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Abstract—”THIS PAPER IS ELIGIBLE FOR THE STU-
DENT PAPER AWARD”.
Reliable transmission over a discrete-time memoryless channel
with a decoding metric that is not necessarily matched to the
channel or not optimal (mismatched decoding) is considered. We
address the question of comparing the performance of different
mismatched metrics. A geometrical interpretation of this problem
is presented, in particular, the very noisy case is shown to reduce
to a tractable geometrical projection problem, for which an
analytic solution is found.

I. INTRODUCTION

For a Discrete Memoryless Channel, in order to achieve the
largest rate given by the Shannon capacity, it is necessary to
use an optimal decoding rule. In [2],[8], the use of arbitrary
decoding rules, possibly suboptimal, are investigated. A mis-
matched decoding rule represents a realistic model for time-
varying channels, for which the transitions probabilities are
unknown to the receiver. Suboptimal decoding metrics also
appear when computational issues dictate a given decoding
metric. No matter what the motivation is, we refer to subop-
timal metric as mismatched metric.
In [2],[4],[8], coding theorems for mismatched DMC’s are

presented. “The random coding capacity” of mismatched de-
coders is known (and is shown to be a strict lower bound to the
general mismatched capacity, as examples of non-randomly
generated codebooks achieving higher rates have been found).
In this paper, we aim to give a geometrical picture of

mismatched decoding. We start by considering the general
case, expressing it as a projection problem with respect to the
I-projection (cf. [1],[3]) and then solve analytically the very
noisy case, showing how the I-projection problem maps to a
L2-projection problem with an appropriate inner product (i.e
an appropriate measure), leaving us with a clear geometrical
picture.

II. PROBLEM STATEMENT

Let X , Y be finite sets, PX ∈ M1(X ) (a probability
distribution on X ) and PY |X ∈ M1(Y|X ) . We consider a
DMC with input alphabet X , output alphabet Y , and transi-
tion probabilities PY |X . We generate a code book with M
codewords of length n, C(n) = {x1, . . . , xM}, drawn i.i.d.
according to Pn

X . We denote by PY , the induced marginal
distribution on Y , i.e. PY (y) =

∑

x∈X PY |X(y|x)PX(x).
Therefore, if a codeword, say x1, is transmitted and if y is
the received message, the joint distribution of (x1, y) is given
by PY |X"PX , which we will also denote by µJ , and the joint
distribution of (xi, y) for i #= 1 is given by PX × PY , which
we will also denote by µP . For any vector v in any alphabet,
we denote by Pv the empirical distribution function (or type)
of v.
Upon receiving y, the decoder looks for the elements xi

that maximizes a given function F (xi, y),

x̂ = arg max
1≤i≤M

F (xi, y).

If F (xi, y) = P{y|xi} or equivalently F (xi, y) =
1
n log P{y|xi}

P{y} , this is the usual ML decoding. Note that
1
n log P{y|xi}

P{y} = EPxi,y log µJ

µP
. If the receiver uses the ML

decoder with QY |X instead of PY |X , the objective function
becomes EPxi,y log

QY |X

QY
. We will consider decoding rule

depending only on the type Pxi,y of (xi, y), so that the
decoding rule can be expressed as F (P(xi,y)). We will be
interested in linear decoders, like the ML decoder, but instead
of having to compute the expectation of log µJ

µP
, we will

consider an arbitrary function F on X ×Y . The first goal is to
set a geometrical understanding of this problem, this will be
tackled in the next section. We then consider a set of functions
{fi}k

i=1 on X ×Y and look for the linear combination of these
functions F =

∑k
i=1 αifi, that will achieve the largest rate.

We will solve this problem in the very noisy case and give a



complete geometrical picture, which also helps understanding
the general problem.

