A Game Theoretic Approach to Network Coding

Jason R. Marden
California Institute of Technology

Michelle Effros
California Institute of Technology

2009 Information Theory and Applications Workshop
February 12, 2009
Approach provides guarantees independent of network structure. Guarantees existence of an equilibrium that achieves a system cost of at most 50% higher than the optimal. This offers an improvement over opportunistic coding.

Global Objective: Efficiently use network using network coding

Approach: Centralized solutions. (e.g., opportunistic coding) Fix paths, use coding opportunities if available

NEW INSIGHTS

What about **distributed** solutions?

What if flows were allowed to select path in response to local "cost"?

Goal: Let users create coding opportunities to improve efficiency

MAIN ACHIEVEMENT:

Introduced game theory as a distributed tractable mechanism to obtain good network performance

- **game theory for social sciences:** "descriptive agenda"
- **game theory for engineering:** "prescriptive agenda"

HOW IT WORKS:

- Model interactions as a non-cooperative game
 - players (unicast flows)
 - actions (available paths)
- Assign each player a "cost" function
- Analyze efficiency of equilibrium behavior

ASSUMPTIONS AND LIMITATIONS:

- Limited form of network coding (reverse carpool)
- Players have knowledge of available paths
- Players equilibrate faster than network changes

ACHIEVEMENT DESCRIPTION

MAIN ACHIEVEMENT:

- Introduced game theory as a distributed tractable mechanism to obtain good network performance

IMPACT

Approach provides guarantees independent of network structure. Guarantees existence of an equilibrium that achieves a system cost of at most 50% higher than the optimal. This offers an improvement over opportunistic coding.

NEXT-PHASE GOALS

- Understand the potential of game theory in network coding problems
 - Establish desirable distributed learning algorithms with good convergence rates
 - Extend game theoretic approach to more general network coding problems

Game theory is an applicable tool for distributed optimization in network coding
Example: Network coding

Features:
- large common network
- large # of users
- different network demands

Global objective: Allocate users efficiently over network (utilizing network coding)
- maximize throughput
- minimize # of transmissions

Challenges:
- centralized optimization is not feasible
- network coding capacity is unsolved
Multiple unicast flows in shared network environment

possible transmissions highlighted by edges on graph

Cost of allocation = number of transmission
Limited form of network coding: “Reverse carpooling”

opportunity for network coding arises when two unicasts traverse the same node in opposite directions

without network coding - 4 transmissions required

with network coding - 3 transmissions required
Approach: Model interactions as a non-cooperative game

- **Players (unicast flows):** \(\{1, 2, \ldots, n\} \quad (s_i, t_i) \)
- **Actions (available paths):** \(a_i \in \mathcal{A}_i \)
 \[\mathcal{A} = \mathcal{A}_1 \times \ldots \times \mathcal{A}_n \]
- **System cost:** \(C(a) = \sum_e \max\{\#_e^0(a), \#_e^1(a)\} \)

Goal: Design local players’ cost functions so that equilibrium behavior is desirable

Cost functions: \(J_i(a) = J_i(a_i, a_{-i}) \)

Equilibrium behavior: Pure Nash equilibrium

\[J_i(a_i^*, a_{-i}^*) \leq J_i(a_i, a_{-i}^*) \]
Efficiency

Let

$$E(G) := \{a \in A : a \text{ is a Nash equilibrium of game } G\}$$

$$a^{\text{opt}} \in \arg \min_{a \in A} C(a)$$

Price of Anarchy

$$POA = \sup_G \max_{a \in E(G)} \frac{C(a)}{C(a^{\text{opt}})}$$

worst case performance of any NE

Price of Stability

$$POS = \sup_G \min_{a \in E(G)} \frac{C(a)}{C(a^{\text{opt}})}$$

worst case performance of best NE

(independent of network structure or demands)
Cost design: Wonderful life design

Decision Makers

\[J_i(a_i, a_{-i}) \]

Global Behavior

\[C(a) = \sum_e \max\{\#_0 e(a), \#_1 e(a)\} \]

Wonderful Life:

\[J_i(a) = C(a) - C(a^0_i, a_{-i}) \]

Positives

- local

NE exists (minimizer C)

POS = 1

Negatives

- POA unbounded

s_1 \quad t_2 \quad s_2 \quad t_1
Select any global cost \(\phi : \mathcal{A} \rightarrow \mathbb{R} \)

\[
J_i(a) = \phi(a) - \phi(a_i^0, a_{-i})
\]

Positives

NE exists (minimizer \(\phi \))

local

\[\phi(a) = C(a) \]

Negatives

POS = 1

POA unbounded

Can we choose a cost that gives us better equilibrium efficiency?
Consider

\[\phi(a) = (\alpha - 1)C(a) + \sum_{i} |a_i| \quad \alpha \geq 0 \]

New design:

\[J_i(a) = \phi(a) - \phi(a_i^0, a_{-i}) \]
\[= \alpha N_i^{(>)}(a) + N_i^{(\leq)}(a) \]

Old design:

\[J_i(a) = C(a) - C(a_i^0, a_{-i}) \]
\[= N_i^{(>)}(a) \]
What is the cost of this assignment for player 1?

\[J_i(a) = \phi(a) - \phi(a_i^0, a_{-i}) \]

\[= \alpha N_i^{(>)}(a) + N_i^{(\leq)}(a) = 2\alpha + 3 \]
Main result

Price of Anarchy and Price of Stability in Reverse Carpooling Game

\[J_i(a) = \alpha N_i^{(\geq)}(a) + N_i^{(\leq)}(a) \]

Is this good? Yes and No!

POS = 3/2 POA = 2

Can we do better? No!
Conclusions

Recap:
- Derived “optimal” cost functions for a simple network coding problem (WL)
- The results on efficiency have implications beyond simple setup

Goals:
- Illustrate potential of game theory as mechanism for distributed optimization
- Results stem for recent research connecting “potential games” and cooperative control problems

Left unsaid:
- How do players reach equilibrium in a distributed fashion?
- Existing literature on learning in games provides some algorithms