
Polynomial Complexity Algorithms for Full
Utilization of Multi-hop Wireless Networks

Atilla Eryilmaz, Asuman Ozdaglar and Eytan Modiano
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology
Cambridge, MA, 02139

Emails: {eryilmaz, asuman, modiano}@mit.edu

Abstract— In this paper, we propose and study a general
framework that allows the development of distributed mecha-
nisms to achieve full utilization of multi-hop wireless networks. In
particular, we develop a generic randomized routing, scheduling
and flow control scheme that is applicable to a large class
of interference models. We prove that any algorithm which
satisfies the conditions of our generic scheme maximizes network
throughput and utilization.
Then, we focus on a specific interference model, namely the

two-hop interference model, and develop distributed algorithms
with polynomial communication and computation complexity.
This is an important result given that earlier throughput-optimal
algorithms developed for such a model relies on the solution
to an NP-hard problem. To the best of our knowledge, this is
the first polynomial complexity algorithm that guarantees full
utilization in multi-hop wireless networks. We further show that
our algorithmic approach enables us to efficiently approximate
the capacity region of a multi-hop wireless network.

I. INTRODUCTION

There has been considerable recent interest in develop-
ing network protocols to achieve the multiple objectives
of throughput maximization and fair allocation of resources
among competing users. Much of the work in wireless com-
munication networks has focused on centralized control and
has developed throughput-optimal policies ([26], [19], [10]).
However, these policies do not lend themselves to distributed
implementation, which is essential in practice. In this paper,
we develop a class of randomized routing, scheduling and flow
control algorithms that achieve throughput-optimal and fair
resource allocations that can be implemented in a distributed
manner with polynomial communication and computation
complexity.
In their seminal work, Tassiulas and Ephremides developed

a joint routing-scheduling algorithm that stabilizes the network
whenever the arrival rates are within the stability (capacity)
region. In [25], Tassiulas showed that randomized algorithms
can be used to achieve maximum throughput in input queued
switches with linear computational complexity. Other recent
research, for example, [1], [22], [19], [10], have contributed
to the analysis of centralized throughput optimal policies in
wireless networks.
This paper contributes to the study of resource allocation

in multi-hop wireless networks in a number of fundamental
ways.

First, we provide simple randomized scheduling-routing
schemes that achieves maximum throughput in multi-hop wire-
less networks. The simplicity of our proposed scheme suggests
efficient implementation of throughput-optimal policies.
Second, we propose a cross-layer mechanism combining our

routing-scheduling algorithm with a decentralized congestion
controller for elastic traffic. The key difference between elastic
and inelastic traffic stems from the fact that in the former
case the mean arrival rates of flows can be controlled in
response to delays and congestion, while in the latter case, the
arrival rates are fixed. We model elastic traffic using the utility-
maximization framework introduced by Kelly et al. [12], [13]
and further improved in subsequent works [16], [29], [23].
In this context our proposed cross-layer mechanism not only
maximizes throughput but also asymptotically achieves a fair
division of network resources among flows.
Third, for the two-hop interference model1 (THIM), we

show that our cross-layer mechanism can be implemented via
a distributed algorithmic approach. This approach involves
the operation of two sequential algorithms. A novel feature
of these algorithms is their operation on an appropriately
constructed conflict graph. The use of the conflict graph leads
to a partitioning of the network, whereby the decisions can be
made independently in different partitions. Moreover, the oper-
ations on the conflict graph can be mapped into network level
operations using the special structure of the problem. These
distributed algorithms not only achieve throughput-optimal
and fair allocations, but also have polynomial communication
and computation complexity.
Finally, we demonstrate that our policy enables an algo-

rithmic method of estimating the stability region of multi-
hop wireless networks. This suggests a novel approach to
stability region characterization, which is a very difficult task
in general.
Our paper is related to recent work combining flow control

with routing and scheduling, including [14], [24], [8], [18],
[9]. While these papers also propose algorithms achieving
fair and throughput-optimal allocations, the routing-scheduling
component of these algorithms are based on the centralized
control approach of [26], and cannot be implemented in a dis-
1In the THIM, two links interfere if they share a node or if there is a link

that connects any of the end nodes of the two links. This interference model
prevents real world issues such as the hidden terminal problem (see [20]).

tributed manner in wireless networks. Moreover, for the two-
hop interference model, the centralized optimization involved
in the operation of these algorithms is NP-hard, which further
limits their practical implementation.
Other related works include [15], [27], which develop

distributed algorithms that guarantee 50% utilization of the
stability region for node-exclusive-spectrum-sharing (NESS)
interference model2. While distributed implementation of these
algorithms is possible, this comes at the cost of sacrificing
a significant portion of the capacity of the network (see,
for example, [4], [3]). As more general interference models
are considered, even more of the capacity of the network
needs to be sacrificed for distributed implementation (e.g.,
[28], [5]). For example, in a two-hop interference model
with the grid topology, distributed implementation can only
guarantee 12.5% of the capacity of the network. In recent
work, a randomized approach similar to that in [25] has been
used to develop a distributed scheduler with no flow control
for networks restricted to single-hop communication, NESS
interference model, and Bernoulli arrival processes [17].
To the best of our knowledge, this is the first paper that pro-

vides a general class of randomized cross-layer mechanisms
for multi-hop wireless networks that can be implemented in a
distributed manner for the two-hop interference model while
still achieving throughput-optimal and fair allocations.
The paper is organized as follows. In Section II, we

describe the system model. In Section III, we describe a
generic randomized scheme for scheduling and routing, and
prove its throughput-optimality. In Section IV, we introduce a
congestion control mechanism for elastic traffic and establishes
its fairness properties. In Section V, we design and analyze
distributed algorithms for the two-hop interference model.
Finally, in Section VI we provide simulation results.