III. INFORMATION GEOMETRIC FORMULATION
A. Review of Information Geometry
In RN , N ≥ 1, an hyper-plane is described by all points

x satisfying a set of 1 ≤ i ≤ N linear equations of the form
fT

i ·x = αi, with fi ∈ RN and αi ∈ R. We refer to the fi’s as
being the normal directions, since for any point x in the hyper-
plane, the new hyper-plane given by all points y satisfying
y = x+

∑

i λifi for some λi’s in R, is orthogonal (with respect
to the euclidean inner product). Moreover, the projection of a
point onto an hyper-plane belongs to the intersection with the
normal hyper-plane.
We now consider M1(X × Y) instead of RN . We denote

by Z an arbitrary alphabets (which can be X or X × Y).
Definition 1: Let k ≥ 1, i ∈ {1, . . . , k}, fi : Z → R (normal
directions) and αi ∈ R (positions). A linear family Lfi,αi in
M1(Z) is defined by

Lfi,αi = {P ∈ M1(Z)|∀1 ≤ i ≤ k, EP fi = αi}.

Definition 2: Let k ≥ 1, i ∈ {1, . . . , k}, fi : Z → R

(directions) and P0 ∈ M1(Z). An exponential family EP0,fi

in M1(Z) is defined by

EP0,fi = {P ∈ M1(Z)|∃λ ∈ R
k s.t. P = P0e

Pk
i=1 λifi/c(λ)},

where c(λ) =
∑

z∈Z P0(z)e
Pk

i=1 λifi(z).
The linear families will be pictured in a similar way as the
hyper-planes in the euclidean geometry, the fi’s can also be
interpreted as normal directions, not with respect to another
linear family, but with respect to an exponential family. Let
Lf,α be a linear family passing through a point P0 and EP0,f

(which we also denote by P (λ)) its “normal” exponential
family passing through P0. We then have similar properties
as in the euclidean setting, involving the divergence instead of
the euclidean norm. Namely, for any Q ∈ EP0,f , one has from
the I-projection property (cf. [3])

arg min
P∈Lf

D(P ||Q) = P0.

For P ∈ Lf,α, if one defines the one-dimensional linear family
P (t) = tP + (1 − t)P0 (which is clearly contained in Lf,α),
and if λ ∈ R, we then have

E∂t log P (t)∂λ log P (λ)|t=λ=0 = 0,

i.e. the Fisher inner product makes these two curves orthogonal
at P0 (cf. [1]). This result can be equivalently stated in terms
of the divergence, the function

Lf + P1 ,→ D(P ||Q) − D(P ||P1) − D(P1||Q)

defines a notion of angles (with positive or negative signs
characterizing obtuse or acute angles), it achieves 0 at P1 =
P0, corresponding to an analogue of the pythagorean theorem.
Thus, the divergence exhibits similarities with the squared
euclidean distance.

Fig. 1. Orthogonality property of the ML-decoder

B. Mismatch Geometry
We now consider the decoding rule finding the index i that

maximizes F (Pi). If x1 is sent and y is received, denoting
Pi = Pxi,y, an error occurs if the following event happens

E ≡ {∃i #= 1 s.t. F (Pi) > F (P1)}.

Note that if F is such that for any γ ∈ R (for which {F ≥ γ}
is not empty), µJ ∈ {F ≥ γ}, then for any γ, we have

E ⊂ {F (P1) < γ} ∪ ∪i#=1{F (Pi) ≥ γ},

and using union bound

P{E} ≤ P{F (P1) < γ} + min(MP{F (P2) ≥ γ}, 1), (1)

defining R = log M
n

and denoting by Er the error exponent,
we get from Sanov’s theorem,

Er ≥ min

[

inf
F (P1)<γ

D(P1||µJ ), | inf
F (P2)≥γ

D(P2||µP ) − R|+
]

. (2)

We now examine the information geometry of the log-
likelihood decoding rule. As we mentioned before, maximiz-
ing (over i) P{y|xi}, is the same as maximizing EPxi,y log µJ

µP
.

