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Approach provides guarantees 
independent of network 
structure. 

Guarantees existence of an 
equilibrium that achieves a 
system cost of at most 50% 
higher than the optimal. 

This offers an improvement over 
opportunistic coding. 

Game theory is an applicable tool for distributed optimization in network coding 

MAIN ACHIEVEMENT: 
Introduced game theory as a distributed tractable 

mechanism to obtain good network performance 

HOW IT WORKS:  
•  Model interactions as a non-cooperative game 
    - players (unicast flows) 
    - actions (available paths) 
•  Assign each player a “cost” function 
•  Analyze efficiency of equilibrium behavior 

ASSUMPTIONS AND LIMITATIONS: 
•  Limited form of network coding (reverse carpool) 
•  Players have knowledge of available paths 
•  Players equilibrate faster than network changes 

Global Objective: Efficiently use 
network using network coding 
Approach:  Centralized solutions. 
(e.g., opportunistic coding) Fix paths, 
use coding opportunities if available 

Understand the potential 
of game theory in 

network coding problems 
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What about distributed solutions? 
What if flows were allowed to select 
path in response to local “cost”? 
Goal:  Let users create coding 
opportunities to improve efficiency 

Establish desirable distributed 
learning algorithms with good 
convergence rates 
Extend game theoretic approach 
to more general network coding 
problems 



Example: Network coding

Features:

-  large common network
-  large # of users
-  different network demands

Global objective: Allocate users efficiently over network (utilizing network coding)

-  maximize throughput
-  minimize # of transmissions

Challenges:

-  centralized optimization is not feasible
-  network coding capacity is unsolved



Problem setup

possible transmissions highlighted by edges on graph

Cost of allocation = number of transmission

s1

s3

s2

t1

t2

t3
Multiple unicast flows in shared network environment 



Reverse carpooling

Limited form of network coding: “Reverse carpooling”
opportunity for network coding arises when

two unicasts traverse the same node in opposite directions

x y
xy

without network coding - 4 transmissions required

x y

with network coding - 3 transmissions required

x + y



Setup

Approach:  Model interactions as a non-cooperative game

• Players (unicast flows):

• Actions (available paths):

• System cost:

A = A1 × ...×An

C(a) =
∑

e

max{#0
e(a),#1

e(a)}

{1, 2, ..., n} (si, ti)

ai ∈ Ai

Ji(a∗i , a
∗
−i) ≤ Ji(ai, a

∗
−i)

Goal:  Design local players’ cost functions so that equilibrium behavior is desirable

Cost functions:

Equilibrium behavior:  Pure Nash equilbrium

Ji(a) = Ji(ai, a−i)



Efficiency

(independent of network structure or demands)

E(G) := {a ∈ A : a is a Nash equilibrium of game G}
Let

aopt ∈ arg min
a∈A

C(a)

Price of Anarchy

POA = sup
G

max
a∈E(G)

C(a)
C(aopt)

worst case performance of any NE

Price of Stability

worst case performance of best NE

POS = sup
G

min
a∈E(G)

C(a)
C(aopt)



Cost design: Wonderful life design

Decision Makers Global Behavior
design

Wonderful Life:

C(a) =
∑

e

max{#0
e(a),#1

e(a)}Ji(ai, a−i)

Positives Negatives

NE exists (minimizer C)
local

Ji(a) = C(a)− C(a0
i , a−i)

POS = 1

POA unbounded 

s1

s2

t1
t2



Extending wonderful life

Ji(a) = φ(a)− φ(a0
i , a−i)

Positives Negatives

NE exists (minimizer     )

local

φ

φ : A→ RSelect any global cost

φ(a) = C(a)
POS = 1

POA unbounded 

Can we choose a cost that gives us better equilibrium efficiency?



Cost design: Extended WL

Consider α ≥ 0

Ji(a) = φ(a)− φ(a0
i , a−i)

= αN (>)
i (a) + N (≤)

i (a)

New design:

Ji(a) = C(a)− C(a0
i , a−i)

= N (>)
i (a)

Old design:

φ(a) = (α− 1)C(a) +
∑

i

|ai|



Cost design: Extended WL

What is the cost of this assignment for player 1?

s1

s3

s2

t1

t2

t3

1
1 1 1

1

1

1

1

1

Ji(a) = φ(a)− φ(a0
i , a−i)

= αN (>)
i (a) + N (≤)

i (a) = 2α + 3



Main result
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Cost Coefficient: !

S
y
s
te

m
 C

o
s
t 
a
t 
N

E
 o

v
e
r 

O
p
ti
m

a
l 
S

y
s
te

m
 C

o
s
t

Price of Anarchy and Price of Stability in Reverse Carpooling Game

Price of Anarchy

Price of Stability

Ji(a) = αN (>)
i (a) + N (≤)

i (a)

Is this good?
POS = 3/2 POA = 2

Yes and No!

Can we do better? No!

PoA

PoS



Conclusions

Goals:

-  Illustrate potential of game theory as mechanism for distributed optimization
-  Results stem for recent research connecting “potential games” and                           
     cooperative control problems

Left unsaid:

-  How do players reach equilibrium in a distributed fashion?
-  Existing literature on learning in games provides some algorithms

Recap:

-  Derived “optimal” cost functions for a simple network coding problem (WL)
-  The results on efficiency have implications beyond simple setup

J. Marden, G. Arslan, and J. Shamma, “Connections between cooperative control and potential games,” 2008.


