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Abstract

It is shown that stability of the celebrated MaxWeight or back pressure policies is
a consequence of the following interpretation: either policy is myopic with respect to a
surrogate value function of a very special form, in which the “marginal disutility” at a
buffer vanishes for vanishingly small buffer population. This observation motivates the
h-MaxWeight policy, defined for a wide class of functions h. These policies that share
many of the attractive properties of the MaxWeight policy:

(i) The policy does not require arrival rate data.

(ii) The h-myopic policy is stabilizing when h is a perturbation of a monotone linear
function, or a monotone Lyapunov function for the fluid model.

(iii) A perturbation of the relative value function for a workload relaxation gives rise
to a myopic policy that is approximately average-cost optimal in heavy traffic,
with logarithmic regret.

The first results are obtained for a completely general stochastic network model. Asymp-
totic optimality is established for the general scheduling model with a single bottleneck.
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1 Introduction

While it is popular to cite the curse of dimensionality when discussing optimization of stochas-
tic networks, there are many classes of effective policies that are easily implemented, require
limited information, and have other attractive properties.

Tassiulas and Ephremides showed in [48] that a myopic policy is universally stabilizing
for a class of stochastic networks, provided the surrogate value function used in the definition
of the policy is quadratic,

h(x) = 1
2xTDx, x ∈ R

!, (1)

with D > 0 a diagonal matrix. The resulting policy is known as MaxWeight or back-pressure,
depending on the context. This work has been extended in multiple directions over the past
fifteen years [17, 47, 43], and in particular these policies are known to be approximately
optimal in heavy traffic under certain conditions on the network [50, 45, 31].

These results are fragile. For example, for a general stochastic scheduling model, diag-
onal quadratics are one of a very few function classes for which the myopic policy is known
to be stabilizing.1 Moreover, even the related Proportional Fair scheduler is known to be
destabilizing for certain stochastic models [1]. In contrast, stability of the fluid model under
a myopic policy is virtually universal [10, 7, 33].

To explain this gap, consider the following two models. The controlled random walk
(CRW) model evolves on Z!

+ according to the recursion,

Q(t + 1) = Q(t) + B(t + 1)U(t) + A(t + 1), t ≥ 0, Q(0) = x . (2)

The allocation sequence U evolves on Z
!u
+ for some integer !u; the arrival sequence A is !-

dimensional, and B is an !× !u matrix sequence, each with integer-valued entries. The fluid
model q = {q(t) : t ≥ 0} satisfies the linear equations,

q(t) = x + Bz(t) + αt, t ≥ 0, x ∈ R
!
+, (3)

where B and α are the mean values of B(t) and A(t), respectively, and z is the cumulative
allocation process evolving on R

!u
+ . The fluid model (3) is also expressed as the ODE model,

d+

dtq(t) = Bζ(t) + α , t ≥ 0, (4)

where ζ(t) ∈ R
!u
+ denotes the allocation rate vector at time t.

The allocation sequence U and the rate process ζ satisfy common linear constraints,
U(t) ∈ U, ζ(t) ∈ U, where U ⊂ R

!u
+ is a polyhedral set of the specific form,

U := {u ∈ R
!u : u ≥ 0, Cu ≤ 1}. (5)

The matrix C is called the constituency matrix: Its entries are assumed to be binary, and
further assumptions are imposed in Theorem 1.1. Each row of C corresponds to a station

1While not precisely a myopic policy, the stability analysis contained in [13] implies that the h-myopic
policy is stabilizing with h of the form h(x) =

P

hi(xi), provided that {hi} satisfy certain Lipschitz bounds.
The exponential rule of [44] is also similar to a myopic policy.
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(or ‘resource’) in the network: For a given j ∈ {1, . . . , !} we let s(j) ∈ {1, . . . , !m} denote the
corresponding station. That is, the unique value of s satisfying Cs,j = 1.

Suppose that h : R!
+ → R+ is any C1 function that vanishes only at the origin. The

h-myopic policy is defined for the fluid and stochastic models by the respective feedback
laws,

φF(x) = arg min
ζ∈U(x)

〈∇h (x), Bζ + α〉, (6)

φD(x) = arg min
u∈U"(x)

E[h(Q(t + 1)) − h(Q(t)) | Q(t) = x,U(t) = u], (7)

where U(x) denotes the set of admissible values of ζ when q = x,

U(x) = {u ∈ U : vi := (Bu + α)i ≥ 0 when xi = 0} , (8)

and U"(x) := U(x) ∩ {0, 1}!u . It is shown in Proposition 2.2 that the MaxWeight policy
coincides with the myopic policy for the fluid model when h is equal to the quadratic (1).
This motivates an alternative policy for the stochastic model, the h-MaxWeight policy,

φMW(x) = arg min
u∈U"(x)

〈∇h (x), Bu + α〉, x ∈ Z
!
+. (9)

Note that φMW = φD when h is a linear function of x.
The policy (6) is stabilizing for the fluid model under mild assumptions on the function

h (see [10] and [7, Thm. 12.5] for linear functions, and [33, Proposition 11] for a smooth norm
on R!.) The proof is based on establishing that the ‘drift’ defined by,

d+

dth(q(t)) = 〈∇h (q(t)), d+

dtq(t)〉, t ≥ 0, (10)

is strictly negative when q(t) -= 0.
The myopic policy (7) for the stochastic model may or may not be stabilizing, depending

upon the particular network and the structure of the function h. One difficulty is that the
corresponding drift for the stochastic model,

E[h(Q(t + 1)) − h(Q(t)) | Q(t) = x,U(t) = u] (11)

can be positive for certain values of x on the boundary of the state space. This important
distinction between the two models is illustrated in the following two examples.

Station  1

µ1

µ4

Station  2

µ2

µ3

α1

α3

Figure 1: The Kumar-Seidman-Rybko-Stolyar model
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Instability in the model of Rybko and Stolyar Consider the model of Kumar and
Seidman, and Rybko and Stolyar shown in Figure 1 [25, 42]. With c the !1 norm, c(x) =
|x| =

∑
xi, the myopic policy for the fluid model gives priority to the exit buffers if no

machine is starved of work. Suppose that the parameters satisfy,

µ1 > µ2 and µ3 > µ4. (12)

If for example x1 > 0 and x4 > 0 yet x2 = x3 = 0 we then have

φF

1(x) = µ2µ
−1
1 , φF

4(x) = 1 − φF

1(x).

The myopic policy for the stochastic model is very different: The optimization (7) defines
φF

4(x) = 1 if x4 ≥ 1, and φF

2(x) = 1 if x2 ≥ 1. This is precisely the policy found to be
destabilizing in [42].

Work-stoppage under a myopic policy The myopic policy for the tandem queues with
h linear may be entirely irrational. Consider the pair of queues in tandem illustrated in
Figure 2. Suppose that a linear cost function is given c(x) = c1x1 + c2x2, with c2 > c1. The
c-myopic policy for the fluid model is non-idling at Station 2, while at Station 1,

φF

1(x) =

{
0 if x2 > 0

min(1, µ2µ
−1
1 ) if x2 = 0, x1 > 0.

(13)

The c-myopic policy is path-wise optimal when µ1 ≥ µ2.

Station  1

α1
µ1

Station  2

µ2

Figure 2: Tandem queues.

For a CRW model defined consistently with the fluid model we have for x ∈ Z2
+,

φMW(x) = φD(x) = arg min
u∈U"(x)

E[c(Q(t + 1)) | Q(t) = x, U(t) = u]

= arg min
u∈U"(x)

(
c1(α1 − µ1u1) + c2(µ1u1 − µ2u2)

)
.

At Station 2 this policy is non-idling, while at Station 1,

φMW

1 (x) = arg min
u∈U"(x)

(
(c2 − c1)µ1u1

)
.

That is, Station 1 is always idle under our assumption that c2 > c1!

Instability is a consequence of additional constraints in the stochastic model. The choices
are limited in the CRW model, so from certain states on the boundary it is not possible to
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find an allocation u such that the drift in (11) is negative. Why then is this possible when h
is a diagonal quadratic?

We show in this paper that the key property that is required is the derivative condition,

∂

∂xj
h (x) = 0 when xj = 0. (14)

For a quadratic we have ∇h (x) = Dx, and hence (14) does hold when D is diagonal.
With h interpreted as an approximate value function, the derivative ∂

∂xj
h (x) represents

the “marginal disutility” of an additional increment of inventory at buffer j. If this marginal
disutility is zero, then it is reasonable to shift inventory to this buffer when possible. Thus
starvation of resources is avoided, which is the cause of instability in these two examples.

In this paper we make these informal observations precise. Moreover, to obtain a wide
class of policies we describe a perturbation technique used to modify a given function so that
(14) holds. Suppose that c is a norm on R!, such as c(x) =

∑
|xi|, and that h0 : R! → R+ is

any C1 function that satisfies the dynamic programing inequality for the fluid model,

min
u∈U(x)

〈∇h0 (x), Bu + α〉 ≤ −c(x), x ∈ R
!
+. (15)

With φF defined in (6) using h0, and v := BφF(x) + α, the bound (15) is equivalent to the
functional inequality 〈∇h0, v〉 ≤ −c.