II. SYSTEM MODEL

Consider a wireless network that is represented by an
undirected graph, G = (N ,L), which has a node set N
(with cardinality N), a link set L (with cardinality L), and
|F| source-destination node pairs {s1, t1}, . . . , {s|F|, t|F|}.
We refer to a source-destination pair {sf , tf} as a flow,
denoted by f , and denote the set of flows by F . Given a
flow f , we use the notation s(f) and d(f) to denote the
source and destination nodes of flow f . We let {xf [t]} denote
the arrival process for flow f , i.e., xf [t] is the number of
packets that arrive at node s(f) in slot t. We use the notation
λf [t] to denote the mean arrival rate of flow f in slot t,
i.e., λf [t] = E[xf [t]]. Then, the mean arrival rate of flow
f is defined as λf = limT→∞

1
T

∑T−1
t=0 λf [t] whenever it

exists. We also use the notation S(n, d) to denote the set
of flows with source node n and destination node d, i.e.,
S(n, d) ! {f ∈ F : s(f) = n, d(f) = d}. We assume a time
slotted system with synchronized nodes, where each slot is just
long enough to accommodate a single packet transmission.

2In NESS, each feasible allocation consists of links that do not share a
node, i.e. each feasible allocation is a matching.

At each node, a buffer (queue) is maintained for each
destination. We let qn,d[t] denote the length of the queue at
node n destined for node d at the beginning of slot t.
Definition 1 (Stability): A given queue is called stable if

E[qn,d[∞]] < ∞, where qn,d[∞] denotes the random variable
with distribution given by the steady-state distribution of
{qn,d[t]}. The network is stable if all queues are stable; and
unstable otherwise.
We consider a general interference model formulation speci-

fied by a set of pairs of links that interfere with each other, i.e.,
we say that two links interfere if their concurrent transmissions
collide. We assume that if two interfering links are activated in
a slot, both transmissions fail. Note that this includes a large
class of graph-theoretic interference models considered in the
scheduling literature (e.g. NESS [21], [15], [27], [4], or THIM
[2], [28], [5]).
We use π =

{
π(n,m)

}
(n,m)∈L to denote a link allocation

vector (or schedule), and Π to denote the set of feasible allo-
cations where a feasible allocation is a set of links in which no
two links interfere with each other. We introduce the notation
πd

(n,m) to distinguish packets with different destinations: at
any given slot t, πd

(n,m)[t] ∈ {0, 1} is 1 if link (n,m) serves a
packet destined for node d in that slot, and 0 otherwise. Notice
that we must have π(n,m)[t] =

∑
d∈N πd

(n,m)[t] for all t. For
each link (n,m), πd

(n,m)[t] can be 1 at most for a single d
since at most a single packet can be served over a link within
a slot3. We can write the evolution of a particular queue, say
qn,d, when n #= d as

qn,d[t + 1] = qn,d[t]− πd
out(n)[t] +

∑

f∈S(n,d)

xf [t] + πd
into(n)[t],

where πd
into(n)[t] ! ∑

{k:(k,n)∈L} πd
(k,n)[t] is a shorthand for

the number of packets entering node n that are destined for
node d. Similarly, πd

out(n)[t] is the number of packets leaving
node n and are destined for node d. When, n = d, we set
qd,d[t] = 0, since the packets have reached their destination.
Definition 2 (Capacity (Stability) Region): Let

G = (N ,L) be a given network and Π be the set of
feasible allocations. The capacity (or stability) region Λ of
the network is given by the set of vectors r = (rf)f∈F for
which there exists πd(f)

(n,m) ≥ 0, for all (n,m) ∈ L and f ∈ F ,
such that both the flow conservation constraints at the nodes
and the feasibility constraints are satisfied, as given below:
(C1) For all n ∈ N and f ∈ F , we have4

rf1s(f)=n +
∑

k:(k,n)∈L

πd(f)
(k,n) =

∑

m:(n,m)∈L

πd(f)
(n,m),

(C2)
[
π(n,m)

]
(n,m)∈L ∈ Conv(Π). 5

3Note that it is sufficient to restrict our attention to policies that sets
πd
(n,m)[t] to zero whenever qn,d[t] = 0, for all (n, m) ∈ L. Any other
policy that sets πd

(n,m)[t] = 1 when qn,d[t] = 0 can be replaced by another
policy with πd

(n,m)[t] = 0 without affecting the evolution of the queues.
4We use 1A as the indicator function of event A.
5Conv(A) denotes the convex hull of set A, which is the smallest convex

set that includes A. The convex hull is included due to the possibility of
timesharing between feasible allocations.

It is shown in [26], [19] that Λ is the set of mean arrival rates
for which there exists a policy that stabilizes the network.

III. THROUGHPUT-OPTIMALITY
In this section, we consider inelastic flows (or traffic), where

the mean arrival rate of flow f is constant over time, i.e.,
λf [t] = λf . We further assume that for all f ∈ F , the arrival
process {xf [t]} is independent and identically distributed for
all t with finite first and second moments6. We provide simple
routing-scheduling mechanisms that can support any mean
arrival rate in the capacity region without violating stability
(such mechanisms are said to be throughput-optimal [26], [22],
[19], [8]). In earlier work [25], Tassiulas used randomized
schemes to provide a low complexity stabilizing algorithm for
switches using a centralized controller. In this section, we will
extend the use of randomized throughput-optimal schemes for
multi-hop networks with general interference models. Later
on, we will show that the use of randomized schemes lends
itself to distributed implementation for specific interference
models. We first introduce the following notation:

w(n,m)[t] = w(m,n)[t] ! max
d

|qn,d[t]− qm,d[t]| . (1)

The scalar w(n,m)[t] is referred to as the maximum differential
backlog (or the weight) of link (n,m) and can be interpreted
as a measure of the importance of the link7, and we use dnm

to denote the commodity which maximizes the expression in
(1) for link (n,m). Note that the weight of a link is zero if
both of its end nodes contain the same number of packets to
be delivered to the same destinations. Consider the following
allocation vector !

