The Multicast Capacity Region of Large Wireless Networks

Urs Niesen Massachusetts Institute of Technology

tree graph.

Piyush Gupta Bell Labs, Alcatel-Lucent Devavrat Shah Massachusetts Institute of Technology

Status Quo

Little is known about the $n \times 2^n$ dimensional multicast capacity region for networks with *n* nodes.

New Insights Equivalence of wireless network and capacitated

Impact

Optimal two-layer communication scheme for arbitrary multicast traffic.

Next-Phase Goals

Effects of arbitrary node placement on achievable multicast rates.

Model

- *n* nodes *V*(*n*) placed randomly on [0, √*n*]²
 y_v[*t*] = ∑<sub>*u*∈*V*(*n*)\{*v*} *h_{u,v}*[*t*]*x_u*[*t*] + *z_v*[*t*]
 </sub>
- $h_{u,v}[t] = r_{u,v}^{-\alpha/2} \exp(\sqrt{-1}\theta_{u,v}[t])$
- Path loss exponent $\alpha > 2$

• Full CSI at all nodes

- $\{\theta_{u,v}[t]\}_{u,v}$ i.i.d. uniform over $[0, 2\pi)$
- Fast or slow fading $\{\theta_{u,v}[t]\}_t$

Main Result

- Multicast traffic matrix $\lambda \in \mathbb{R}^{n \times 2^n}_+$
- Capacity region $\Lambda(n) \subset \mathbb{R}^{n \times 2^n}_+$ (set of all achievable λ)
- Partition $[0,\sqrt{n}]^2$ into square-grids, with spacing $2^{-\ell}\sqrt{n}$ at level ℓ
- $\{V_{\ell,i}(n)\}_{i=1}^{4^\ell}$ are the nodes in squares at level ℓ

Define

$$\Lambda_{G}(n) \triangleq \left\{ \lambda \in \mathbb{R}^{n \times 2^{n}}_{+} : \sum_{u \in V_{\ell,i}(n)} \sum_{\substack{W \subset V(n):\\ W \cap V_{\ell,i}(n)^{c} \neq \emptyset}} \lambda_{u,W} + \sum_{\substack{u \in V_{\ell,i}(n)^{c}}} \sum_{\substack{W \subset V(n):\\ W \cap V_{\ell,i}(n) \neq \emptyset}} \lambda_{u,W} \le g_{\alpha}(4^{-\ell}n) \quad \forall \ell, i \right\}$$

where

$$g_{\alpha}(r) \triangleq \begin{cases} r^{2-\min\{3,\alpha\}/2} & \text{if } r \ge 1, \\ 1 & \text{else.} \end{cases}$$

Theorem. Under either fast or slow fading, for any $\alpha > 2$, $\varepsilon > 0$,

$$\Omega(n^{-\varepsilon})\Lambda_G(n) \subseteq \Lambda(n) \subseteq O(n^{\varepsilon})\Lambda_G(n)$$

with probability 1 - o(1) as $n \to \infty$.

Examples

Broadcast From Many Sources

- n^{β} sources arbitrarily chosen
- + Each source broadcasts an independent message at uniform rate $\rho(n)$

$$\Rightarrow \quad \rho^*(n) = \Theta(n^{-\beta \pm \varepsilon})$$

Multicast From Many Sources

- n^{β_1} sources, chosen randomly
- Each source multicasts to n^{β_2} randomly chosen destinations at uniform rate $\rho(n)$

$$\implies \rho^*(n) = \Theta\left(\min\left\{n^{\pm\varepsilon}, n^{(1-\beta_2)\tilde{\alpha}-\beta_1\pm\varepsilon}\right\}\right)$$

where

- $\tilde{\alpha} \triangleq 2 \min\{3, \alpha\}/2.$
- $\Rightarrow~\beta_1=\beta,\,\beta_2=1$ recovers broadcast case

 $\Rightarrow \ \beta_2 = 0$ recovers unicast case

Multiple Classes of Localized Multicast

- *K* classes of source nodes
- $n^{\beta_{1,k}}$ sources in class k, chosen randomly
- Each source node in class *i* multicasts to $n^{\beta_{2,k}}$ destination nodes chosen randomly within distance $n^{\beta_{3,k}/2}$, $\beta_{3,k} > \beta_{2,k}$
- Source nodes in class k generate multicast traffic at uniform rate $\rho_k(n)$

$$\implies \rho_k^*(n) = \Theta\left(\min\left\{n^{\pm\varepsilon}, n^{(\beta_{3,k}-\beta_{2,k})\tilde{\alpha}-\max\{0,\beta_{1,k}+\beta_{3,k}-1\}\pm\varepsilon}\right\}\right)$$

for all $k \in \{1, \ldots K\}$.

- $\Rightarrow \ K = 1, \beta_3 = 1 \text{ recovers second example}$
- $\Rightarrow\,$ Illustrates that the general theorem can be used to obtain closed form expressions for rather complicated settings

Communication Scheme

- Two layer scheme achieving entire capacity region (in scaling sense)
- Top or routing layer: routes data over a tree graph
- Bottom or physical layer: provides tree abstraction

Routing Layer



- Construct a tree $G = (V_G, E_G)$
- $V(n) \subset V_G$ are the leaves of G
- Intermediate nodes in G "represent" nodes in $V_{\ell,i}(n)$
- Grid structure induces hierarchy

Messages are transmitted between u and W by routing them over G.

Physical Layer

- The physical layer provides the tree abstraction ${\cal G}$
- To send a message along an edge $e \in E_G$ towards the root, the message is "distributed" over the wireless network
- To send a message along an edge $e \in E_G$ away from the root, the message is "concentrated" over the wireless network
- This distribution/concentration is performed using cooperative communication ($\alpha \in (2,3]$) or multi-hop communication ($\alpha > 3$)