A perturbation of h0 is obtained through a change of variables: For fixed θ ≥ 1 we denote

x̃i := xi + θ(e−xi/θ − 1), for any i and x, (16)

and let x̃ denote the corresponding vector x̃ := (x̃1, . . . , x̃!)T ∈ R!
+. The function h is then

defined by,
h(x) = h0(x̃), x ∈ R

!
+. (17)

An application of the chain rule shows that (14) holds. The first main result of this paper is
based on this observation:

Theorem 1.1. Consider the model (2) satisfying the following conditions:

(i) The entries of the constituency matrix are binary-valued, its rows are orthogonal,
and the sum of any column is equal to unity.

(ii) The i.i.d. process (A,B) has integer entries, and a finite second moment.

(iii) Bij(t) ≥ −1 for each i, j and t, and for each j ∈ {1, . . . , !u} there exists a unique
value ij ∈ {1, . . . , !} satisfying,

Bij(t) ≥ 0 a.s. i -= ij. (18)

(iv) The function h0 : R! → R+ satisfies the following:

(a) Smoothness: The gradient ∇h0 is Lipschitz continuous,

(b) Monotonicity: ∇h0 (x) ∈ R!
+ for x ∈ R!

+,

5



(c) The dynamic programing inequality (15) holds, with c a norm on R!.

Then, there exists θ0 < ∞ and bh < ∞ such that for any θ ≥ θ0, the following bound holds
under the h-MaxWeight policy:

Dh (x) = E[h(Q(t + 1)) − h(Q(t)) | Q(t) = x] ≤ −1
2c(x) + bh. (19)

Consequently,

n−1
E

[n−1∑

t=0

c(Q(t))
]
≤ 2n−1h(x) + 2bh, n ≥ 1, x ∈ Z

!
+. (20)

Proof. The bound (19) is established in Section 2.2.2, and (20) then follows from the Com-
parison Theorem 2.1. /0

The inequality (19) is a Lyapunov drift condition of the form developed in [37, 15],
and also similar to the bounds used in [11, 5, 26, 24, 39] to obtain performance bounds for
networks. Under natural assumptions on the model the bound (19) implies that the controlled
network is geometrically ergodic, so that the mean E[c(Q(t))] converges to its steady-state
value geometrically fast from each initial condition [37, 38, 24, 33].

To obtain finer performance bounds we impose further structure on the model. For
simplicity we restrict to a scheduling model with deterministic routing: for each i ∈ {1, . . . , !},
after processing at buffer i a customer either enters some buffer i+ ∈ {1, . . . , !}, or exits the
system. The routing matrix R is the !× ! matrix defined for i, j ∈ {1, . . . , !} as Rij = 1j=i+.
The routing matrix satisfies R! = 0!×! - this ensures that each customer receives at most !
services during its lifetime in the network.

The CRW scheduling model is described by the recursion,

Q(t + 1) = Q(t) +
!∑

i=1

Mi(t + 1)[−1
i + 1

i+ ]Ui(t) + A(t + 1), Q(0) = x , (21)

where M i is a Bernoulli sequence for each i. This is of the form (2) with,

B(t) = −[I − RT]M(t), t ≥ 1.

The condition (18) follows from the assumptions on M and R, where ij = j for each j ∈
{1, . . . , !}.

The vector load ρ ∈ R
!m
+ is given by,

ρ = CM−1[I − RT]−1α, (22)

where M is a diagonal matrix, equal to the common mean of M(t). The network load is the
maximum, ρ• = max1≤i≤! ρi.

We restrict to models of a generalized ‘Kelly type’ in which service statistics are deter-
mined by the station, not the buffer. Station s is said to be homogeneous if the random
variables {Mj(t) : s(j) = s} are all identical, and the network is called homogeneous if each
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station satisfies this condition. Homogeneity is used to construct a one-dimensional work-
load relaxation of the form introduced in the thesis of N. Laws [30] (see also [29, 40].) A
one-dimensional workload process W corresponding to the most heavily loaded station is
compared to its relaxation Ŵ , which is a version of a single queue. For each t ≥ 0 the lower
bound holds with probability one,

W (t) ≥ Ŵ ∗(t), t ≥ 0, (23)

under any policy for Q, where the relaxation Ŵ
∗

is controlled using the non-idling policy.
Relaxations of this form and multi-dimensional extensions are the subject of [9, 35].

Based on the solution to the average-cost optimality equation for the single queue, we
construct a function h0 such that the resulting h-MaxWeight policy with h defined in (17)
is approximately average-cost optimal for Q. Letting η̂∗ denote the optimal cost for the
relaxation, and η the average-cost obtained under the h-MaxWeight policy, we have for some
fixed constant k0 < ∞, independent of load,

η̂∗ ≤ η ≤ η̂∗ + k0 log(η̂∗). (24)

In this case we say that the policy is heavy-traffic asymptotically optimal (HTAO) with loga-
rithmic regret.

This form of approximate optimality is the focus of several recent papers. A closely
related form of asymptotic optimality was formulated in [34, Section 4.2], and verified for
a class of multiclass networks with multiple bottlenecks and renewal inputs. Also closely
related are results in the heavy traffic theory of stochastic networks, e.g. [21, 18, 27, 3, 2],
as well as the aforementioned contributions [50, 45, 31, 43]. All of these asymptotic results
require the complete resource pooling condition, meaning that there is a single bottleneck in
heavy traffic. The diffusion approximations obtained in these papers suggest a bound of the
form,

η ≤ η̂∗ + o(
√

η̂∗).

This heuristic has been established rigorously only in special cases, such as the single queue
in the pioneering work of Kingman [22, 23], and the recent result [16] for generalized Jackson
networks.

Heavy-traffic asymptotically optimality of the form (24) was obtained for the first time
in [35] in several examples, based on a general Lyapunov condition similar to (19). The
main idea is to take the optimal value function for the fluid model, and introduce a penalty
function to account for possible starvation when the state reaches the boundary of R!

+. In
each example considered, a single policy is proposed that is independent of network load,
based on a switching curve with logarithmic growth. For example, for the tandem queues,
the policy has the form

Serve buffer 1 if x2 ≤ β log(1 + x1/β), (25)

where β > 0 is a sufficiently large constant.
The approach used here is similar: The function h0 is chosen as an approximation to a

fluid value function. Rather than a penalty function, the change of variables (17) is used to
construct a stabilizing h-MaxWeight policy and, under stronger conditions, HTAO.
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Perturbed test function techniques are widely used for establishing weak limits of a
family of stochastic processes, and this technique has been applied in the heavy-traffic theory
of stochastic networks [28, 14]. The connection with the techniques in this paper appears to
be only superficial.

Two significant contributions in the present paper are worth highlighting,

(i) In each example considered in [35] the policy was explicitly constructed based on
switching curves of the form (25). This requires considerable intuition for more
complex models. In the two main results Theorem 1.1 and Theorem 3.1 the policy
is derived from the given value function via the minimization (9).

(ii) This is the first paper to give a completely general approach to HTAO for average
cost, and in particular bounds of the form (24) for a general class of models.

The remainder of the paper is organized as follows. Section 2 concerns stability of h-
MaxWeight policies. Asymptotic optimality is treated in Section 3: Theorem 3.1 establishes
a bound of the form (24) for a family of models with increasing load. Section 4 contains
conclusions and possible extensions.

2 MaxWeight policies

In this section we consider the general CRW model (2) under the assumptions of Theorem 1.1:
The sequence {A(t), B(t)} is i.i.d. with a finite second moment, and (18) holds for B(t). This
is a very general model:

(i) Controlled routing from buffer i is modeled by allowing ij = i for more than one
j ∈ {1, . . . , !u}. Then, Uj(t) = 1 indicates that a customer at buffer i is routed to
buffer i+j .

(ii) It is straightforward to model a flexible server, as found in the processor sharing
models of [19, 20].

(iii) Assembly-disassembly systems can be modeled. For example, following service com-
pletion at buffer ij , a customer can spawn several new jobs. This is modeled by
defining positive values of Bij(t) for several values of i -= ij .

(iv) On interpreting an arrival as an increment of demand, the CRW model (2) can be
used to model inventory systems. In this setting, an entry of U(t) can model an
order for new raw material [8].

All of the policies considered in this paper are stationary, and deterministic: For the
CRW model it is assumed that there is a function φ : Z!

+ → U" such that

U(t) = φ(Q(t)), t ≥ 0. (26)

Hence Q is a time-homogeneous Markov chain on Z!
+, with transition matrix denoted P .

That is, for each x, y ∈ Z!
+ and t ≥ 0,
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P (x, y) = P{Q(t + 1) = y | Q(t) = x} = P{x + B(1)φ(x) + A(1) = y}.

For any function g : R! → R, the generator D is defined as the difference operator,

Dg (x) := E[g(Q(t + 1)) − g(Q(t)) | Q(t) = x] =
∑

y∈Z!
+

P (x, y)[g(y) − g(x)].

The analysis of the h-MaxWeight policy is based on bounds on the drift Dh. The first step
is an application of the Mean Value Theorem, which implies the following representation for
any Q(t) ∈ Z!

+, and any t ≥ 0,

h(Q(t + 1)) − h(Q(t)) = 〈∇h (Q̄), ∆(t + 1)〉
= 〈∇h (Q(t)), ∆(t + 1)〉

+ 〈∇h (Q̄) − ∇h (Q(t)), ∆(t + 1)〉
(27)

where ∆(t + 1) := Q(t + 1)−Q(t), and Q̄ ∈ R!
+ lies on the line connecting Q(t + 1) and Q(t).