So in this case {P : F (P ) = γ} is the linear family
{P : EP L = γ}, where

L = log
µJ

µP
,

which is orthogonal to EµJ ,L = EµP ,L = µs
Jµ(1−s)

P /c(s).
Choosing now γ = Eµ+

J
L = D(µ+

J ||µP ), where µ+
J refers to a

arbitrarily close measure to µJ in oder to keep both exponent
in (2) positive, we get a capacity for the ML decoding rule
given by D(µJ ||µP ), as shown in figure 1. Note that it is
a particularity of the ML-decoder that the projection of µP

onto the linear family of orthogonal direction given by L, is
precisely µJ (see figure 1). As a general fact, if



Fig. 2. Decoder achieving full capacity

Fig. 3. Mismatched linear decoder

{F ≥ F (µJ )} ⊃ BD(µP , D(µJ ||µP )),

(where BD(µP , D(µJ ||µP ) = {P : D(P ||µP ) ≤
D(µJ ||µP ) } ) then, using the decoding rule argmini F (P̂i),
the capacity is D(µJ ||µP ) (cf. figure 2). This tells us in
particular that a decoding rule that declares i if Pi is the only
type within a small neighborhood around µJ (like a norm-
ball for some norm, e.g. L∞), will achieve capacity if the
neighborhood can be shrunk as much as desired around µJ ,
or equivalently when the radius of the ball gets as small as
desired. We now investigate the case in which F is given by a
linear family, which is not the log-likelihood, from now on, F
denotes the orthogonal direction of the linear family, i.e. the
decoding rule looks for i maximizing EPiF . Geometrically,
this means that the orthogonal direction is not given by L,
as pictured in 3. In that case, the previous general fact do
not apply. Previously, if a type appears typical, it has in
particular typical marginals, this is because in these cases the
dominant types tends to µJ . But now, this is no longer true.
However, the event ¯̄Pi ∈ BD(PY , ν) is a probability 1 event
(by Sanov’s theorem, by taking ν as small as desired, we can
make the probability of this event arbitrarily close to 1 in the
exponential scale), therefore we can include this event under
the probabilities in (1) and the error probability still tends to 0
under this condition, getting the following exponent and bound

on the capacity

C > inf
P : EP F≥EµJ

F

¯̄P=PY

D(P ||µP ).

In [8], this bound is shown to be achievable and also tight
when restricted to code books drawn from a random ensemble,
we will denote it by CLM . We now draw the geometrical
picture at CLM . First, observe that ¯̄P = PY is a linear family
given by

∀1 ≤ k ≤ |Y| − 1, EP δk = PY (k), (3)

where δk(i, j) = δX ,k(i, j) equals 1 if j = k and 0 otherwise.
Therefore CLM is the distance (KL-divergence) between µP

and its projection onto the linear family resulting of the
intersection between {P : EP F = EµJ } and (3), which lies
on the orthogonal exponential family. Thus, as the orthogonal
exponential family passing through µP is

µP exp(tF +
∑

i

λiδi)c(t, λ)

the projection is the result of following equations

EµP exp(tF+
P

i λiδi)c(t,λ)F = EµJ F (4)
∀j = 1, . . . , |Y| − 1,
∑

k

µP (k, j) exp(tF (k, j) + λj)c(t, λ) = PY (j). (5)

At that level of generality, the problem becomes a numerical
problem when trying to solve it. It is possible to express it as
a projection of L with respect to the Fisher inner product, but
does not change the problem in a more tractable form.

IV. VERY NOISY GEOMETRY
We recall that

L = log
µJ

µP
,

and we define Lj = L(·, j) for j ∈ Y . We have

µJ = µP
µJ

µP
= µP elog

µJ
µP = µP (1 + L) + o(L),

and
PX|Y =j = (1 + Lj)PX + o(Lj),

where o(f) for a function f means o(supi f(i)).
By very noisy, we mean that µJ and µP are close and PX|Y =j

and PX are close for each j, formally, one has to think
as a family of channels indexed by a parameter ε, such as
the exponential family connecting µJ and µP , and we are
interested in a first order taylor expansion (in ε) at µP (it is
important that the approximation is uniform in ε, i.e. we want
the Lj to tend uniformly to zero). In what follows, we skip the
parameter ε and directly treat the Lj’s as our small parameter,
claiming that all approximation we will make leave us with
an o(L) approximation.
Thus, we approximate µJ by µP (1 + L) requiring

EµP L = 0,



and PX|Y =j by (1 + Lj)PX , with

EPX Lj = 0, ∀j

We in turn approximate µP exp(tF +
∑

i λiδi)c(t, λ) by
µP (1 + tF +

∑

i λiδi), with EµP (tF +
∑

i λiδi) = 0. With
this, (4) becomes

EµP (1 + tF +
∑

i

λiδi)F = EµP (1 + L)F

and (5) becomes a

EµP δk(1 + tF +
∑

i

λiδi) = PY (k).

