On Networks with Side Information A. Cohen, S. Avestimehr and M. Effros

To large extent, our knowledge of networks with side information is limited to the model above. However, we are interested in more complex networks:

even in non-multicast problems.

ACHIEVEMENT DESCRIPTION

MAIN ACHIEVEMENT:

- New inner and outer bounds were derived for networks with side information.
- The bounds are tight for several network

topologies.

HOW IT WORKS:

- · Converse results for the canonical problem are generalized to multi-node networks.
- The achievable schemes are used at the terminals (sources and sinks), together with network coding.
- Successive refinement of both the source and side information descriptions is used when there are multiple sinks.

ASSUMPTIONS & LIMITATIONS:

- One source node; one helper.
- · Bounds are not tight in general.

- Tight results for several families of networks with side information.
- A wider range of scenarios where cut-set analysis applies.
- An interesting and fruitful connection to successive refinement of information.

GOALS

NEXT-PHASE

DEC

ENC

Extend this methodology to various source coding problems.

- Derive new bounds and find network topologies for which they are tight.
- Different demand models (e.g. distortion)

Strategies intended for small problems, joint with network codes, can solve complex networks

Notes

- **Technical challenge:** Characterize the rate region for general networks with side information.
- **Open problems:** The set of achievable rates and the corresponding achieving strategies for networks with more than three nodes (source, side information, destination).
- *Current methods:* The Ahlswede-Korner scheme for three nodes.
- **Tools:** A method to generalize canonical converse results to general networks. An achievable scheme which uses the solution to the three-nodes network as a base, with successive refinement of both the source and the side information descriptions and network coding at internal nodes.

Notes (cont.)

- Intermediate achievement: New outer and inner bounds on the set of achievable rates. The bounds are tight for several families of networks. The results extend the network scenarios for which cut-set analysis is known to yield tight results.
- Long-term objectives/ alignment with the project roadmap: Obtain fundamental limits for wider sets of network topologies, as well as understand more general source and side information models and more diverse demands.
- **Thrust 1: New paradigms for upper bounds:** "means and methods to evaluate the achievable performance of different strategies".

Problem Statement and Motivation

Side information in networks can significantly reduce the rate required from the main server: we want a reduced rate from X.

The model is interesting in cases where:

- Side information is "close" to the destination.
- Collaborative networks (sensor, organizational, army). The helper is aware of what we are doing.

We are interested in the following questions:

- Which X descriptions should we create?
- Which Y descriptions should we create?
- What is required from the network to support these rates?

A (1) > A (1) > A

Introduction

Specific Network Scenarios

Problem Statement and Motivation Problem Formulation

(同) (三) (三)

Problem Formulation

- We denote a side information network by $(\mathcal{V}, \mathcal{E}, s, z, T)$.
 - $(\mathcal{V}, \mathcal{E})$ is a directed graph, where \mathcal{V} is the set of vertices (nodes) and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges (links).
 - s and z are the source and side information nodes. T is a set of sinks.
 - o(e) and d(e) denote the edge's origin and destination.
- Let {(X_i, Y_i)}[∞]_{i=1} be a sequence of independent and identically distributed pairs of discrete random variables with alphabet X × Y. X is the source and Y is the side information.
- For any vector of rates (R_e)_{e∈E}, a ((2^{nR_e})_{e∈E}, n) network code comprises the following mappings

$$\begin{array}{ll} g_n^e: \mathcal{X}^n \mapsto \{1, \dots, 2^{nR_e}\} & e \in \mathcal{E}, o(e) = s \\ g_n^e: \mathcal{Y}^n \mapsto \{1, \dots, 2^{nR_e}\} & e \in \mathcal{E}, o(e) = z \\ g_n^e: \Pi_{e':d(e')=o(e)}\{1, \dots, 2^{nR_{e'}}\} & e \in \mathcal{E}, o(e) \notin \{s, z\} \\ h_n^t: \Pi_{e:d(e)=t}\{1, \dots, 2^{nR_e}\} \mapsto \mathcal{X}^n & t \in T. \end{array}$$

< ロ > < 同 > < 三 > < 三

Objective

For each $t \in T$, we use \hat{X}_t^n to denote the reproduction of X^n found by decoder h_n^t . Denote by c(e) the capacity of an edge $e \in \mathcal{E}$.

Definition

A set of values $(c(e))_{e \in \mathcal{E}}$ is achievable if for any $\epsilon > 0$ there exists a sufficiently large n and a $((2^{nR_e})_{e \in \mathcal{E}}, n)$ code with $R_e \leq c(e)$ for all $e \in \mathcal{E}$, such that $\Pr(\hat{X}_t^n = X^n) \geq 1 - \epsilon$ for all sinks $t \in T$.