Consequently,
Dh (x) = 〈∇h (x), v〉 + bh, (28)

where

v(x) = E[∆(t+1) | Q(t) = x], bh(x) = E[〈∇h (Q̄)−∇h (Q(t)), ∆(t+1)〉 | Q(t) = x]. (29)

To deduce stability based on (28) we obtain a bound on 〈∇h (x), v〉 under the given policy.
We then show that the second term bh(x) is relatively small in magnitude.

We begin with a review of some Lyapunov theory for Markov and fluid models.

2.1 Stochastic stability

When does a stabilizing policy exist for a network model? How do we test for stability? To
answer these questions we consider first the fluid model.

Denote the velocity set for the fluid model by

V := {v = Bζ + α : ζ ∈ U}. (30)

In the general setting of this section, the “load condition” ρ• < 1 translates to the following,

The origin is an interior point of V. (31)

If (31) holds then there exists ε > 0 such that the vector vx = −εx/|x| lies in V for each
x ∈ R!

+. Setting ζ = vx from the initial condition q(0) = x we have q(t) = q(0) − (ε/|x|)t
for 0 ≤ t ≤ |x|/ε. For a given policy for the fluid model, such as (7), we consider the value
function,

J(x) =

∫ ∞

0
c(q(t;x)) dt. (32)

We let J∗ denote the minimum of (32) over all policies. Setting h = J in (6) we obtain the
drift inequality,
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min
u∈U(x)

〈∇J (x), Bu + α〉 ≤ −c(x), x ∈ R
!
+,

and this inequality is equality when h = J∗. We thereby obtain solutions to the dynamic
programing inequality (15).

We now turn to the CRW model. The general form of the Lyapunov condition considered
here is Condition (V3), or the special case known as Foster’s criterion [37]. All involve bounds
on the generator applied to a function V : Z!

+ → R+.

(i) The controlled network satisfies Foster’s criterion if there is a constant b < ∞ and a
finite set S ⊂ Z!

+ such that

DV (x) ≤ −1 + b1S(x), x ∈ Z
!
+. (V2)

(ii) The network satisfies Condition (V3) if for a function f : Z!
+ → [1,∞),

DV (x) ≤ −f(x) + b1S(x), x ∈ Z
!
+ , (V3)

where again b < ∞ and S ⊂ Z!
+ is a finite set.

We have the following simple but useful result relating the policies φMW and φD:

Proposition 2.1. Suppose that (V3) holds under the h-MaxWeight policy with V a constant
multiple of h. Then the same bound holds for the h-myopic policy.

Proof. If V = kh for some k < ∞ we then have under the h-myopic policy,

PφDV (x) = k arg min
u∈U"(x)

E[h(Q(t + 1)) | Q(t) = x,U(t) = u]

≤ kE[h(Q(t + 1)) | Q(t) = x,U(t) = φMW(x)]

= PφMWV (x) ≤ V (x) − f(x) + b1S(x).

/0

The most common approach to establishing (V3) is to construct a function h : Z!
+ →

(0,∞) and a constant η < ∞ that solve the Poisson inequality ,

Dh ≤ −c + η. (33)

If c has bounded sublevel sets (e.g. c defines a norm on R!), then this implies (V3) with
V = h, f = 1 + c/2, b = η + 1, and S is the sublevel set S = {x : c(x) ≤ 2(η + 1)}. The
Comparison Theorem implies that the steady state mean of c is bounded by η when (33)
holds. Theorem 2.1 is also the most common approach to obtaining bounds on expectations
involving stopping times. For a proof see [37].
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Theorem 2.1. (Comparison Theorem) Suppose that the non-negative functions V, f, g
satisfy the bound,

DV ≤ −f + g. (34)

Then for each x ∈ Z!
+ and any stopping time τ we have,

Ex

[τ−1∑

t=0

f(Q(t))
]
≤ V (x) + Ex

[τ−1∑

t=0

g(Q(t))
]
.

/0

The average cost is finite under (V3), provided f dominates the cost function. The
following result follows from Theorems 14.0.1 and 17.0.1 of [37].

Theorem 2.2. Consider the CRW model (2) controlled using a stationary policy. Suppose
that there exists a solution to (V3) satisfying k−1

0 ‖x‖ ≤ c(x) ≤ k0f(x) for some k0 < ∞ and
all x ∈ Z!

+. Suppose moreoever that the controlled network is 0-irreducible: For each x ∈ Z!
+,

∞∑

t=0

P{Q(t) = 0 | Q(0) = x} > 0, (35)

and that P (0, 0) = P{A(t) = 0} > 0. Then the following hold:

(i) Q is an aperiodic Markov chain satisfying η := π(c) < ∞ for all x ∈ Z!
+.

(ii) The Law of Large Numbers holds: For each initial condition,

η(n) := n−1
n−1∑

t=0

c(Q(t)) → η, n → ∞, a.s.

(iii) The mean ergodic theorem holds: For each initial condition,

E[c(Q(t))] → η, t → ∞.
/0

The simplest example is the CRW model for the single server queue defined by the
recursion,

Q(t + 1) = Q(t) − S(t + 1)U(t) + A(t + 1), t ∈ Z+, (36)

with given initial condition Q(0) = x ∈ Z+. A solution to (V3) is obtained with f(x) = 1+x
and V = J∗, where the fluid value function J∗ is the quadratic,

J∗(x) = 1
2

x2

µ − α
. (37)

Theorem 2.3 establishes formulae for the steady-state mean as well as the associated
solution to Poisson’s equation with c the identity function (c(x) = x for x ∈ R+),
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Dh (x) − x + η, x ∈ Z+. (38)

The formula (40) for the steady-state mean may be viewed as an analog of the celebrated
Pollaczek-Khintchine formula for the M/G/1 queue. The proof is based on refinements of
the Comparison Theorem applied to the function V = J∗ [35, 36].

Theorem 2.3. Consider the CRW queueing model (36) satisfying ρ = α/µ < 1, and define

m2 = E[(S(1) − A(1))2], m2
A = E[A(1)2], σ2 = ρm2 + (1 − ρ)m2

A. (39)

Then,

(i) There is a unique invariant probability measure π on Z+, with steady-state mean

η := Eπ[Q(0)] = 1
2

σ2

µ − α
(40)

(ii) A solution to Poisson’s equation (38) is the quadratic,

h(x) = J∗(x) + 1
2µ−1

(m2 − m2
A

µ − α

)
x , x ∈ Z+. (41)

/0

We now illustrate the application of Theorem 2.2 using the scheduling model (21). The
MaxWeight policy is defined by (9) with h a quadratic,

φMW(x) = arg min
u∈U"(x)

〈Bu + α,Dx〉, x ∈ Z
!
+, (42)

where D > 0 is a diagonal matrix. Proposition 2.2 implies that φMW coincides with the
h-myopic policy for the fluid model. This result is a special case of Proposition 2.4 that
follows.

Proposition 2.2. For each x ∈ Z!
+, the allocation φMW(x) defined by the MaxWeight policy

for the CRW scheduling model can be expressed as a solution to the linear program,

φMW(x) = arg max xTD(I − RT)Mu

s.t. Cu ≤ 1, u ≥ 0 .
(43)

/0

Proposition 2.2 easily leads to a proof of stability.

Theorem 2.4. Suppose that ρ• < 1 in the CRW scheduling model. Then, for any diagonal
matrix D > 0, the network controlled under the MaxWeight policy satisfies (V3) with V (x) =
1
2xTDx and f(x) = 1 + ε0|x| for some ε0 > 0 and all x ∈ R!

+.

12



Proof. Since (31) holds when ρ• < 1, there exists ε > 0 such that the vector v with coefficients
vi = −ε, i ≥ 1, lies in V for each x. By definition there exists u ∈ U such that (−I+RT)Mu+
α = v, so that by Proposition 2.2,

〈BφMW(x) + α,∇h (x)〉 = 〈BφMW(x) + α,Dx〉 ≤ vTDx = −ε
∑

Diixi ≤ −ε0|x|,

with ε0 = ε(mini Dii).
Note that u may not be feasible if xi = 0 for some i. Thanks to Proposition 2.2 this is

irrelevant since we are only seeking bounds on the value of (43).
We thus arrive at a version of the Poisson inequality,

DMWh (x) := EMW[h(Q(t + 1)) − h(Q(t)) | Q(t) = x] ≤ −ε0|x| + bD,

with

bD := 1
2 max

x′∈Z!
+,u∈U"(x)

E[(Q(t + 1) − Q(t))TD(Q(t + 1) − Q(t)) | Q(t) = x′, U(t) = u].

/0

2.2 Perturbed functions

We now analyze the drift Dh represented in (28) to establish stability of the h-MaxWeight
policy. We return to the general CRW model (2).

An application of the chain rule of differentiation shows that,

Proposition 2.3. For any C1 function h0, the function h defined in (17) satisfies the
derivative conditions (14). We have the explicit representations,

(i) The first derivative is given by,

∇h (x) = [I − Mθ]∇h0 (x̃), (44)

where,
Mθ = diag (e−xi/θ), x ∈ R

!. (45)

(ii) If h0 is C2, then the Hessian of h is,

∇2h (x) = [I − Mθ]∇2h0 (x)[I − Mθ] + θ−1diag (Mθ∇h0 (x̃)). (46)

Hence h is convex provided h0 is both convex and monotone.
/0

A key step in the proof of Theorem 1.1 is to generalize Proposition 2.2. At the same
time, in Proposition 2.4 we express the h-MaxWeight policy in terms of generalized Klimov
indices, determined by the weights,

Θj(x) := −
∑

i

Bij
∂

∂xi
h (x), x ∈ Z

!
+, j ∈ {1, . . . , !u}. (47)
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Proposition 2.4. Suppose that Assumptions (i)-(iii) of Theorem 1.1 hold, and that h is
any C1 monotone function satisfying the derivative conditions (14). Then, for each x ∈ Z!