Note that for P ∈ M1(Z) and V ∈ M0(Z) (a signed measure
on Z integrating to 0),

∂2

∂θ2
D(P + θV ||P ) = EP

V 2

P 2
,

and we approximate the divergence in our problem by

D(µP + µP (tF +
∑

k

λkδk)) ≈
1

2
EµP (tF +

∑

k

λkδk)2.

In addition, we can always shift our function F to F̃ , by
subtracting EPX Fj to each component Fj , so that EpX F̃j = 0.
Geometrically this corresponds to projecting F in an orthog-
onal direction to the δk’s.
We now define

〈f, g〉 = EµP fg,

and our projection problem described in (4), (5), reduces to

t||F̃ ||2 = 〈F̃ , L〉. (6)

which gives

t =
〈F̃ , L〉

||F̃ ||2
. (7)

Since the divergence reduces to
1

2
t2||F̃ ||2,

we are left with the following expression for the capacity.
Proposition:
In the very noisy case, the mismatch capacity is given by

1

2

〈F̃ , L〉2

||F̃ ||2
.

Above expression is the norm squared of the projection of L
onto the linear family orthogonal to F̃ , with respect to the
µP -inner product. In figure 4, we summarize the several steps
we have performed:

• The very noisy assumptions implies that

〈L, δk〉 = 0

for any k. Thus L belongs to the inclined plane of the
figure.

• Projecting F to F̃ , restrict ourself to the intersec-
tion between the two planes. Then, projecting µP ,

Fig. 4. Mismatched capacity in the very noisy case

onto the intersection gives P ∗∗ which is clearly closer
(at a smaller divergence) to µP than P ∗, obtained
without the second marginal condition, i.e. achieving
infP : EP F≥EµJ

F D(P ||µP ).
• The very noisy setting allow us to deal with all previous
steps in L2(µJ ), projecting L onto F̃ .

• The fact that P ∗∗ and µJ are distinct shows the gap to
the non-mismatched capacity

We know from Cauchy-Schwartz

1

2

〈F̃ , L〉2

||F̃ ||2
≤

1

2
||L||2,

with equality only if F̃ = L. If F =
∑k

i=1 αifi we project L
onto

∑k
i=1 αif̃i, i.e.

α∗
i = 〈f̃

′

i , L〉,

where the f̃
′

i are a Gram-schmidt expansion of the f̃i’s
and the capacity is given by 1

2

∑

i α
∗
i
2. Therefore, one can

sequentially improve the performance of the decoder by adding
µP -orthogonal decoding functions.

V. EXTENSIONS
1. We have seen that the mismatched problem can be

formulated as a projection problem. In the general setting,
with respect to the Fisher inner product and in the very
noisy case with respect to the L2(µP ) inner-product. It
seems natural to study the “non-noisy” case, and see to what
geometry the problem is mapped. However, defining a very
“non-noisy” channel requires some thinking by its own. It
would be interesting to have the picture in both extreme
cases, to understand how the randomness of the channel
affects the decoding rules.

2. In a mismatched situation, the optimization over the input
distribution requires that both the channel and the mismatched
metric is known at the receiver. Assume now that the transmit-
ter only knows that the receiver will use a mismatch metric
belonging to a given neighborhood (thought to be a “small



set” in order to use similar techniques as in the very noisy
case ). For each input distribution, the transmitter can identify
which mismatch direction is worse within this neighborhood.
One can then find the input distribution maximizing the
worse mismatched capacity, ensuring to achieve the largest
achievable rate (even if the decoder uses the worse mismatch
metric).
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