πw [t] that satisfies
!
πw [t] ∈ arg max

π∈Π

∑

l∈L
wl[t]πl ≡ arg max

π∈Π
(w[t] · π). (2)

This allocation rule is called the back-pressure policy. Once
the !

πw is determined according to (2), only commodity dnm

is served over link (n,m) at the rate allocated by the back-
pressure policy.
The purpose of this policy is to equalize the queue-lengths

of neighboring nodes. Such a policy is throughput-optimal,
basically because it dynamically reacts to the build up of
backlog at any queue and works to balance the queue oc-
cupancy levels. This dynamic nature of the algorithm allows
its implementation even when the topology of the network
changes slowly over time as in mobile networks. Also, notice
that the policy’s implementation does not require the knowl-
edge of the stability region, Λ or the statistics of the arrival
processes. However, the policy requires a centralized controller
that knows w[t] at every time-slot, performs the optimization
in (2), and then communicates the allocation vector !

πw [t]
instantly to all the nodes of the network. These requirements

6This assumption is not critical in the subsequent analysis. It can be shown
that the same results hold for processes with mild ergodicity properties (see
[10]).
7The | · | in the formulation is different from the ones in the literature due

to the assumption of undirected links here.

make the implementation of this algorithm impractical for the
multi-hop wireless network scenario.
In this paper, we adopt a different approach and use a

generic randomized scheme (GRS) for scheduling and routing,
which, instead of the back-pressure policy, randomly picks any
feasible allocation π̃[t] ∈ Π, at every time slot, such that

P (π̃[t] =
!
πw [t]) ≥ δ, for all w[t] and t, (3)

for some δ > 0. This condition ensures that there is a positive
probability for the randomized algorithm to obtain the back-
pressure policy. Once the allocation π̃[t] is picked, the actual
allocation is updated according to the following evolution.

π[t + 1] =
{

π[t] if w[t] · π[t] ≥ w[t] · π̃[t]
π̃[t] otherwise (4)

Thus, the algorithm updates its allocation vector only if the
sum of the link weights of the new allocation over all links
exceeds that of the old allocation. The above randomized
algorithm was introduced in [25] in the context of switches,
where there exists a centralized scheduler. A similar approach
has been used in developing a distributed implementation
for networks restricted to single-hop communication with
matching constraints and Bernoulli arrival processes [17]. As
we will prove shortly, it turns out that the two conditions (3)
and (4) are sufficient to achieve throughput-optimality in a
more general setting.
We next present our main result, which establishes that the

two conditions (3) and (4) are sufficient to achieve throughput-
optimality in a multi-hop network for the general interference
model introduced in Section II. In Section V, we show
that picking a feasible allocation and comparing the weight
information can be done in a decentralized manner for the
two-hop interference model.
Theorem 1: Assume that the mean arrival rate vector λ =

(λf)f∈F is in the interior of Λ, then for any GRS satisfying
(3) and (4), the network is stable.

Proof: The proof is based on proving the negative drift
condition of an appropriate Lyapunov function. The details,
omitted due to length considerations, are available in [7].
Theorem 1 states that under mild conditions, if a randomized
scheduler can be found that satisfies (3), and the schedule can
be updated as in (4), then the network will be stable for any
arrival process with mean arrival rate in the interior of the
capacity region.

IV. CONGESTION CONTROL

In the previous section, we proved the throughput optimality
of a randomized scheme provided that the mean arrival rate
vector is fixed over time and lies in the interior of the capacity
region. In general, the capacity region of a given network is
not known and difficult to compute. For a given mean arrival
rate vector, the system, while being stable, may be significantly
underutilized. Therefore, it is desirable to introduce adaptive
control mechanisms for changing the mean arrival rates of
the flows over time. Flows with variable mean arrival rates is

commonly referred to as the elastic flows (or traffic) in the
literature.
We model elastic traffic using the “utility maximization”

framework of economics. We associate a utility function for
each flow f , Uf (·), over the mean arrival rates, i.e., Uf (λf)
is a measure of the utility gained by flow f for the mean
arrival rate λf . We assume that the function Uf is concave
and non-decreasing for all f .
We next define a fair allocation. A mean arrival rate vector

λ∗ is referred to as a fair allocation if it is an optimal solution
of the problem:

λ∗ ∈ arg max
λ∈Λ

∑

f∈F
Uf (λf). (5)

Hence, a fair allocation is a mean arrival rate vector that
maximizes the aggregate utility over all flows in the network.
It is known that by defining Uf (·) appropriately, different
fairness criteria of interest, such as proportional or max-min
fairness, can be achieved ([12], [13], [16], [23], [8], [18], [14]).
We next introduce a congestion control mechanism that

operates in parallel with the scheduling and routing algorithm
of Section III, and asymptotically achieves the fair allocation.
We refer to this mechanism as the Dual Congestion Control
mechanism in view of its relation to iterative gradient-based
optimization algorithms. Variations of this mechanism are
studied recently in the literature [8], [18], [15], [24]. Common
to all these mechanisms is the fact that the controller adapts
the number of packets generated by flow f at each time slot t
in response to the congestion level of the network, where the
queue-length information is used as a measure of congestion.
DUAL CONGESTION CONTROL MECHANISM: Assume that
every flow has access to its entry point queue-length infor-
mation, i.e. flow f knows qs(f),d(f)[t] for all t. Then, at the
beginning of each time slot t, flow f generates xf [t] packets
satisfying

xf [t] = min
{

U ′−1
f

(
qs(f),d(f)[t]