+,
the allocation φMW(x) defined by the h-MaxWeight policy can be expressed as a solution to
the linear program,

φMW(x) = arg min 〈Bu,∇h (x)〉

s.t. Cu ≤ 1, u ≥ 0 .
(48)

Moreover, the policy can be described as follows: Given Q(t) = x, for each station s(j) ∈
{1, . . . , !m} let j∗s ∈ arg max{Θj(x) : s(j) = s}. If Θj∗s (x) < 0 then this station is idle,
otherwise server j∗s receives priority. That is,

Uj∗s (t) = 1{Θj∗s (x) ≥ 0}. (49)

Proof. The proof requires that we demonstrate that the minimum in (9) can be relaxed to a
minimum over all of U.

The coefficient of uj in the objective function of (48) is given by −Θj. Monotonicity
implies that each partial derivative of h is non-negative. This assumption combined with
(18) implies that

Θj(x) ≤ 0 whenever xij = 0. (50)

It then follows that the optimizer u∗ of the linear program (48) satisfies without loss of
generality u∗

j = 0 whenever xij = 0. This shows that u∗ ∈ U(x) for x ∈ Z!
+, which proves

(48).
To show that u∗ can be chosen in U" we argue that optimizers of linear programs can be

chosen among the extreme points in the constraint region. The extreme points for this linear
program are all contained in {0, 1}!. The fact that the extreme-point optimizers are of the
form (49) is then obvious. /0

Consider the special case in which h0 is linear.

2.2.1 Perturbed linear function

Suppose that h0(x) = cTx, where the vector c ∈ R!
+ has non-zero coefficients, so that the

function h can be expressed,

h(x) =
!∑

i=1

cix̃i, x ∈ R
!
+. (51)

An application of Proposition 2.3 shows that the derivative condition (14) holds, and that
the first and second derivatives are given by,

∇h (x) = [I − Mθ]c, ∇2h (x) = θ−1diag (Mθc). (52)

Hence the function h is monotone and strictly convex.
We show in Proposition 2.5 that the h-MaxWeight policy is stabilizing provided θ ≥ 1 is

suitably large.

14



Proposition 2.5. Suppose that Assumptions (i)-(iii) of Theorem 1.1 hold, along with the
stabilizability condition (31). Then, there exists θ0 > 0 such that the following hold for all
θ ≥ θ0:

(i) The controlled network satisfies Foster’s Criterion. The function V in (V2) can
be taken as a constant multiple of h.

(ii) Condition (V3) holds: There exists ε2 > 0, b2 < ∞, and a finite set S satisfying,

DV ≤ −f + b21S

with V = 1 + 1
2h2, f = 1 + ε2h.

(iii) Suppose that for some ε > 0 the arrival process satisfies E[exp(ε‖A(t)‖)] < ∞.
Then Condition (V4) holds: For some εe > 0, δe > 0, be < ∞, and a finite set S,

DV ≤ −δeV + be1S

with V = exp(εeh). Hence Q is geometrically ergodic provided (35) holds [37].

Proof. We apply the second-order Mean Value Theorem to obtain,

h(Q(t + 1)) − h(Q(t)) = 〈∇h (Q(t)), ∆(t + 1)〉
+ 1

2∆(t + 1)T
[
∇2h (Q̄)

](
∆(t + 1)

)
,

(53)

where again Q̄ ∈ R!
+ lies on the line connecting Q(t + 1) and Q(t). This implies the identity

(28) with bh redefined as,

bh(x) = 1
2E

[
∆(t + 1)T∇2h (Q̄) ∆(t + 1) | Q(t) = x

]
.

The expression for the second derivative in (52) then gives,

Dh (x) = 〈∇h (x), v〉 + θ−1b∆,

where
b∆ = 1

2‖c‖ sup
x′∈Z!

+,u∈U"(x′)

E[‖∆(t + 1)‖2 | Q(t) = x′, U(t) = u] < ∞.

We now obtain an upper bound on 〈∇h (x), v〉 under the h-MaxWeight policy. The
expression for the first derivative in (52) implies the bound,

∂

∂xi
h (x) = ci(1 − e−xi/θ) ≥ c(1 − e−xi/θ), 1 ≤ i ≤ !,

with c := minj cj. Exactly as in the proof of Theorem 2.4 we can consider arbitrary v ∈ V to
obtain bounds on the value of (48). This is justified by Proposition 2.4. The stabilizability
condition (31) implies that there exists ε > 0 such that the vector with components vi = −ε,
1 ≤ i ≤ !, lies in V for each x ∈ R!

+. By definition, there exists u ∈ U satisfying Bu + α = v.
Consequently, under the h-MaxWeight policy,
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Dh (x) ≤ −εc max
i

(1 − e−xi/θ) + θ−1b∆.

Suppose that |x| ≥ !θ. Then xi ≥ θ for at least one i, and we obtain the bound,

Dh (x) ≤ −1
2εc + θ−1b∆, if |x| ≥ !θ. (54)

The right hand side is negative provided θ > 2b∆/(εc). Fixing θ satisfying this bound we
obtain the desired solution to (V2) with V = 2(εc)−1h, and S = {x : |x| < !θ}. This
establishes (i).

To establish (ii) we begin with the identity,

1
2 [h(Q(t + 1))]2 − 1

2 [h(Q(t))]2 = h(Q(t))(h(Q(t + 1) − h(Q(t))) + 1
2 [h(Q(t + 1)) − h(Q(t))]2.

On taking conditional expectations of both sides we obtain DV (x) = h(x)[Dh (x)] + b∆2(x),
where

b∆2 = 1
2 sup

x′∈Z!
+,u∈U"(x′)

E[[h(Q(t + 1)) − h(Q(t))]2 | Q(t) = x′, U(t) = u] < ∞.

Applying (i) we obtain a version of the Poisson inequality (33) with this V , which implies
that (V3) also holds.

Part (iii) follows from (i) combined with [37, Theorem 16.3.1] (see also [33, Theorem
4].) /0

h-MaxWeight policy: serve buffer 1

Level sets of h

q2 = θ log 1 −−

c1

c2

( )

∆(x) = −µ1+α1

µ1

∆(x) = −µ1+α1

−µ2+µ1

∆(x) = α1

−µ2

x1

x2

q2

Figure 3: The perturbed cost function defined in (17) with h0 linear on R
2 satisfies minu〈∇h (x),Bu + α〉 < 0

for each non-zero x ∈ R
2
+. This geometry is illustrated in this figure using the tandem queues. The contour

plots shown are the level sets {x : h(x) = r} for r = 1, 2, . . . .

Tandem queues: Emergence of a threshold policy Suppose that we replace the linear
cost function used in (13) with the convex cost function h : R2

+ → R+ defined in (51). Figure 3
shows a plot of the sublevel sets of this function.

The h-MaxWeight policy defined in (9) minimizes the inner-product,

〈Bu + α,∇h (x)〉 = −µ1u1c1(1 − e−x1/θ) + (µ1u1c1 − µ2u2c2)(1 − e−x2/θ) + 〈α,∇h (x)〉.

The h-MaxWeight policy is thus non-idling at Station 2, and at Station 1 the policy can be
expressed as a switching curve,
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φMW

1 (x) = 1{−c1(1 − e−x1/θ) + c2(1 − e−x2/θ) ≤ 0}, x1 ≥ 1.

For small values of x1 a first order Taylor series gives the approximation φMW

1 (x) ≈
1{x2 ≤ (c1/c2)x1}. If x1 3 θ then the h-MaxWeight policy can be approximated by a
threshold policy, φMW

1 (x) ≈ 1{x2 ≤ q2}, where the threshold q2 is the solution to the equation
c2(1 − e−q2/θ) = c1. That is,

q2 = θ
∣∣∣log

(
1 − c1

c2

)∣∣∣. (55)

Figure 3 illustrates φMW when c1 = 1, c2 = 3, and θ = 10. The asymptote (55) is q2 =
10 log(3/2) ≈ 4 in this special case.

For comparison consider the discounted-cost optimal policy, minimizing

∞∑

t=0

(1 + γ)−t−1
E
[
c(Q(t)) | Q(t) = x

]
,

for a given γ > 0. Letting h∗
γ(x) denote the minimizing value, the optimal policy is expressed

as the h∗
γ-myopic policy, and the discounted-cost dynamic programming equation holds,

γh∗
γ(x) = c(x) + min

u∈U"(x)
E[h∗

γ(Q(t + 1)) − h∗
γ(Q(t)) | Q(t) = x,U(t) = u]

Consider the stochastic model described by the recursion,

Q(t + 1) = Q(t) + (−1
1 + 1

2)U1(t)M1(t) − 1
2U2(t)M2(t) + 1

1A1(t + 1), t ≥ 0,

in which the statistics of Φ(t) := (M1(t),M2(t), A1(t))T, t ≥ 1, are consistent with a model
obtained through uniformization: Φ is i.i.d., with marginal distribution defined by,

P{Φ(t) = 1
1} = µ1, P{Φ(t) = 1

2} = µ2, P{Φ(t) = 1
3} = α1, (56)

and that µ1 + µ2 + α1 = 1. We take c1 = 1, c2 = 3, ρ1 = 9/11, ρ2 = 9/10.
For any finite γ the following approximation holds,

lim
r→∞

r−1h∗
γ([rx]) = γ−1c(x), x ∈ R

2
+,

where [ · ] denotes the component-wise integer part of a vector. Hence for large x far from
the boundary, the optimal policy coincides with the c-myopic policy. In fact, it can be shown
that the optimal policy is approximated by a static threshold, similar to the policy shown in
Figure 3 (see [36].) Two examples are shown in Figure 4.

