{T}} \exp\left\{\int_{0}^{T} -\beta\rho(q_{0}+x_{t}-y_{0})\right\}$$

MPLICATIONS

- New results on broadcast and secrecy capacity without relying on explicit degradation assumptions.
- •New results on mutual information and estimation beyond the AWGN channel and squared error criterion.

Mutual information and estimation in channels of exponential family type

Todd P. Coleman (UIUC) and Maxim Raginsky (Duke)

$$+Z\Big\}\Big)^2\Big\}$$

 $'X + Z', \beta' < \beta$

$$_{t})dt\Big\}$$

RATE-DISTORTION PERSPECTIVE

Given input distribution P_X , define:

- P_Y^{β} : marginal distribution of the channel output
- $Q_{\beta}(x|y)$: backward channel, given by the posterior

 $Q_{\beta}(x|y)$

where $Z(\beta|y) \stackrel{\scriptscriptstyle \Delta}{=} \sum_{x} P_X(x) e^{-\beta \rho(x-y)}$

Rate-distortion perspective: view P_V^{β} as the source, $\rho(x - y)$ as the distortion function, and $D_{\beta} \triangleq \mathbf{E}_{\beta} \{ \rho(X - Y) \}$

Then $Q_{\beta}(x|y)$ satisfies variational conditions to attain rate-distortion function $R(P_{Y}^{\beta}, D_{\beta})$:

 $I(\beta) = I(X;Y) = R(P_Y^\beta, D_\beta)$

Forward E-type channel:

$$P_{X} \longrightarrow P_{\beta}(y|x) \longrightarrow P_{\beta}(y|x)$$
Backward E-type channel:

$$P_{Y}^{\beta} \longrightarrow Q_{\beta}(x|y) \longrightarrow P_{Y}^{\beta}(x|y) \longrightarrow P_{Y$$

AREA THEOREMS FOR AN Arbitrary P_X

• Area Theorem for Posterior Information Gain

$$D\left(P_{X|Y=y}^{\beta}\|P_{X}\right) = \left[\int_{\beta}^{\infty} \frac{1}{\bar{\beta}^{2}} D\left(P_{X|Y=y}^{\bar{\beta}}\|P_{X}\right) d\bar{\beta}\right] - \beta \mathbb{E}_{\beta} \left\{\rho(X-Y)|Y=y\right\} + \beta E_{0}(y)$$

• Area Theorem for Mutual Information

$$I(P_X;\beta) = \frac{1}{Z(\beta)} \int_{\beta}^{\infty} Z(\bar{\beta})$$

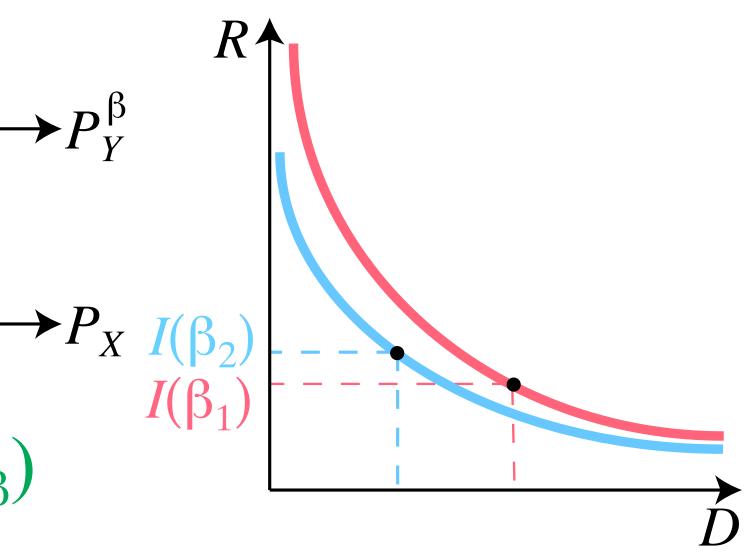
TOWARDS MONOTONICITY ($\beta_1 > \beta_2$)

- This implies $I(\beta_2) = R(P_Y^{\beta_2}, D_{\beta_2}) \le I(P_Y^{\beta_2}, Q_{\beta_1}).$
- 2. We would like to show that $I(P_Y^{\beta_2}, Q_{\beta_1}) \leq I(P_Y^{\beta_1}, Q_{\beta_1}) = I(\beta_1)$. This holds if and only if

 $\mathbf{E}_{\beta_2} \left\{ D(Q_{\beta_1}(\cdot|Y) \| P \right\}$

— thus, we have related monotonicity of mutual information to monotonicity of average information gain due to posterior estimates at β_1 and β_2

$$=\frac{P_X(x)e^{-\beta\rho(x-y)}}{Z(\beta|y)},$$



 $\overline{\beta} \mathbb{E}_{\bar{\beta}} \left\{ \rho(X - Y) D\left(P_{X|Y=y}^{\bar{\beta}} \| P_X \right) \right\} d\bar{\beta}$

1. The following condition can be proven many ways: $\sum_{x,y} P_Y^{\beta_2}(y) Q_{\beta_1}(x|y) \rho(x-y) \leq D_{\beta_2}$.

$$P_X)\} \le \mathbf{E}_{\beta_1} \{ D(Q_{\beta_1}(\cdot |Y) || P_X) \}$$

1	
	Status lepend
	on ope
	etc.)
_	- To qu
	is ord
	-Need
	New in tructu
	-Can
	E.g.,
	back,
_	-Instea
	gain (Achiev
	uality
-	loss) f
_	How
	izatio the cl
	$\mathbf{E}\{\rho(\mathbf{I})\}$
_	- Limit
	mono
Ŧ	regim
	mpac
_	New 1 degra
_	-New
	chann
_	-Next-
	statist result
	Estima
	expon
	Inform
	E-ty

SUMMARY

s quo In a network where quality of communication links may differ ding on location, need to characterize the impact of channel quality erational characteristics (probability of error, end-to-end distortion,

- antify the impact, one often needs to assume that the channel family lered by degradation
- to check appropriate conditions on a case-by-case basis
- nsights Many important channel models have an exponential family
- exploit connections between information theory and statistics. maximum entropy characterization of exponential families (Kull-, Csiszár); Shannon lower bounds on rate-distortion functions
- ad of degradation, exploit monotonicity of posterior information (Mitter-Newton, Yuan-Clarke)
- vement Analysis of dependence of mutual information on channel reduces to a rate-constrained estimation problem with distortion function $\rho(x-y)$
- it works: structure of E-type channels leads to a dual characteron of mutual information as the minimum rate needed to describe channel output Y via channel input X under a given constraint on (X-Y)
- itations and assumptions: for a general E-type channel, can prove otonicity of mutual information only in the high-SNR (high- β)
- results on broadcast and secrecy capacity without relying on explicit adation assumptions.
- results on mutual information and estimation beyond the AWGN nel and squared error criterion.
- t-phase goals Explore connections between information theory and stical estimation over E-type channels to obtain new performance ts in the network setting.