K

)
,M

}
, (6)

where M and K are positive scalars. '
In the algorithm, the entry point queue-length of each flow is

used as the measure of the congestion that the flow observes.
Since Uf (·) is non-decreasing and concave, the flow rate is
inversely related to the buffer occupancy level. Hence, the flow
rate is adjusted to avoid too much congestion, and also to avoid
underutilization of the network. The parameter M is included
to prevent the flow rate from diverging to infinity when the
buffer occupancies tend to zero.
The dual congestion controller mechanism is easy to imple-

ment at each source because it only requires the queue-length
of the buffer at the source. This is in contrast to several earlier
mechanisms that require the price information of all the links
on the route of that flow [13], [16], [23]. Also, since each
source only needs to know its own utility function, the flow
control mechanism can operate in a completely decentralized
fashion. We assume that the randomized routing-scheduling
algorithm described in Section III is used along with the

Dual Congestion Controller. The implementations of the two
algorithms are performed at the same time scale (e.g. in a
slot-by-slot basis).
The next theorem establishes that the proposed cross-layer

mechanism guarantees stability and achieves fair allocation
with arbitrary degree of accuracy. It has been shown in earlier
works [18], [8], [15], [24] that a similar result holds in the
case of a centralized scheduler. Below, we state that it holds
despite the imperfect nature of the randomized algorithm.
Theorem 2: For appropriately chosen finite constants,

C1, C2, we have
∑

n∈N

∑

d∈N
qn,d ≤ C1K (7)

∑

f∈F
Uf (x̄f) ≥

∑

f∈F
Uf (x!

f)− C2

K
(8)

where x̄f ! lim
T→∞

1
T

T−1∑

t=0

E[xf [t]], and similarly for qn,d.

Proof: The proof is omitted due to length considerations
and can be found in [7].
Note that by choosing K sufficiently large, fair allocation
can be achieved due to (8), while stability of the queues are
guaranteed due to (7).
We note that the results of Theorem 2 continue to hold

(with larger C1, C2) even if the allocation vectors are updated
periodically in stages that are longer than one slot. This is an
important observation which we will exploit in the algorithm
design of Section V.
Moreover, we remark that using the above joint scheduling-

flow control mechanism, it is possible to approximate the
stability region of complicated traffic and network scenarios.
In particular, by developing polynomial complexity algorithms
that satisfy the conditions of Theorem 1 and by modifying the
K parameter, one can find a highly accurate approximation
to the capacity region, which is otherwise very difficult to
characterize or compute. We will illustrate this approach
through an example in Section VI.

V. ALGORITHM DESIGN
In Sections III and IV, we established the throughput-

optimality and fairness properties of a cross-layer mechanism
that can be applied to a large class of interference models.
In this section, we focus on the two-hop interference model
(THIM) and outline a distributed low-complexity algorithmic
approach for performing the tasks outlined in the generic
randomized scheme as described in Section III.
This approach involves the sequential operation of two

algorithms, which we refer to as PICK and COMPARE: The
PICK algorithm is a randomized, distributed algorithm that
yields a feasible schedule in finite time. The COMPARE
algorithm compares the total weights of the old schedule
with the new schedule in a distributed manner. An important
feature of the COMPARE algorithm is the use of the conflict
graph of the two schedules. On the conflict graph, a spanning
tree can be constructed in a distributed manner and used for

comparison of the weights of the two schedules in polynomial
time. The conflict graph enables a natural partitioning of the
network, whereby decisions can be made independently in
different partitions in a distributed manner. As we will show,
the operations on the conflict graph can be mapped to the
actual network operations owing to the special structure of
the problem.
Each implementation of PICK and COMPARE together with

concurrent data transmissions is referred to as a stage. The
schedule used for packet transmissions is updated at the
beginning of each stage. Throughout a stage, packet transmis-
sions are performed according to the schedule updated at the
beginning of that stage. In parallel with the packet transmis-
sions, PICK and COMPARE algorithms are implemented. Since
the same medium is shared, the data packet transmissions
can collide with the control messages generated by these
algorithms. To prevent such collisions, time is divided into
two intervals, namely the control signalling interval (CSI)
during which control messages are locally communicated,
and the data transmission interval (DTI) during which data
packets are transferred (see Figure 1). Notice that both PICK
and COMPARE algorithms operate during CSI, while queue-
lengths are updated during DTI. It is assumed that all the
nodes are synchronized to the same CSI/DTI division of time.
This assumption can be relaxed by adding a buffer interval
between CSI and DTI to accommodate propagation delays.
Alternatively, the control signalling can be performed over
an orthogonal channel through frequency division. Finally,
we assume that each transceiver can perform carrier sensing
during transmission without the need to decode its reception.

CSI DTICSI DTI

time
...

Stage-

CSI DTI CSI DTI

π

i

is updated for Stage-(i+1)is updated for Stage-i π

Fig. 1. Division of time into data transmission and control signalling
intervals.

It is important to note that in our algorithm the overhead
introduced by the control signalling can be made arbitrarily
small by increasing the length of a stage to a high enough
value. This fact follows from the fixed amount of control mes-
sages required by our algorithm per stage. Thus, the number
of control messages versus the data messages in a stage can
be made negligible by increasing the stage duration. This will
naturally result in slower convergence, but the stability and
fairness results of Theorems 1 and 2 will continue to hold.
We assume that each node has a unique ID number picked

from a totally ordered set. Let ID(n) denote the ID number
of node n. Then, unique ID numbers can be assigned to links,
denoted by ID(n,m) = ID(m,n) for link (n, m). This
assumption is essential for each node (and link) to identify
its neighboring nodes (and links), and will be used in the
distributed implementation of our algorithms.