2.2.2 Perturbed value function

We now consider a function h0 that serves as a Lyapunov function for the fluid model. For
example, we might take h0 = J∗ the optimal fluid value function defined below (32). Our
goal is to complete the proof of Theorem 1.1, which amounts to establishing (V3) in the form
of the Poisson inequality (19) with V = 2h.

Before proving the theorem we present an example to illustrate the structure of the h-
myopic policy. In simple examples, it is approximated by a switching curve with logarithmic
growth.
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x1

x2 Optimal policy: serve buffer 1γ = 0.001γ = 0.01

Figure 4: Discounted cost optimal policy for the tandem queues with cost parameters (c1, c2) = (1, 3). The
load parameters are ρ1 = 9/10, ρ2 = 9/11, and the linear cost defined by c1 = 1, c2 = 3. On the left γ = 0.01
and on the right γ = 0.001.

Tandem queues: translation of the optimal policy If ρ1 < ρ2 and c1 < c2 then the
fluid value function is purely quadratic,

J∗(x) = 1
2

c1

µ2 − α1
(x1 + x2)

2 + 1
2

c2 − c1

µ2
x2

2, x ∈ R
2
+. (57)

Letting h0 = J∗, the assumption of Theorem 1.1 (c) is satisfied with equality,

min
u∈U(x)

〈∇h0 (x), Bu + α〉 = −c(x) x ∈ R
!
+.

The derivative conditions (14) fail, so we do not know if the h0-MaxWeight policy is stabilizing
for the CRW model.

To compute the h-MaxWeight policy we write (57) as

h0(x) = J∗(x) = 1
2d1(x1 + x2)

2 + 1
2d2x

2
2, x ∈ R

2
+,

so that the gradient of h(x) = h0(x̃) can be expressed,

∇h(x) = [I − Mθ]∇h0 (x̃) =

(
d1(x̃1 + x̃2)(1 − e−x1/θ)

(d1(x̃1 + x̃2) + d2x̃2)(1 − e−x2/θ)

)

Writing Bu + α = (−µ1u1 + α1, µ1u1 + µ2u2)T, we obtain for any x ∈ Z!
+, u ∈ U(x),

〈∇h (x), Bu + α〉 = µ1u1
[
d1(e

−x1/θ − e−x2/θ)(x̃1 + x̃2) + d2(1 − e−x2/θ)x̃2
]

− µ2u2
[
d1(1 − e−x2/θ)(x̃1 + x̃2) + d2(1 − e−x2/θ)x̃2

]

+ α1d1(1 − e−x1/θ)(x̃1 + x̃2)

Minimizing over u we see that the policy is non-idling at Station 2. At Station 1 we have
u1 = 1 if and only if x1 ≥ 1 and the coefficient of u1 is non-positive. That is, the policy at
Station 1 is defined by the switching curve described by the equation,

d1(e
−x1/θ − e−x2/θ)(x̃1 + x̃2) + d2(1 − e−x2/θ)x̃2 = 0. (58)

When x1 is large we obtain the approximation,

x2 ≈ s(x1) := θ log
(
1 +

d1

d2
x1

)
, (59)
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where by (57),
d1

d2
=

(c2

c1
− 1

)−1 1

1 − ρ2
.

This is an approximation to (58) in the sense that for all sufficiently large x1 there is a
unique x2 such that (x1, x2) solve the equation (58), and the ratio x2/s(x1) tends to unity as
x1 → ∞.

A policy defined by a switching curve s(x1) of the form given in (59) is similar to the
policy introduced in [35] to obtain HTAO (see eq. (25) and the surrounding discussion.)

Optimal policy: serve buffer 1

10 20 30 40 50 60 70 80 90 100

10

20

30

x1

x2

Figure 5: Average cost optimal policy for the tandem queues with c1 = 1, c2 = 3, ρ1 = 9/11, ρ2 = 9/10.

Consider now the average-cost optimal policy for the CRW model with statistics defined
in (56), and linear cost with(c1, c2) = (1, 3). It is known that the average-cost optimal policy
exists, and that it is h∗-myopic with respect to the relative value function (see [6] and [36,
Chapter 9].) Moreover, Theorem 7.2 of [32] implies that the following approximation holds,

lim
r→∞

r−2h∗([rx]) = J∗(x), x ∈ R
2
+.

The average-cost optimal policy for the CRW model is shown in Figure 5 with ρ1 = 9/11 < ρ2.
This policy can be represented by a switching curve s that is concave and unbounded in x1,
similar to (59).

The proof of Theorem 1.1 is organized in the following two lemmas.

Lemma 2.1. Under the assumptions of Theorem 1.1 we have under the h-MaxWeight
policy, for some constant k1,

〈∇h (x), vMW〉 ≤ −c(x) + k1 log(1 + ‖x‖), x ∈ Z
!
+,

where vMW = BφMW(x) + α.

Proof. Fix a constant β− ≥ θ, and define

s−(r) = β− log(1 + r/β−), r ≥ 0.

We impose the following constraint on the velocity vector v.

vi ≥ 0 whenever xi < s−(‖x‖), i = 1, . . . , !. (60)

19



The minimum of 〈∇h (x), v〉 over v satisfying these constraints provides a bound under the
h-MaxWeight policy. Proposition 2.4 is critical here so that we can ignore lattice constraints
and boundary constraints as we search for bounds on this inner product.

The purpose of (60) is to obtain the following bound:

− e−xi/θvi ≤ |vi|
(
1 + ‖x‖/β−

)−β−/θ
, i = 1, . . . , !. (61)

Since h0 is assumed monotone we have ∇h0 : R!
+ → R!

+, and applying (44) we obtain,

〈∇h (x), v〉 ≤ 〈∇h0 (x̃), v〉 + ‖v‖‖∇h0 (x̃)‖
(
1 + ‖x‖/β−

)−β−/θ
.

Since ∇h0 is also Lipschitz and β− ≥ θ, this gives for some constant k0,

〈∇h (x), v〉 ≤ 〈∇h0 (x̃), v〉 + k0 (62)

To bound (62) we shift x̃ as follows: Let x̃− ∈ Z!
+ denote the vector with components

x̃−
i = 4(x̃i − s−(‖x‖))+5, i = 1, . . . , !,

where 4 · 5 denotes the integer part. In view of (15), there exists u ∈ U(x) such that with
v = Bu + α,

〈∇h0 (x̃−), v〉 ≤ −c(x̃−).

Moreover, we have x̃−
i = 0 whenever the constraint on xi in (60) is active. Since u ∈ U(x),

this implies that the vector v = Bu + α satisfies vi ≥ 0. That is, v satisfies the constraint
(60).

Using this v in (62) gives

〈∇h (x), v〉 ≤ 〈∇h0 (x̃−), v〉 + 〈∇h0 (x̃) − ∇h0 (x̃−), v〉 + k0

≤ −c(x̃−) + ‖v‖‖∇h0 (x̃) − ∇h0 (x̃−)‖ + k0

≤ −c(x) + |c(x) − c(x̃−)| + ‖v‖‖∇h0 (x̃) − ∇h0 (x̃−)‖ + k0.

This completes the proof since c and ∇h0 are each Lipschitz. /0

Lemma 2.2. Under the assumptions of Theorem 1.1 we have under the h-MaxWeight
policy, for some constant k2,

Dh (x) ≤ 〈∇h (x), vMW〉 + k2(1 + θ−1‖x‖), x ∈ Z
!
+,

where vMW = BφMW(x) + α.

Proof. The first order Mean Value Theorem (27) results in the representation (28) with bh

defined in (29). The Cauchy-Schwartz inequality gives,

Dh (x) ≤ 〈∇h (x), vMW〉 + E
[
‖∇h (Q̄) − ∇h (Q(t))‖2 | Q(t) = x

] 1
2 E

[
‖∆(t + 1)‖2 | Q(t) = x

] 1
2

(63)
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It remains to bound the right hand side.
Given Q(t) = x, an application of Proposition 2.3 gives,

∇h (Q̄) − ∇h (x) = [I − Mθ(Q̄)](∇h0 (Q̄) − ∇h0 (x̃)) + [Mθ(x) − Mθ(Q̄)]∇h0 (x̃),

and applying the triangle inequality, the first expectation at right in (63) is bounded as
follows,

E
[
‖∇h (Q̄) − ∇h (Q(t))‖2 | Q(t) = x

]1
2 ≤ E

[
‖[I − Mθ(Q̄)](∇h0 (Q̄) − ∇h0 (x̃))‖2 | Q(t) = x

] 1
2

+ E
[
‖[Mθ(x) − Mθ(Q̄)]∇h0 (x̃)‖2 | Q(t) = x

] 1
2

(64)
To bound the first term on the right hand side of (64) we apply the Lipschitz condition on
h0: For some constant k1,

‖∇h0 (Q̄) − ∇h0 (x)‖ ≤ k1‖∆(t + 1)‖, x ∈ Z
!
+.

