
•Tight results for several families 
of networks with side 
information.

•A wider range of scenarios 
where cut-set analysis applies.

•An interesting and fruitful 
connection to successive 
refinement of information.

On Networks with Side Information
A. Cohen, S. Avestimehr and M. Effros

•Canonical source coding problems 
can be used to derive bounds for 
more complex networks.

•Network coding can play a key role 
even in non-multicast problems.

Strategies intended for small problems, joint with network codes, can solve complex networks

MAIN ACHIEVEMENT:
• New inner and outer bounds were derived for 

networks with side information.
• The bounds are tight 

for several network
topologies.

HOW IT WORKS: 
• Converse results for the canonical problem are 

generalized to multi-node networks.
• The achievable schemes are used at the terminals 

(sources and sinks), together with network coding.
• Successive refinement of both the source and side 

information descriptions is used when there are 
multiple sinks. 

ASSUMPTIONS & LIMITATIONS:
• One source node; one helper.
• Bounds are not tight in general.

Extend this methodology to 
various source coding 
problems.
•Derive new bounds and find 
network topologies for which they 
are tight.
•Different demand models(e.g. 
distortion)
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To large extent, our knowledge of
networks with side information is limited
to the model above. However, we are
interested in more complex networks:
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Notes

• Technical challenge: Characterize the rate region for general 
networks with side information.

• Open problems: The set of achievable rates and the corresponding 
achieving strategies for networks with more than three nodes 
(source, side information, destination).

• Current methods: The Ahlswede-Korner scheme for three nodes.  

• Tools: A method to generalize canonical converse results to general 
networks. An achievable scheme which uses the solution to the 
three-nodes network as a base, with successive refinement of both 
the source and the side information descriptions and network coding 
at internal nodes. 
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Notes (cont.)

• Intermediate achievement: New outer and inner bounds on the set 
of achievable rates. The bounds are tight for several families of 
networks. The results extend the network scenarios for which cut-set 
analysis is known to yield tight results.

• Long-term objectives/ alignment with the project roadmap: 
Obtain fundamental limits for wider sets of network topologies, as 
well as understand more general source and side information 
models and more diverse demands.  

• Thrust 1: New paradigms for upper bounds: “means and methods 
to evaluate the achievable performance of different strategies”.
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Problem Statement and Motivation

Side information in networks can significantly reduce the rate
required from the main server: we want a reduced rate from X .

The model is interesting in cases where:

1 Side information is “close” to the
destination.

2 Collaborative networks (sensor,
organizational, army). The helper is aware of
what we are doing.

We are interested in the following questions:

1 Which X descriptions should we create?
2 Which Y descriptions should we create?
3 What is required from the network to

support these rates?

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information
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Problem Formulation

We denote a side information network by (V, E , s, z ,T ).

(V , E) is a directed graph, where V is the set of vertices
(nodes) and E ⊆ V × V is the set of edges (links).
s and z are the source and side information nodes. T is a set
of sinks.
o(e) and d(e) denote the edge’s origin and destination.

Let {(Xi ,Yi )}∞i=1 be a sequence of independent and identically
distributed pairs of discrete random variables with alphabet
X × Y. X is the source and Y is the side information.
For any vector of rates (Re)e∈E , a ((2nRe )e∈E , n) network code
comprises the following mappings

g e
n : X n �→ {1, . . . , 2nRe} e ∈ E , o(e) = s

g e
n : Yn �→ {1, . . . , 2nRe} e ∈ E , o(e) = z

g e
n : Πe′:d(e′)=o(e){1, . . . , 2nRe′}

�→ {1, . . . , 2nRe} e ∈ E , o(e) �∈ {s, z}
ht

n : Πe:d(e)=t{1, . . . , 2nRe} �→ X n t ∈ T .

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information
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Objective

For each t ∈ T , we use X̂ n
t to denote the reproduction of X n found

by decoder ht
n. Denote by c(e) the capacity of an edge e ∈ E .

Definition

A set of values (c(e))e∈E is achievable if for any ε > 0 there exists
a sufficiently large n and a ((2nRe )e∈E , n) code with Re ≤ c(e) for
all e ∈ E , such that Pr(X̂ n

t = X n) ≥ 1 − ε for all sinks t ∈ T .

We call the closure of this set of rate vectors the set of achievable
rates, which we denote by R(V, E , s, z ,T ).

Main Objective

Derive general inner and outer bounds on this set and investigate
the scenarios in which these bounds are tight.

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information
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Outline of Results

We derive inner and outer bounds on the set of achievable
rates.

The bounds are tight for some specific network scenarios, and
are sometimes tighter than known results for general networks.

We extend the range of network scenarios for which min-cut
analysis is known to yield tight results.

We show how solutions to small, canonical problems can be
used as building blocks in analyzing large networks.

This method may generalize to other source coding problems,
not necessarily the coded side information we use here.

The work reveals an interesting connection between coding for
networks with side information and successive refinement.