A. PICK Algorithm
In this section, we present a distributed algorithm that

randomly picks a feasible allocation with the property that
any feasible allocation has a positive probability of being
chosen. In the description of the algorithm, when we say a
node withdraws, we mean that the node stops its search for a
feasible link during the current stage, but continues to listen
other transmissions. The algorithm makes sure that each node
has a positive probability of attempting transmission at the
beginning of the algorithm. The idea is to send Ready-to-Send
(RTS) and Clear-to-Send (CTS) packets including the ID
numbers of the nodes in order to create a feasible allocation.
By appending ID numbers to the RTS/CTS packets, the
algorithm enables each node to have a list of those links
in its local neighborhood that are picked by the algorithm.
PICK: At every node n ∈ N perform the following steps:
(A1) In step 1, with probability pn ∈ [α, 1) for some
α ∈ (0, 1), n transmits a (RTS) message.
(A1a) If n senses another transmission during its (RTS)
transmission, it withdraws.
(A2a) If n does not sense another transmission, in step 2, it
chooses one of its neighbors, say m, randomly with equal
probabilities, and transmits (RTS, ID(m)).
(A2b) If m observes a collision, it withdraws.
(A3a) If m gets n’s message, in step 3, it sends back a (CTS)
message.
(A3b) If m senses another transmission during its (CTS)
transmission, it withdraws.
(A3c) If n observes an idle, it withdraws.
(A4a) If m does not sense another transmission during its
(CTS) transmission, in step 4, it transmits (CTS, ID(n,m)).
(A4b) If n does not receive m’s response, it withdraws.
(A5) In step 5, n transmits (CTS, ID(n,m)), and the link
between n and m is activated; link (n,m) is added to π̃. '
The algorithm assures between steps (A1) and (A2a), that

no two transmitters are neighboring each other; at (A2b), that
no transmitter is a neighbor to a receiver; between (A3a) and
(A4a), that no two receivers are neighbors. Finally, during
(A4a) and (A5), the picked link is announced to the neighbors
of the receiver and the transmitter, respectively.
Notice that the algorithm need not result in a maximal

feasible allocation8 at its termination. This does not influence
the results of Theorems 1 and 2, but will have an effect
on the rate of convergence of the algorithm. With a simple
modification, the above algorithm can be extended to obtain
a maximal feasible allocation (see [7] for an example) and
hence better convergence properties.
Proposition 1: The above PICK algorithm satisfies
(i) The resulting π̃ is a feasible allocation.
(ii) It takes at most 5 transmissions per node to terminate.
(iii) The probability of picking any feasible allocation is

at least (α/D)N > 0, where D is the maximum degree9 of

8A maximal feasible allocation is a set of links to which no new link that
does not interfere with any of the existing links can be added.
9deg(n) ! |{m ∈ N : (n, m) ∈ L, or (m, n) ∈ L}|.

G. In particular, since !
πw [t] is a feasible schedule, we have

P(π̃[t] =
!
πw [t]) ≥ (α/D)N > 0.

(iv) At the termination, for any link (n, m) ∈ L, all the
neighbors of n and m are aware of (n,m)’s state, i.e., know
whether (n,m) is in π̃ or not.

Proof: The proof is omitted due to space limitations and
is available in [7].
We note that this algorithm does not depend on the queue-
lengths, which greatly simplifies its implementation, because
no queue-length information exchange is necessary between
neighboring nodes. Further, due to part (iii), the best allocation
must also have a positive probability. This fact together with
parts (i)-(iii) prove that the algorithm is actually sufficient for
Theorem 1 to hold. At the end of PICK, π̃ gives a feasible
allocation, that is known only locally. In particular, due to
part (iv) of Proposition 1, every node knows those links of its
neighbors that are in π̃.

B. COMPARE Algorithm

In this section, we propose and analyze a distributed al-
gorithm that compares the total weight associated with two
feasible schedules, π[t] and π̃[t], with local control signal
transmissions, and choose the one with the larger weight as
the schedule to be used during the next stage. In the following,
we will omit the time index for ease of presentation.
The algorithm relies on constructing the conflict graph

associated with π and π̃ which contains information about
interfering links in the two schedules. The conflict graph,
G′(π, π̃) = (N ′,L′), of π and π̃ can be generated as follows10:
Each link l in π ∪ π̃ corresponds to a node in the conflict
graph, and if links l1 ∈ π and l2 ∈ π̃ interfere with each
other, an edge is drawn between the nodes corresponding to
l1 and l2 in the conflict graph. Note that, since both π and
π̃ are feasible schedules, no two links in the same schedule
(π or π̃) can interfere with each other, i.e., there is no edge
between two nodes of the same schedule in G′. Every node in
G′ can compute its own weight [as defined in (1)], and has a
list of its neighbors in G′ by part (iv) of Proposition 1. We will
develop the algorithms using the conflict graph G′ and show
at the end of this section that the special structure enables us
to map the operations to the graph G.
Our COMPARE Algorithm is composed of two procedures

that are implemented consecutively: FIND SPANNING TREE
and COMMUNICATE & DECIDE. The FIND SPANNING TREE
procedure finds a spanning tree for each connected component
of G′ in a distributed fashion. Then, the COMMUNICATE &
DECIDE procedure exploits the constructed tree structure to
communicate and compare the weights of the two schedules
in a distributed manner.
To illustrate the definitions and operation of the algorithms

we consider the grid network depicted in Figure 2. In this
network, nodes are located on the corner points of a grid, and
each interior node has four links incident to it. To demonstrate

10We use N ′, L′ to denote the cardinalities of N ′,L′. Also, we will refer
to G′(π, π̃) simply as G′ for convenience.