Hence the first term is bounded over x.
The second term is bounded using the Mean Value Theorem. The ith diagonal element

of [Mθ(x) − Mθ(Q̄)] admits the bound,

|e−xi/θ − e−Q̄i/θ| = e−xi/θ|1 − e−(Q̄i−xi)/θ|

≤ e−xi/θ(1 − e−∆i/θ)1{Q̄i > xi}
+ e−xi/θ(e!u/θ − 1)1{Q̄i < xi}

where ∆i = Ai(1) +
∑

j |Bij(1)|, and we have used the fact that
∑

j Bij(1) ≥ −!u under
(18). The right hand side can be bounded through a second application of the Mean Value
Theorem, giving

|e−xi/θ − e−Q̄i/θ| ≤ e−xi/θ(e!u/θ − e−∆i/θ) ≤ θ−1e!u/θ(!u + ∆i).

The Lipschitz condition on ∇h0 and second moment conditions on (A,B) then imply that
for some k3 < ∞,

E
[
‖[Mθ(x) − Mθ(Q̄)]∇h0 (x̃)‖2 | Q(t) = x

] 1
2 ≤ θ−1e!u/θ(

√
!!u + E[‖∆‖2]

1
2 )‖∇h0 (x̃)‖

≤ k3θ
−1(1 + ‖x‖).

This combined with (63) and (64) completes the proof. /0

Proof of Theorem 1.1. Combining the bounds given in Lemma 2.1 and Lemma 2.2 gives under
the h-MaxWeight policy,

Dh (x) ≤ −c(x) + k1 log(1 + ‖x‖) + k2(1 + θ−1‖x‖), x ∈ Z
!
+.

Choosing θ > 0 sufficiently large, we obtain a version of the Poisson inequality (33). /0
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3 Relaxations and heavy traffic

We now establish HTAO under the h-MaxWeight policy for a specifically chosen function h,
and under further restrictions on the network model.

Throughout this section we consider the homogeneous scheduling model (21) subject to
the following conventions. The load parameters defined in (22) are expressed,

ρi = λi/µi, 1 ≤ i ≤ !m,

where µi is the common mean of {Mj(t) : s(j) = i}, and λi is the ith component of C[I −
RT]−1α. It is assumed throughout this section that ρ1 = max1≤i≤! ρi, so that ρ• = ρ1. This
can be achieved by choice of indices. We let ξ ∈ Z!

+ denote the first column of the ! × !m
matrix [I − R]−1CT, so that ξTα = λ1.

Homogeneity implies that the random variables {Mj(t) : s(j) = 1} are all identical;
We let S1(t) denote their common value, and we let L1(t) = ξTA(t). The one-dimensional
workload process W (t) = 〈ξ, Q(t)〉 evolves as,

W (t + 1) = W (t) − S1(t + 1) + S1(t + 1)ι(t) + L1(t + 1), t ≥ 0, (65)

where ι(t) := 1 − [CU(t)]1.
The one-dimensional relaxation is defined on the same probability space with Q, and

evolves as a controlled random walk analogous to (65):

Ŵ (t + 1) = Ŵ (t) − S1(t + 1) + S1(t + 1)ι̂(t) + L1(t + 1), t ≥ 0. (66)

The idleness process {ι̂(t)} is assumed to be non-negative, and adapted to {Ŵ (t), S1(t), L1(t)}.
The relaxation is denoted Ŵ

∗
when controlled using the non-idling policy, ι̂

∗
(t) = 1{Ŵ ∗(t) ≥

1}. In this case we have (23), provided each process has the common initialization

Ŵ ∗(0) = W (0) = 〈ξ, Q(0)〉, which we assume henceforth.
For a convex cost function c : R!

+ → R+ we define the effective cost c : R+ → R+ as the
value of the convex program,

c(w) = min c(x)

s.t. ξTx = w, x ∈ R
!
+.

(67)

For each w ∈ R+ an effective state X ∗(w) is defined to be any vector x∗ ∈ R!
+ that achieves

the minimum in (67):

X ∗(w) = arg min
x∈R!

+

(
c(x) : ξTx = w

)
. (68)

It follows from the definitions that the following bound holds for all t:

c(Q(t)) ≥ c(W (t)) ≥ c(Ŵ ∗(t)). (69)

3.1 Starvation and relaxations

It is helpful to consider a workload relaxation to see how starvation arises under a myopic
policy.
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3.1.1 Linear cost function

If c(x) = cTx, x ∈ R!
+, then the effective state in a one-dimensional relaxation is given by

X ∗(w) =
( 1

ξi∗
1

i∗
)
w, w ∈ R+,

where the index i∗ is any solution to ci∗/ξi∗ = min1≤i≤!

(
ci/ξi

)
. The effective cost is given by

the linear function, c(w) = c(X ∗(w)) = (ci∗/ξi∗)w, w ∈ R+.
This underlines the conflict that arises frequently in network optimization: Optimization

of an idealized model dictates zero inventory at various stations, while in a more realistic
model, adopting a “zero-inventory policy” results in starvation of resources.

3.1.2 Quadratic cost function

If c : R!
+ → R+ is quadratic, of the form c(x) = 1

2xTDx, x ∈ R!
+ for a symmetric matrix D,

then the effective state is again linear in the workload value in any one-dimensional relaxation.
For the scheduling model considered in this section the workload vector ξ has non-negative

entries. Suppose that D−1 also has non-negative entries. In this case we have the explicit
expression,

X ∗(w) =
((

ξTD−1ξ
)−1

D−1ξ
)
w, w ∈ R+,

and the effective cost is the one-dimensional quadratic,

c(w) = 1
2

(
ξTD−1ξ

)−1
w2, w ∈ R+.

For example, if D > 0 is diagonal, and ξ has strictly positive entries, then the effective state
X ∗(w) has strictly positive entries for any w > 0. In conclusion, the conflict observed for linear
cost functions does not arise when using a quadratic function satisfying these conditions.

3.2 Logarithmic regret

We now construct a policy satisfying (78) with c a linear cost function. The policy is defined
as the h-MaxWeight policy for a specific function h.

We saw in Section 3.1.1 that the effective state x∗ = X ∗(w) can be constructed so that
x∗

i = 0 for all but one i ∈ {1, . . . , !}. By choice of indices we assume that x∗
i = 0 for i ≥ 2

and any w ∈ R+. Consequently, the effective cost is given by,

c(w) = c(X ∗(w)) =
c1

ξ1
w, w ∈ R+. (70)

We assume moreover that the solution to (67) is unique, which amounts to the following
strict bound,

ci

ξi
>

c1

ξ1
, i = 2, . . . , !. (71)

Theorem 2.3 implies the following formula for the steady-state cost for the relaxation,

η̂∗ = 1
2

σ2
•

µ1 − λ1

c1

ξ1
, (72)
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where σ2
• :=ρ•E[(S1(1)−L1(1))2]+(1−ρ•)E[(L1(1))2]. From (69) we evidentally have η̂∗ ≤ η∗.

To establish (24) we require a bound in the reverse direction.
We now introduce a family of network models, parameterized by a scalar κ ∈ [1,∞) that

represents load. It is assumed that, for some fixed κ0 ≥ 1, ρ̄ < 1 we have

ρ• := ρ1 = 1 − 1/κ for each κ ∈ [κ0,∞),

and ρi ≤ ρ̄ for each κ and i ≥ 2.
(73)

The one-dimensional workload process W is given in (65), where we suppress the dependency
of {Q,W ,S,L} on the parameter κ to simplify notation.

The fluid model for the one-dimensional workload process is expressed d+

dtw(t) = −(µ1 −
λ1) + ι(t) with ι(t) ≥ 0. Given the cost function c given in (70), the fluid value function is
given by,

Ĵ∗(w) = 1
2

c1

ξ1

w2

µ1
κ, w ≥ 0. (74)

The solution to Poisson’s equation (41) is the sum of Ĵ∗ and a linear function of w. We
take the function h0 used to define the h-MaxWeight policy as a different perturbation of Ĵ∗:
Fix a positive constant b > 0, and define

h0(x) = Ĵ∗(ξTx) + 1
2b

(
c(x) − c(ξTx)

)2
. (75)

We then take h(x) = h0(x̃), or

h(x) := Ĵ∗(w̃) + 1
2b

(
c(x̃) − c(w̃)

)2
, x ∈ R

!
+, (76)

where x̃ is the !-dimensional vector with components given in (16), and w̃ :=
∑

ξix̃i.
For each κ we denote by η = η(κ) the steady state cost under the policy for the CRW

model, and η̂∗ the optimal average cost for the one-dimensional relaxation. Applying (73),
the representation (72) becomes,

η̂∗ = 1
2

σ2
•

µ1

c1

ξ1
κ. (77)

Note that η and η̂∗ are each unbounded as the network load ρ• approaches unity, and η̂∗ is
of order κ. Hence (24) implies the bounds,

η∗ ≤ η ≤ η∗ + k∗ log(κ), κ ≥ κ0. (78)

Theorem 3.1. Suppose that the following hold for the parameterized family of CRW
scheduling models.

(i) The effective state is unique: Equation (71) holds.