We call the closure of this set of rate vectors the set of achievable rates, which we denote by $\mathcal{R}(\mathcal{V}, \mathcal{E}, s, z, T)$.

Main Objective

Derive general inner and outer bounds on this set and investigate the scenarios in which these bounds are tight.

・ロト ・同ト ・ヨト ・ヨト

Outline of Results

- We derive inner and outer bounds on the set of achievable rates.
- The bounds are tight for some specific network scenarios, and are sometimes tighter than known results for general networks.
- We extend the range of network scenarios for which min-cut analysis is known to yield tight results.
- We show how solutions to small, canonical problems can be used as building blocks in analyzing large networks.
- This method may generalize to other source coding problems, not necessarily the coded side information we use here.
- The work reveals an interesting connection between coding for networks with side information and successive refinement.

Inner Bound

Outer Bound

Let $\mathcal{E}_{XY} \subseteq \mathcal{E}$ denote the set of edges for which there is a directed path from *s* to o(e) with a strictly positive capacity, and denote by \mathcal{E}_Y the set $\mathcal{E} \setminus \mathcal{E}_{XY}$. Given any non-intersecting sets $A, B \subset \mathcal{V}$, we use $\mathcal{V}_{A;B}$ to denote a cut with $A \subseteq \mathcal{V}_{A;B}$ and $B \cap \mathcal{V}_{A;B} = \emptyset$. Let $\mathcal{C}(\mathcal{V}_{A;B})$ be the set of edges $e \in \mathcal{E}$ for which $o(e) \in \mathcal{V}_{A;B}$ and $d(e) \notin \mathcal{V}_{A;B}$.

Theorem

Given a side information network $(\mathcal{V}, \mathcal{E}, s, z, T)$, if $(c(e) : e \in \mathcal{E}) \in \mathcal{R}(\mathcal{V}, \mathcal{E}, s, z, T)$, then for each $t \in T$ and each cut $\mathcal{V}_{s,z;t}$ there exists a random variable $U \in \mathcal{U}$ such that $U \leftrightarrow Y \leftrightarrow X$, $|\mathcal{U}| \leq |\mathcal{Y}|$, and

$$\sum_{e \in \mathcal{E}_{XY} \cap \mathcal{C}(\mathcal{V}_{s,z;t})} c(e) \geq H(X|U)$$
$$\sum_{e \in \mathcal{E}_{Y} \cap \mathcal{C}(\mathcal{V}_{s,z;t})} c(e) \geq I(Y;U).$$

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information

Inner Bound

Proof Sketch

2

(日) (同) (三) (三)

Inner Bound

Let $\mathcal{V}^*_{A;B}$ denote the cut for which $\sum_{e \in \mathcal{C}(\mathcal{V}_{A;B})} c(e)$ is minimal among all cuts $\mathcal{V}_{A;B}$.

Lemma

Let $(\mathcal{V}, \mathcal{E}, s, z, \{t\})$ be a side information network for which graph $(\mathcal{V}, \mathcal{E})$ has no cycles. If there exists a vertex $v \in \mathcal{V}$ and a random variable $U \in \mathcal{U}$ such that $U \leftrightarrow Y \leftrightarrow X$, $|\mathcal{U}| \leq |\mathcal{Y}|$, and

 $\sum_{e \in \mathcal{C}(\mathcal{V}^*_{s;\nu})} c(e) \ge H(X|U); \qquad \sum_{e \in \mathcal{C}(\mathcal{V}^*_{s;\nu})} c(e) \ge I(Y;U) \quad (1)$

$$\sum_{e \in O(X)} c(e) \geq H(X|U) + I(Y;U)$$
(2)

$$e \in \mathcal{C}(\mathcal{V}^*_{s,z;v})$$

$$\sum_{\in \mathcal{C}(\mathcal{V}_{v;t}^*)} c(e) \geq H(X), \tag{3}$$

then $(c(e))_{e \in \mathcal{E}} \in \mathcal{R}(\mathcal{V}, \mathcal{E}, s, z, \{t\}).$

The main idea:

X might be reconstructed at internal node/nodes.

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information

Two Sinks Example

Two Sinks

We wish to characterize the rate region for networks of the following form:

We will completely characterize the rate region for networks of the form below, from which achievable rates for the general case result.