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information
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Outer Bound

Let EXY ⊆ E denote the set of edges for which there is a directed
path from s to o(e) with a strictly positive capacity, and denote by
EY the set E \ EXY . Given any non-intersecting sets A,B ⊂ V, we
use VA;B to denote a cut with A ⊆ VA;B and B ∩ VA;B = ∅. Let
C(VA;B) be the set of edges e ∈ E for which o(e) ∈ VA;B and
d(e) �∈ VA;B .

Theorem

Given a side information network (V, E , s, z ,T ), if
(c(e) : e ∈ E) ∈ R(V, E , s, z ,T ), then for each t ∈ T and each cut
Vs,z ;t there exists a random variable U ∈ U such that
U ↔ Y ↔ X, |U| ≤ |Y|, and

∑

e∈EXY ∩C(Vs,z;t)

c(e) ≥ H(X |U)

∑

e∈EY ∩C(Vs,z;t)

c(e) ≥ I (Y ;U).

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information



Introduction
Inner and Outer Bounds

Specific Network Scenarios
Inner Bound

Proof Sketch
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Inner Bound

Let V∗
A;B denote the cut for which

∑
e∈C(VA;B ) c(e) is minimal

among all cuts VA;B .

Lemma

Let (V, E , s, z , {t}) be a side information network for which graph
(V, E) has no cycles. If there exists a vertex v ∈ V and a random
variable U ∈ U such that U ↔ Y ↔ X, |U| ≤ |Y|, and

∑

e∈C(V∗
s;v )

c(e) ≥ H(X |U);
∑

e∈C(V∗
z;v )

c(e) ≥ I (Y ;U) (1)

∑

e∈C(V∗
s,z;v )

c(e) ≥ H(X |U) + I (Y ;U) (2)

∑

e∈C(V∗
v ;t)

c(e) ≥ H(X ), (3)

then (c(e))e∈E ∈ R(V, E , s, z , {t}).

The main idea:

X might be reconstructed at internal node/nodes.

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information
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Two Sinks

We wish to characterize the rate
region for networks of the following
form:

We will completely characterize the
rate region for networks of the form
below, from which achievable rates
for the general case result.

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information



Introduction
Inner and Outer Bounds

Specific Network Scenarios

Two Sinks
Example

Two Sinks - Arbitrary Network from Y

Theorem

Assume both X and Y are binary symmetric. The
outer bound is tight for the network to the right, and
(c(e) : e ∈ E) ∈ R(V, E , s, z , {t1, t2}) iff ∃ U1 ∈ U1

and U2 ∈ U2 such that U1 ↔ Y ↔ X, U2 ↔ Y ↔ X,
|U1| ≤ |Y|, |U2| ≤ |Y|, and

X

e∈C(V∗
s;t1

)

c(e) ≥ H(X |U1)

X

e∈C(V∗
z ;t1

)

c(e) ≥ I (Y ;U1)

X

e∈C(V∗
s;t2

)

c(e) ≥ H(X |U2)

X

e∈C(V∗
z ;t2

)

c(e) ≥ I (Y ;U2)

Cut-sets

The rate region is fully
characterized using cut-set
analysis.

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information
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Proof Sketch - cont.

Descriptions:

From the source s: two descriptions of rates H(X |U1) and
H(X |U2).
From the side information z : two descriptions of rates I (Y ;U1)
and I (Y ;U2).

Min-cuts:

From the source s:
∑

e∈C(V∗
s;t1

) c(e) ≥ H(X |U1) and
∑

e∈C(V∗
s;t2

) c(e) ≥ H(X |U2).

From the side information z :
∑

e∈C(V∗
z;t1

) c(e) ≥ I (Y ;U1) and
∑

e∈C(V∗
z;t2

) c(e) ≥ I (Y ;U2).

The rates are too high to send the descriptions separately

To achieve these generalized cut-set bounds, some kind of an
incremental description is required.

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information
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K Sinks with Direct Links from Y - Result

Theorem

(c(e) : e ∈ E) ∈
R(V, E , s, z , {ti}K

i=1) iff for any
1 ≤ i ≤ K there exist Ui ∈ Ui such
that Ui ↔ Y ↔ X, |Ui | ≤ |Y| and

∑

e∈C(V∗
s;ti

)

c(e) ≥ H(X |Ui )

c((z , ti )) ≥ I (Y ;Ui )

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information
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Proof Sketch - random binning and independent equations

The figure below represents binning to 8 bins and its binary
representation:

The bin we received is not the one we “intended” to send, but:

1 It has the correct size.
2 It contains the true xn.
3 It is just as random.

The power of random binning

We can refine the random binning without having a true
incremental multicast network code.

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information
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Example

(R1, . . . ,R6) ∈ R(V, E , s, z , {t1, t2}) if and only if there exist
random variables U1 ∈ U1 and U2 ∈ U2 such that U1 ↔ Y ↔ X ,
U2 ↔ Y ↔ X , |U1| ≤ |Y|, |U2| ≤ |Y|, and

R1 + min(R2,R3) ≥ H(X |U1); R5 ≥ I (Y ;U1)

min(R2,R4) ≥ H(X |U2); R6 ≥ I (Y ;U2).

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information
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