(ii) The load parameters satisfy (73). Hence ρκ → ρ∞ as κ → ∞, where ρ∞1 = 1 and
ρ∞i < 1 for i ≥ 2.

(iii) The random variables {Aκ(t), Sκ
s (t) : t ≥ 1,κ ∈ [1,∞], s ≥ 1} are defined on a

common probability space, and are monotone in κ:

Sκ
s (t) ↓ S∞

s (t), Aκ(t) ↑ A∞(t), κ → ∞, a.s., t ≥ 1, s ∈ {1, . . . , !m}.
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(iv) For each κ ≥ 1 and each station s ∈ {1, . . . , !m} the distribution of Sκ
s (t) is

Bernoulli. The distribution of Aκ(t) is supported on Z!
+ and satisfies supκ E[‖Aκ(t)‖2] <

∞. The joint process (Aκ,Sκ) satisfies, for some ε > 0 independent of κ and s,

P{Sκ
s (t) = 1 and Aκ(t) = 0} ≥ ε. (79)

Then, there exists θ0 > 0 and b0 > 0 such that the following conclusions hold for the h-
MaxWeight policy with h defined in (76), with θ ≥ θ0 and b ≥ b0: There exists κ0 > 0 such
that the controlled network is ergodic, in the sense that it is 0-irreducible and (V3) holds, for
each κ ≥ κ0. Moreoever, the family of controlled networks satisfies the bound (78) for some
fixed k∗ < ∞. That is, the policy is heavy-traffic asymptotically optimal with logarithmic
regret.

The proof is based on the construction of a Lyapunov function V : Z!
+ → R+ satisfying

a refinement of (V3),

Ex[V (Q(1))] ≤ V (x) − c(x) + η̂∗ + E(x), x ∈ Z
!
+, (80)

where the error E has at most logarithmic growth,

E(x) = ke

(
log(κ + c(x)) + κ/(1 + (ξTx)2)

)
, x ∈ R

!
+, κ ≥ 1. (81)

This is achieved using the same steps used in Section 2.2 to establish stability of the h-
MaxWeight policy: First we obtain a bound on the term 〈∇h (x), v〉 appearing in (28). We
then decompose the term bh(x) into a bounded term, and a term whose mean is equal to η̂∗.

3.3 Proof of Theorem 3.1

Throughout this section we assume that the assumptions of Theorem 3.1 hold. We let E
denote the function of x and κ given in (81). The constant ke may differ in each appearance.

We first establish irreducibility:

Proposition 3.1. Under the assumptions of Theorem 3.1 the policy φMW is 0-irreducible
for each κ < ∞.

Proof. This follows from Proposition 2.2, together with convexity and monotonicity of the
function h.

Monotonicity implies that the h-MaxWeight policy is “weakly non-idling’: For any t,

!∑

i=1

U(t) ≥ 1 whenever Q(t) -= 0.

Combining this with (79) we can conclude that for some δ > 0, and any non-zero x ∈ X",

P
{
A service is completed at time t and A(t) = 0 | Q(t − 1) = x

}
≥ δ, t ≥ 1.

Since each customer in the network requires service at most ! times, it follows that P T (x, 0) ≥
δT for T = !|x|. This establishes 0-irreducibility.

Aperiodicity also follows from (79) since P (0, 0) = P{A(t) = 0} > 0. /0
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Recall that the proof of Theorem 1.1 was based on Lemmas 2.1 and 2.2. The following
two propositions are refinements of these results.

Proposition 3.2. Under the h-MaxWeight policy we have for some ε > 0, independent of
b and x,

〈∇h (x), vMW〉 ≤ −c(w) − ε
(
b|c(x) − c(w)| + ‖Mθ(x)ξ‖κw

)
+ E(x), (82)

where w = ξTx and vMW = BφMW(x) + α. /0

Proposition 3.3. Under the h-MaxWeight policy we have for some k2 < ∞, independent
of b, κ, and x,

Dh (x) ≤ 〈∇h (x), vMW〉 + η̂∗(x) + k2θ
−1

(
b|c(x) − c(w)| + ‖Mθ(x)ξ‖κw

)
+ E(x), (83)

where vMW = BφMW(x) + α and

η̂∗(x) := 1
2

κ

µ1

c1

ξ1
σ2
•(x), with σ2

•(x) := E[(ξT∆(t + 1))2 | Q(t) = x]

/0

We begin with the proof of Proposition 3.2. Note that,

c(x) − c(w) =
!∑

i=2

(
ci − (c1/ξ1)ξi

)
xi, (84)

which is non-negative by (71). That is, we have |c(x) − c(w)| = c(x) − c(w). To prove the
proposition we first apply Proposition 2.3 to obtain a representation for the gradient of h,

∇h (x) = ∇Ĵ∗(w̃)[I − Mθ]ξ + b(c(x̃) − c(w̃))[I − Mθ]
(
c − c1

ξ1
ξ
)
, (85)

with
∇Ĵ∗(w) =

c1

ξ1

w

µ1 − λ1
=

c1

ξ1

κ

µ1
w, w ≥ 0.

A representation for the drift easily follows:

Lemma 3.1. For any v ∈ V, x ∈ R!
+ we have,

〈∇h (x), v〉 = ∇Ĵ∗(w̃)〈ξ, v〉 − ∇Ĵ∗(w̃)
!∑

i=1

e−xi/θξivi

+ [c(x̃) − c(w̃)]
!∑

i=2

(1 − e−xi/θ)bivi.

(86)

with bi = b(ci − (c1/ξ1)ξi), i ≥ 2. /0
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Fix constants β+ > β− > 0, and define for r ≥ 0,

s−(r) = β− log(1 + r/β−), s+(r) = β+ log(1 + r/β+). (87)

It is assumed throughout that β− ≥ 3θ−1.
Similar to the proof of Lemma 2.1, to bound (86) we impose the following constraint on

the velocity vector v.

vi ≥ 0 if xi ≤ s−(ξTx) − β− log(|ξ|) and ξi > 0, (88)

where |ξ| :=
∑

ξi. The minimum of 〈∇h (x), v〉 over v satisfying (88) provides a bound under
the h-MaxWeight policy. The following two results imply that (88) is feasible for a policy
that is non-idling at Station 1.

Lemma 3.2. For each x ∈ R!
+ we have max{xi : ξi > 0} ≥ s−(ξTx) − β− log(|ξ|).

Proof. Letting x∞ = max{xi : ξi > 0}, we have ξTx ≤ x∞|ξ|, and hence by concavity of the
logarithm, with w = ξTx,

s−(w) = β− log(1 + w/β−) ≤ β− log(1 + x∞|ξ|/β−)

≤ β−
(
log(|ξ|) + (1 + x∞|ξ|/β− − |ξ|)/|ξ|

)
.

The right hand side is bounded above by β− log(|ξ|)+x∞ since |ξ| ≥ 1. This gives the desired
bound. /0

We now establish a set of feasible values for v.

Lemma 3.3. There exists κv ≥ 1 and εv > 0 such that for each κ ≥ κv we have

{
v : ‖v‖ ≤ εv and 〈ξ, v〉 ≥ −(µ1 − λ1)

}
⊂ V.

Proof. The velocity space Vκ is a polyhedron for each κ, and as κ → ∞ these sets converge
to a polyhedron whose interior is non-empty, with a single face meeting the origin given by
{ξTv = 0}. /0

Proof of Proposition 3.2. The drift obtained with any v ∈ V provides a bound on the drift ob-
tained using the h-MaxWeight policy. As in the proof of Lemma 2.1, we apply Proposition 2.4
to relax lattice constraints and boundary constraints in our construction of v.

We take v ∈ V of the specific form v = v∗ + v0 with v∗ = −(µ1 − λ1)ξ
−1
1 1

1 and v0

orthogonal to ξ so that ξTv = ξTv∗ = −(µ1 − λ1).
We fix ε0 > 0 and choose v0

i = −ε0 for each i satisfying ξi = 0. We take v0
i = 0 for all

but (at most) three indices satisfying ξi > 0. In Cases (ii) and (iii) below there are just two
non-null indices, denoted i* and i⊕, with v0

i% < 0 and v0
i⊕ > 0.

It is assumed that |v0
i | ≤ ε0 for each i. Lemma 3.3 implies that we can choose ε0 > 0

independent of κ so that any such v lies in Vκ for each κ.
To complete the specification of v we introduce the index sets,
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I⊕ = {i ≥ 1 : ξi > 0, xi ≤ s−(ξTx) − β− log(|ξ|)}
I* = {i ≥ 2 : ξi > 0, xi > s+(ξTx)}

The choice of v0 depends upon these sets as follows:

(i) If I⊕ = ∅ and I* = ∅ then v0
i = 0 for all i satisfying ξi > 0.

(ii) If I⊕ = ∅ and I* -= ∅ then we take i* ∈ I* arbitrary with v0
i%ξi% = −ε0, and

i⊕ = 1 with v0
i⊕ξi⊕ = ε0.

(iii) If I⊕ -= ∅ and I* = ∅ then we take

i⊕ ∈ arg min{xi : i ∈ I⊕} , i* = 1,

with v0
i⊕ξi⊕ = ε2

0 and v0
i%ξi% = −ε2

0.