Two Sinks Example

Two Sinks - Arbitrary Network from Y

Theorem

Assume both X and Y are binary symmetric. The outer bound is tight for the network to the right, and $(c(e): e \in \mathcal{E}) \in \mathcal{R}(\mathcal{V}, \mathcal{E}, s, z, \{t_1, t_2\})$ iff $\exists U_1 \in \mathcal{U}_1$ and $U_2 \in \mathcal{U}_2$ such that $U_1 \leftrightarrow Y \leftrightarrow X$, $U_2 \leftrightarrow Y \leftrightarrow X$, $|\mathcal{U}_1| \leq |\mathcal{Y}|$, $|\mathcal{U}_2| \leq |\mathcal{Y}|$, and

$$\sum_{e \in \mathcal{C}(\mathcal{V}_{s;t_1}^*)} c(e) \geq H(X|U_1)$$
$$\sum_{e \in \mathcal{C}(\mathcal{V}_{z;t_1}^*)} c(e) \geq I(Y;U_1)$$
$$\sum_{e \in \mathcal{C}(\mathcal{V}_{s;t_2}^*)} c(e) \geq H(X|U_2)$$
$$\sum_{e \in \mathcal{C}(\mathcal{V}_{z;t_2}^*)} c(e) \geq I(Y;U_2)$$

Cut-sets

The rate region is fully characterized using cut-set analysis.

・ 同 ト ・ ヨ ト ・ ヨ ト

Asaf Cohen, Salman Avestimehr and Michelle Effros

Proof Sketch - cont.

Descriptions:

```
From the source s: two descriptions of rates H(X|U_1) and H(X|U_2).
From the side information z: two descriptions of rates I(Y; U_1) and I(Y; U_2).
```

Min-cuts:

From the source s:
$$\sum_{e \in \mathcal{C}(\mathcal{V}_{s;t_1}^*)} c(e) \ge H(X|U_1)$$
 and
 $\sum_{e \in \mathcal{C}(\mathcal{V}_{s;t_2}^*)} c(e) \ge H(X|U_2)$.
From the side information z: $\sum_{e \in \mathcal{C}(\mathcal{V}_{z;t_1}^*)} c(e) \ge I(Y;U_1)$ and
 $\sum_{e \in \mathcal{C}(\mathcal{V}_{z;t_2}^*)} c(e) \ge I(Y;U_2)$.

The rates are too high to send the descriptions separately

To achieve these generalized cut-set bounds, some kind of an incremental description is required.

Asaf Cohen, Salman Avestimehr and Michelle Effros On Networks with Side Information

Two Sinks Example

K Sinks with Direct Links from Y - Result

Theorem

 $\begin{array}{l} (c(e): e \in \mathcal{E}) \in \\ \mathcal{R}(\mathcal{V}, \mathcal{E}, s, z, \{t_i\}_{i=1}^{K}) \text{ iff for any} \\ 1 \leq i \leq K \text{ there exist } U_i \in \mathcal{U}_i \text{ such} \\ \text{that } U_i \leftrightarrow Y \leftrightarrow X, |\mathcal{U}_i| \leq |\mathcal{Y}| \text{ and} \end{array}$

$$\sum_{e \in \mathcal{C}(\mathcal{V}^*_{s;t_i})} c(e) \geq H(X|U_i)$$

 $c((z,t_i)) \geq I(Y;U_i)$

Proof Sketch - random binning and independent equations

The figure below represents binning to 8 bins and its binary representation:

The bin we received is not the one we "intended" to send, but:

- It has the correct size.
- 2 It contains the true x^n .
- It is just as random.

The power of random binning

We can refine the random binning without having a true incremental multicast network code.

Two Sinks Example

Example

 $(R_1, \ldots, R_6) \in \mathcal{R}(\mathcal{V}, \mathcal{E}, s, z, \{t_1, t_2\})$ if and only if there exist random variables $U_1 \in \mathcal{U}_1$ and $U_2 \in \mathcal{U}_2$ such that $U_1 \leftrightarrow Y \leftrightarrow X$, $U_2 \leftrightarrow Y \leftrightarrow X$, $|\mathcal{U}_1| \leq |\mathcal{Y}|$, $|\mathcal{U}_2| \leq |\mathcal{Y}|$, and

$$\begin{array}{rcl} R_1 + \min(R_2, R_3) & \geq & H(X|U_1); & R_5 \geq I(Y; U_1) \\ & \min(R_2, R_4) & \geq & H(X|U_2); & R_6 \geq I(Y; U_2). \end{array}$$

- 4 同 ト 4 ヨ ト 4 ヨ ト