Fig. 2. 8x10 grid network example with two feasible schedules indicated
by solid and dashed bold links. The conflict graph decomposes into 6
disconnected components.

the construction of the conflict graph, suppose we are given
two feasible schedules, π and π̃. In the figure, solid bold links
belong to schedule π, while dashed bold links are in π̃.We use
dash-dotted thin lines to connect the links of the two schedules
that interfere with each other. In general, it is not necessary
that the conflict graph be connected. For example, in Figure 2,
we observe six disconnected components. The conflict graph
corresponding to the largest connected component is given in
Figure 3, where links in π are drawn as circular dots, while
links in π̃ are drawn as square dots.
Remark 1: Disconnected components of the conflict graph

can decide on which schedule to use, independent of each
other. This is possible because by construction of the conflict
graph the resulting schedule is guaranteed to be feasible even
if the choices of two disconnected components are different.
This decomposition contributes to the distributed nature of
the algorithm. Namely, the size of the graph within which
the comparison is to be performed is likely to be reduced.
Notice that with this approach, the chosen schedule may
be a combination of the two candidate schedules, π and π̃,
because different connected components may prefer different
schedules. This merging operation will result in a schedule
that is better than both π and π̃.
Based on this remark, henceforth our algorithm will focus

on the decision of a single connected component.
1) FIND SPANNING TREE Procedure: The object of the

FIND SPANNING TREE procedure is to find, in a distributed
fashion, a spanning tree for each of the connected components
in the conflict graph. In our model, every node in the conflict
graph G′ corresponds to an undirected link in the original
graph G, and has a unique ID11. In order to compare two
link IDs, we use lexicographical ordering12.
11In [11], it was shown that unique IDs are required to be able to find a

spanning tree in a distributed fashion.
12Without loss of generality, assume ID(n) < ID(m) and ID(i) <

ID(j) : If ID(n) < ID(i), then ID(n, m) < ID(i, j) for all m, j; and
if ID(n) = ID(i) and ID(m) < ID(j), then ID(n, m) < ID(i, j).

Our distributed FIND SPANNING TREE procedure is based
on token generation and forwarding operations. For the con-
struction of a spanning tree, at least one token needs to be
generated within each connected component. This can be
guaranteed by requiring every node in the conflict graph that
has the lowest ID number among its neighbors to generate a
token. Each token, carrying the ID of its generator, performs a
depth-first traversal (cf. [6]) within the connected component
to construct a spanning tree. This token progressively adds
nodes into its spanning tree while avoiding the construction
of cycles. An example is depicted in Figure 3 for the largest
connected component of Figure 2.

X

token
minimum

6

3

10

5

2
4

7 8

11

9

12

1

Fig. 3. A connected component of the conflict graph from which the link
crossed is eliminated to obtain a spanning tree. The path of the minimum
token is indicated with arrows. The nodes are labeled with numbers for future
reference.

The above procedure focuses on the operation of a single
token generated at one of the nodes within the connected
component. In general, there may be multiple tokens generated
within the same connected component. Each token attempts to
form its spanning tree labeled with its ID number (i.e. the ID
number of the token’s generator). Since only one spanning
tree is required at the end of the procedure, our algorithm
is designed to keep the spanning tree with the smallest ID
number, while eliminating the others. This elimination is
performed when the token of a spanning tree enters a node
that has been traversed by another token. If the incoming
token has smaller ID, then the token ignores the previous
token and continues the construction of its tree, and if its ID is
larger, then it is immediately deleted. We have the following
proposition for this algorithm (see [7] for the proof, which is
omitted in the interest of space).
Proposition 2: Consider the conflict graph G′ = (N ′,L′),

and letD′ denote the maximum degree of G′. The FIND SPAN-
NING TREE Procedure finds a spanning tree of all components
of the conflict graph in O(D′L′) time13, and with O(D′N ′)
message exchanges for each n′ ∈ N ′. In particular, at the
termination of the procedure, every node n′ ∈ N ′ has a list
of its neighbors in the constructed spanning tree.
2) COMMUNICATE & DECIDE Procedure: We use the

spanning tree formed on the conflict graph to compare weights.
13f(n) = O(g(n)) means that there exists a constant c < ∞ such that

f(n) ≤ cg(n) for n large enough.

The idea is to convey the necessary information from the
leaves up to the root of the tree (i.e. COMMUNICATE Proce-
dure) so that the schedule with the higher weight is chosen (cf.
(4)), and then send back the decision to the leaves (i.e. DECIDE
Procedure). The COMMUNICATE & DECIDE procedure can be
explained in two parts as follows:
COMMUNICATE: The leaves communicate their weights to

their parents. If the parent is in π it adds its weight to the sum
of the weights announced by its children. If, on the other hand,
it is in π̃ it subtracts its weight from the sum of its children’s
weights. The resulting value becomes the new weight of the
parent. Then, the parent acts as a leaf with the updated weight
in the next iteration. This recursive update is repeated until
the root is reached.
DECIDE: At the end of COMMUNICATE, the weight of

the root of the spanning tree will be
∑

l∈π wl −
∑

l∈π̃ wl.
Depending on whether the root’s weight is positive or negative,
the root decides π or π̃, respectively, as the better schedule,
and broadcasts its decision down the tree.

- -

-Σ
i

i
w
π

Σ
i

i
wπ∼

--

-- - - - -

......

1
wπ∼

6
wπ∼

7
wπ∼

12
wπ∼

12
wπ∼

11
w
π

7
wπ∼

6
wπ∼

8
w
π

1
wπ∼

2
w
π

2
w
π

1
wπ∼

3
wπ∼ +

8
w
π

11
w
π

6
wπ∼

7
wπ∼

9
wπ∼

12
wπ∼

Fig. 4. The iterative communication of the weights of the two schedules
from the leaves to the root for the spanning tree of Figure 3.