(iv) If I⊕ -= ∅ and I* -= ∅ then

i⊕ ∈ arg min{xi : i ∈ I⊕} , i* ∈ arg max{xi : i ≥ 2, ξi > 0} ,

and we also take v0
1 > 0 with,

v0
i⊕ξi⊕ = ε2

0, v0
1ξ1 = ε0 − ε2

0, v0
i%ξi% = −ε0.

The added complexity in the second two cases is due to the positive drift induced by vi⊕ . By
imposing the constraint that this is of order ε2

0 rather than ε0 we can maintain a negative
overall drift.

This choice of v satisfies (88). Moreover, under the assumption that β− ≥ 3θ−1 we have
for some constant ke and all x,

∣∣∇Ĵ∗(w̃)e−xi/θξivi

∣∣ ≤ keκ(1 + w2)−1 ≤ E(x), i -∈ I⊕. (89)

If I⊕ is non-empty then by our choice of v we must have for some ε1 > 0,

−∇Ĵ∗(w̃)e−x⊕/θξ⊕v⊕ ≤ −ε1‖Mθ(x)ξ‖κw.

From Lemma 3.1 and (89) we obtain the bound,

〈∇h (x), v〉 ≤ −(µ1 − λ1)∇Ĵ∗(w̃) − ε1‖Mθ(x)ξ‖κw

+ [c(x̃) − c(w̃)]
!∑

i=2

(1 − e−xi/θ)bivi + E(x).

To complete the proof we argue that the following bound holds: For some ε2 > 0,

[c(x̃) − c(w̃)]
!∑

i=2

(1 − e−xi/θ)bivi ≤ −ε2b[c(x̃) − c(w̃)] + E(x). (90)
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It is here that we require the bound vi ≤ ε2
0 for each i ≥ 2, and the fact that at most one

value of vi is positive.
If xi > s+(ξTx) for some i ≥ 2 (not necessarily satisfying ξi > 0) then vi = −ε0 for some

i ≥ 2. In fact, with i− ∈ arg max{xi : i ≥ 2} we have vi− = −ε0, and from (84) we obtain
c(x) − c(w) ≤ |c|xi− . Consequently,

!∑

i=2

(1 − e−xi/θ)bivi ≤ −(bi−ε0 − bi⊕ε
2
0) + ε0bi−e−[c(x)−c(w)]/(|c|θ)

The bound (90) follows for ε0 > 0 sufficiently small: fix ε0 < mini,j≥2 bi/bj and set ε2 =
mini,j≥2(biε0 − bjε2

0)/b. Note that the positive term bi⊕ε
2
0 is absent in cases (i) or (ii), so that

we are considering the worst case in which I⊕ -= ∅.
If xi ≤ s+(ξTx) for each i ≥ 2 then it may be impossible to guarantee the negative drift

vi = −ε0 for any i ≥ 2. But this is irrelevant since in this case,

[c(x̃) − c(w̃)] ≤ E(x),

so that (90) follows trivially. /0

Proof of Proposition 3.3. We begin with a representation of the form (28) based on a second-
order Mean Value Theorem of the form (53). We write h0(x) = 1

2xTH0x, with

H0 =
κ

µ1

c1

ξ1
ξξT + b(c − (c1/ξ1)ξ)(c − (c1/ξ1)ξ)

T.

Based on this expression combined with the Mean Value Theorem we obtain,

Dh (x) = 〈∇h (x), v〉 + 1
2E

[
∆(t + 1)TH0∆(t + 1) | Q(t) = x

]

+ 1
2E

[
∆(t + 1)T

(
∇2h (Q̄) − H0

)
∆(t + 1) | Q(t) = x

]
.

(91)

We also have by definition of η̂∗(x),

E
[
∆(t+1)TH0∆(t+1) | Q(t) = x

]
= η̂∗(x)+ bE

[(
(c− (c1/ξ1)ξ)

T∆(t+1)
)2 | Q(t) = x

]
. (92)

We apply Proposition 2.3 to bound the final term in (91):

∇2h (x) − H0 = −[MθH0 + MθH0] + MθH0Mθ + θ−1diag (Mθ∇h0(x̃)). (93)

We have for any ∆ ∈ R!,

∆T
[
−[MθH0 + MθH0] + MθH0Mθ

]
∆

= κc1/(µ1ξ1)
[
−2(∆Tξ)(∆TMθξ) + (∆TMθξ)

2
]
+ O(1)

= κc1/(µ1ξ1)
[
−(∆TMθξ) + 2(∆TMθξ)

(
(∆TMθξ) − (∆Tξ)

)]
+ O(1)

≤ κc1/(µ1ξ1)
[
−(∆TMθξ) + 2‖∆‖2‖Mθξ‖‖(I − Mθ)ξ‖

]
+ O(1)

Applying the Mean Value Theorem as in the proof of Lemma 2.2 we obtain the crude bound,
‖(I − Mθ)ξ‖ ≤ θ−1κw, and hence for some k0 < ∞,
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−[MθH0 + MθH0] + MθH0Mθ ≤ k0(θ
−1‖Mθξ‖κw + 1)I

Also, for a possibly larger constant k0,

‖Mθ∇h0(x̃)‖ = ‖Mθ

(
κµ−1

1 c(w̃)ξ + b(c(x̃) − c(w̃))(c − (c1/ξ1)ξ)
)
‖

≤ k0
(
‖Mθξ‖κw + b|c(x̃) − c(w̃)|

)
.

Consequently, for some k0 < ∞,

∇2h (x) − H0 ≤ k0θ
−1

(
κ‖Mθξ‖w + b|c(x̃) − c(w̃)|

)
I + k0I.

This combined with (91) and (92) completes the proof. /0

Proof of Theorem 3.1. Following Proposition 3.2 and Proposition 3.3, the proof of the theo-
rem amounts to establishing the drift (80) for a function V derived from h. We define,

V (x) = h(x) + 1
2µ−1

(m2 − m2
L

µ − α

)
w , x ∈ Z

!
+,

where m2 :=E[(S1(1)−L1(1))2] and m2
LE[(L1(1))2]. That is, we are re-introducing the linear

term appearing in the solution to Poisson’s equation for the relaxation. It is easy to show
that for any policy,

E

[
1
2µ−1

(m2 − m2
L

µ − α

)(
W (t + 1) − W (t)

)
| Q(t) = x

]
= η̂∗ − η̂∗(x).

Hence the function V does satisfy (80).
This bound implies that (V3) holds, so that π(c) is finite for any finite κ. An application

of the Comparison Theorem gives,

π(c) ≤ η̂∗ + π(E).

From the form of E it follows that π(c) is bounded by a constant times κ. Also, by Jensen’s
inequality,

π(c) ≤ η̂∗ + ke log(κ + π(c)) + keκEπ[(1 + (ξTQ(t)))2)−1]

so that for a possibly larger constant,

π(c) ≤ η̂∗ + ke log(κ) + keκEπ[(1 + (ξTQ(t)))2)−1].

Moreover, applying (23) we obtain,

π(c) ≤ η̂∗ + ke log(κ) + keκE[(1 + (Ŵ ∗(t))2)−1],

where the expectation is taken for the steady-state relaxation. Lemma A.2 of [35] implies that

κE[(1 + (Ŵ ∗(t))2)−1] is uniformly bounded in κ, so this final bound completes the proof. /0
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4 Conclusions

The generalized MaxWeight policies proposed in this paper can be designed to capture all of
the desirable features observed in Tassiulus’ original policy. Depending upon the structure
of h, the policy can be designed to depend only on local information as in the standard
algorithm, or it can utilize more information if available.

A shortcoming of the perturbation technique used here is that the resulting policies
are guaranteed to be stable only for θ > 0 sufficiently large. It is likely that a universally
stabilizing policy is obtained by letting θ grow slowly with ‖x‖, say,

θ(x) = θ0 log(1 + ‖x‖), x ∈ R
!
+,

with θ0 > 0 arbitrary. Some of the elegance is then lost since h is no longer convex, so we
are considering alternate approaches.

The generalization of Theorem 3.1 to multiple bottlenecks is a significant open problem.
This is difficult because we do not have an explicit representation for the relative value
function for the relaxation, and we do not know the optimal policy when the effective cost is
not monotone.

Suppose that ĥ∗ : Rn
+ → R solves the average-cost optimality equations for the n-

dimensional relaxation, and consider the following generalization of (76),

h(x) := ĥ∗(w̃) + 1
2b[c(x̃) − c(w̃)]2, x ∈ R

!
+. (94)

This will depend upon κ in a parameterized model. The following conjecture is suggested:

Conjecture: Theorem 3.1 can be extended to the case where there are precisely n
bottlenecks as κ → ∞ based on the h-MaxWeight policy with h given in (94).

If true, then this provides a valuable tool for constructing an effective policy in a complex
but centralized network setting.

Analysis of the usual MaxWeight policy based on a workload relaxation of dimension
n ≥ 2 is contained in [36, Chapter 6]. Under general conditions the convex program that
defines the effective cost can be solved explicitly. Based on the geometry of the level sets of
the effective cost, a hedging technique is introduced to avoid excessive idleness of resources,
and hopefully mirror an average-cost optimal policy.

A final topic of current interest is to bridge this work with recent approaches to machine
learning. Given a parameterized family of functions {hα : α ∈ Rd}, we seek the value of
α such that the hα-MaxWeight policy has the best performance in this class. There are a
variety of methods to find an optimizer based on simulation [4, 46, 49, 12, 41]. It is hoped that
specialized algorithms can be constructed for networks based on the techniques introduced
here.
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