An example of this procedure is provided in Figure 4 for
the spanning tree given in Figure 3. We have the following
complexity result for this procedure (see [7] for the proof).
Proposition 3: Consider the conflict graph G′ = (N ′,L′),

and let D′ denote the maximum degree of G′. The COMMUNI-
CATE & DECIDE procedure correctly finds the schedule with
the larger weight in O(D′L′) time.
Notice that the complexity results in the propositions are

given in terms of G′. We can translate them into bounds on
G through the following inequalities: L′ < N2, D′ < N .
Propositions 1, 2 and 3, together with Theorems 1 and 2 yields
the following result.
Theorem 3: The distributed implementations of PICK and

COMPARE Algorithms designed for the two-hop interference
model asymptotically achieve throughput-optimality and fair-
ness with O(N3) time and O(N2) message exchanges per
node, per stage. "

Before we complete the section, we make a few important
remarks on the operation and extension of the algorithms.
Remark 2: The algorithms we develop in this section op-

erate over the conflict graph G′. These operations can be
transformed into operations in the actual graph G. Such a
transformation would be difficult for a general conflict graph.
However, in our scenario the graph has a special structure
that enables the mapping. The critical observation is that
transmissions within a feasible schedule has no interference.
Thus, links that form π and π̃ can perform operations in
G′ by partitioning CSI (cf. Figure 1) into two disjoint time
intervals. During the first interval, only links that make up
π communicate, while in the second interval only nodes
that make up π̃ communicate. The operation of each link
can easily be mapped into operations at its two end nodes
by assigning one node to each operation, who will then
coordinate the operation. With such a separation of time, the
operations described for the conflict graph can be translated
into operations in the actual network.
Remark 3: Recall from Remark 1 that the conflict graph is

likely to be composed of multiple disconnected components,
which increases the distributed nature of the algorithms. Even
though we did not pursue this direction here, this likelihood
can be increased by dynamically modifying the activation
probabilities, {pn}n, in the PICK Algorithm so that the picked
schedule has more disconnected components. This way, the
localized nature of the algorithm can be improved.

VI. SIMULATIONS
In this section, we provide simulation results for the distrib-

uted algorithms developed in Section V for the grid topology
(see Figure 2). We use the notation [i, j] to refer to the node
at the ith row and jth column of the grid. Throughout, we
simulate utility functions of the form Ui(x) = γi log(x),
which corresponds to weighted proportionally fair allocation
(see [13], [23]).

0 1 2 3 4 5 6 7 8 9 10
x 104

0

0.05

0.1

0.15

0.2

0.25

Throughput evolution for 6x6 Network with 4 flows

Number of Stages

Th
ro

ug
hp

ut
 a

ch
ie

ve
d

Flow−1
Flow−2
Flow−3
Flow−4

Fig. 5. The throughput evolution of the 6x6 network forK = 100, γi = 0.5.

We first consider a network of size 6x6, with four flows:
Flow-1 from [1, 1] to [6, 6], Flow-2 from [5, 2] to [6, 3], Flow-

3 from [5, 5] to [5, 1], and Flow-4 from [4, 1] to [1, 4]. Here,
we are interested in the evolution of the throughputs of each
flow for K = 100 and γi = 0.5 for each i ∈ {1, 2, 3, 4}.
The simulation results are depicted in Figure 5. We observe
that the throughputs of the flows converge to different values
depending on their source-destination separation. For example,
Flow-2 achieves the highest throughput since its source is
only two hops from its destination. The fluctuations in the
evolutions are due to the random nature of the algorithm,
which tracks the queue-length evolutions.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Throughput of Flow−1

Th
ou

gh
pu

t o
f F

lo
w
−2

K=10 K=20 K=40 K=60 K=80

K=100

(0,1) (.1,.9)
(.2,.8)

(.3,.7)

(.4,.6)

(.5,.5)

(.6,.4)

(.7,.3)

(.8,.2)

(.9,.1)

(γ1,γ2)

Fig. 6. Throughputs of flows with varying K and (γ1, γ2).

Next, we simulate a 10x10 network with two flows: Flow-1
from [1, 1] to [8, 9], and Flow-2 from [9, 2] to [2, 10]. Here, we
focus on the throughputs achieved for the flows as a function
of K with varying γi for each flow. We aim to observe the
average flow rates as functions of K and (γ1, γ2). Notice that
each (γ1, γ2) combination corresponds to a different weighting
for the weighted-proportionally fair allocation. Thus, for a
fixed K, the throughputs corresponding to different (γ1, γ2)
combinations actually outline the rate region that the algorithm
achieves for that K. Then, as K grows Theorem 2 implies that
this region grows at a decreasing rate, until it converges to the
stability region Λ.
We performed simulations for K varying from 10 to 100,

and (γ1, γ2) ranging from (0, 1) to (1, 0) with γ1 + γ2 = 1 at
each intermediate point. The simulation results are provided
in Figure 6. We observe that for a given K, the rate region
is a convex region. Also, as K grows, the region expands at
a decreasing rate agreeing with our expectations. We further
note that with this algorithmic method, the stability region of
a wireless network, that is otherwise difficult to find, can be
determined with high accuracy.
Finally, for the previous simulation setting, we fix K to

100 and vary (γ1, γ2) as before, and compare the rate region
achieved with our policy to the greedy distributed maximal
scheduling policy proposed in earlier works [15], [4]. The
greedy policy always picks a random maximal schedule, but
does not perform any comparison with an earlier schedule. The
two regions are plotted in Figure 7. We observe that there

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Throughput of Flow−1

Th
ro

ug
hp

ut
 o

f F
lo

w
−2

Comparison of Stability regions for K=100

Our Policy
Greedy Policy

Fig. 7. Throughputs of flows with K = 100 and varying (γ1, γ2).

is a considerable gain in throughput when our algorithm is
implemented compared to the greedy algorithm.

VII. CONCLUSIONS
In this work, we provided a framework for the design of

cross-layer algorithms for full utilization of multi-hop wireless
networks. We started with generalizing a practical randomized
policy, first introduced in [25] for switches, to multi-hop
networks. We proved that with a single comparison at each
iteration, this policy achieves 100% of the available capacity
of the network.
Next, we considered the case of elastic flows and provided

a decentralized congestion control algorithm that works in
parallel with the randomized algorithm. We showed that the
resulting cross-layer algorithm achieves fair allocation of the
resources despite the imperfect nature of the scheduling-
routing algorithm (i.e. the randomized algorithm does not
always pick the maximum weighted schedule).
Finally, we developed specific distributed algorithms for

the two-hop interference model. For this model, existing
throughput-optimal strategies require that an NP-hard problem
be solved by a centralized controller at every time instant.
In this work, we showed that this is not necessary, and full
utilization of the network can be achieved with distributed
algorithms having only polynomial communication and com-
putational complexity.
An important byproduct of our approach is the use of the

developed cross-layer algorithms to find (with high accuracy)
the stability region of ad-hoc wireless networks, that are
otherwise difficult to characterize.

REFERENCES
[1] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,

and P. Whiting. Scheduling in a queueing system with asynchronously
varying service rates, 2000. Bell Laboratories Technical Report.

[2] E. Arikan. Some complexity results about packet radio networks. IEEE
Transactions on Information Theory, 30:681–685, 1984.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific, Belmont, MA, 1997.

[4] L. Bui, A. Eryilmaz, R. Srikant, and X. Wu. Joint asynchronous
congestion control and distributed scheduling for wireless networks.
Proceedings of IEEE Infocom 2006.

[5] P. Chaporkar, K. Kar, and S. Sarkar. Throughput guarantees through
maximal scheduling in wireless networks. In Proceedings of the Allerton
Conference on Control, Communications and Computing, 2005.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. M.I.T. Press, McGraw-Hill, London, England, 2001.

[7] A. Eryilmaz, A. Ozdaglar, and E. Modiano. Polynomial complexity al-
gorithms for full utilization of multi-hop wireless networks, 2005. Tech-
nical Report, available at http://www.mit.edu/˜eryilmaz/research.html.

[8] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless
networks using queue-length based scheduling and congestion control.
In Proceedings of IEEE Infocom, vol. 3, pages 1794–1803, March 2005.

[9] A. Eryilmaz and R. Srikant. Resource allocation of multi-hop wireless
networks. In Proceedings of International Zurich Seminar on Commu-
nications, February 2006.

[10] A. Eryilmaz, R. Srikant, and J. R. Perkins. Stable scheduling policies
for fading wireless channels. IEEE/ACM Transactions on Networking,
13:411–425, April 2005.

[11] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed
algorithm for minimum-weight spanning trees. ACM Transactions on
Programming Languages and Systems, 5:66–77, 1983.

[12] F. P. Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, 8:33–37, 1997.

[13] F. P. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: Shadow prices, proportional fairness and stability. Journal of
the Operational Research Society, 49:237–252, 1998.

[14] X. Lin and N. Shroff. Joint rate control and scheduling in multihop
wireless networks. In Proceedings of IEEE Conference on Decision
and Control, Paradise Island, Bahamas, December 2004.

[15] X. Lin and N. Shroff. The impact of imperfect scheduling on cross-
layer rate control in multihop wireless networks. In Proceedings of
IEEE Infocom, Miami, FL, March 2005.

[16] S. H. Low and D. E. Lapsley. Optimization flow control, I: Basic
algorithm and convergence. IEEE/ACM Transactions on Networking,
7:861–875, December 1999.

[17] E. Modiano, D. Shah, and G. Zussman. Maximizing throughput in wire-
less networks via gossiping. In ACM SIGMETRICS/IFIP Performance,
2006.

[18] M.J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. In Proceedings of IEEE Infocom,
pages 1723–1734, Miami, FL, March 2005.

[19] M.J. Neely, E. Modiano, and C.E. Rohrs. Dynamic power allocation
and routing for time varying wireless networks. In Proceedings of IEEE
Infocom, pages 745–755, April 2003.

[20] L. Peterson and B. Davie. Computer Networks: A Systems Approach.
Morgan Kaufmann Publishers, Second edition, 2000.

[21] G. Sasaki and B. Hajek. Link scheduling in polynomial time. IEEE
Transactions on Information Theory, 32:910–917, 1988.

[22] S. Shakkottai and A. Stolyar. Scheduling for multiple flows sharing a
time-varying channel: The exponential rule. Translations of the AMS,
Series 2, A volume in memory of F. Karpelevich, 207:185–202, 2002.

[23] R. Srikant. The Mathematics of Internet Congestion Control. Birkhäuser,
Boston, MA, 2004.

[24] A. Stolyar. Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm. Queueing Systems, 50(4):401–457, 2005.

[25] L. Tassiulas. Linear complexity algorithms for maximum throughput
in radio networks and input queued switches. In Proceedings of IEEE
Infocom, pages 533–539, 1998.

[26] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transactions on Automatic Control,
36:1936–1948, December 1992.

[27] X. Wu and R. Srikant. Regulated maximal matching: A distrib-
uted scheduling algorithm for multi-hop wireless networks with node-
exclusive spectrum sharing. In Proceedings of IEEE Conference on
Decision and Control., 2005.

[28] X. Wu and R. Srikant. Bounds on the capacity region of multi-hop
wireless networks under distributedgreedy scheduling. In Proceedings
of IEEE Infocom, 2006.

[29] H. Yaiche, R. R. Mazumdar, and C. Rosenberg. A game-theoretic
framework for bandwidth allocation and pricing in broadband networks.
IEEE/ACM Transactions on Networking, 8(5):667–678, October 2000.

