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Abstract—We consider the following rate distortion problem:
given a source X and correlated, decoder side information Y , find
the minimum encoding rate for X required to compute f(X, Y )
at the decoder within distortion D. This is a generalization of the
classical Wyner-Ziv setup and was resolved by Yamamoto (1982).
However, this result involved an auxiliary random variable that
lacks explicit meaning.

To provide a more direct link between this variable and the
function f , Orlitsky and Roche (2001) established the minimal
rate required in the zero-distortion case as an extension of
Körner’s graph entropy. Recently, we (with Jaggi) showed that
the zero-distortion rate can be achieved by minimum entropy
graph coloring of an appropriate product graph. This leads
to a modular architecture for functional source coding with a
preprocessing “functional coding” scheme operating on top of a
classical Slepian-Wolf source coding scheme.

In this paper, we give a characterization of Yamamoto’s
rate distortion function in terms of a reconstruction function.
This (non-single-letter) characterization is an extension of our
previous results as well as Orlitsky and Roche’s results. We
obtain a modular scheme operating with Slepian-Wolf’s scheme
for the problem of functional rate distortion. Further, we give an
achievable rate (with single-letter characterization) utilizing this
scheme that intuitively extends our previous results.

I. INTRODUCTION

A. Motivation

Consider a network of sensors in which each node transmits
its measurements to a central receiver. We consider the source
coding aspect of this problem with the assumption that a
reduction in the source coding rate translates to a bandwidth
reduction. Often, the information from each sensor node is
correlated with that of other nodes. Thus, the sensors are
not required to transmit all of their information. Moreover,
the receiver often wishes only to compute a function of the
sensed information (up to a distortion D); it has no use for the
exact information. This suggests that using a clever scheme,
the required transmission rate can be reduced.

Recent work in designing efficient distributed coding
schemes, such as work by Pradhan and Ramachandran [1] and
Coleman et al. [2], allow for a rate reduction due to correlation
in the data. However, they do not account for the rate reduction
possible by considering that the receiver is only required to
compute some function of the transmitted information.

In this paper, the end goal will be to obtain a scheme that
improves the transmission rate by first preprocessing the data

for a given function and distortion, and then using efficient
distributed source coding schemes on the preprocessed infor-
mation. Next, we present a motivating example.

Example 1: Consider two sources uniformly and indepen-
dently producing k-bit integers X and Y ; assume k ≥ 2.
The source Y is decoder side information. We assume inde-
pendence to bring to focus the compression gains from using
knowledge of the function.

First, suppose f(X, Y ) = (X, Y ) is to be computed at the
decoder with zero-distortion. Then, the rate at which X must
encode its information is k bits per symbol (bps).

Next, suppose f(X, Y ) = X + Y mod 4. The value of
f(X, Y ) depends only upon the final two bits of both X and
Y . Thus, at most (and in fact, exactly) 2 bps is the encoding
rate. Note that the rate gain, k− 2, is unbounded because we
are reducing a possibly huge alphabet to one of size 4.

Finally, suppose f(X, Y ) = X + Y mod 4 as before, but
the decoder is allowed to compute f up to a 1-bit distortion. By
1-bit distortion, we mean a Hamming distortion function. One
possible coding scheme would simply encode the single least
significant bit X . Then one could compute the least significant
bit of f(X, Y ), thus achieving an encoding rate of 1 bps,
further reducing the rate.

The above example describes a function that readily lends
itself to further compression. In general, however, this may
not hold. For example, if the function were not separable, a
more complex coding scheme would be necessary, and it is
not clear a priori that such a scheme even exists. Thus, we
need a more general systematic method that leads to a coding
scheme for any deterministic function.

B. Setup and Problem Statement
As the first step towards finding explicit schemes that

require minimal transmission rate for computing functions
within a certain distortion fidelity criterion, we consider the
case of a single source transmitting to a receiver (with side
information) that wishes to compute a function of the source
information and the side information. We are given a random
variable X taking values in a finite set X . The side information
available at the receiver is denoted by the random variable
Y taking value in the finite set Y . Both X and Y are
discrete memoryless sources with joint distribution p(x, y),
with (x, y) ∈ X × Y . Denote n-sequences of the random
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Fig. 1. X is encoded such that f̃(X,Y), a representation of f(X,Y) to
within distortion D, can be computed using e(X) and side information Y.

variables as X and Y where (X,Y) = {Xi, Yi}n
i=1 and n

will be clear from context.
The receiver’s function of interest is the deterministic

function f : X × Y → Z , or its natural vector extension
f : Xn × Yn → Zn. The receiver wishes to compute f
within distortion D with respect to a given distortion function
d : Z × Z → [0,∞). The natural vector extension of the
distortion function is

d(z1, z2) =
1
n

n∑

i=1

d(z1i, z2i),

where z1, z2 ∈ Zn. As in [3], we assume that the distortion
function satisfies d(z1, z2) = 0 if and only if z1 = z2.
(Otherwise, one can redefine the equivalence classes of the
function values to make this condition hold.) This restriction
forces the vector extension to satisfy the same property.

We say that a code with parameters (n, R,D) produces
f within distortion D if for every ε > 0 and sufficiently
large n = nε, there exists a source encoder en

1 : Xn →
{1, . . . , 2n(R+ε)}, and decoder en

2 : {1, . . . , 2n(R+ε)}×Yn →
Zn, such that

E [d(f(X,Y), e2(e1(X),Y))] ≤ D + ε.

We wish to find efficient coding-decoding schemes with im-
proved rates R and a characterization of the minimal R. See
Figure 1 for an illustration of the question of interest.

C. Relevant Previous Work
We introduce the necessary definitions and notation to

explain previous work. Given the source X , the characteristic
graph of X with respect to Y , f and p(x, y) is a graph
G = (V,E) with vertex set V = X and edge set E defined
as follows: (x1, x2) ∈ E if there exists some y ∈ Y such that
p(x1, y)p(x2, y) > 0 and f(x1, y) (= f(x2, y). Effectively, G
describes the confusability of various values of X and captures
the essence of f . This was first defined by Shannon [4].

We extend the notion of the confusability graph to include
distortion and define the D-characteristic graph of X with
respect to Y , f , and p(x, y). The vertex set is again V =
X . The edge set is now ED where a pair (x1, x2) ∈ E if
there exists some y ∈ Y such that p(x1, y)p(x2, y) > 0 and
d(f(x1, y), f(x2, y)) > D. Denote this graph as GD. Because
the d(z1, z2) = 0 iff z1 = z2, the 0-characteristic graph, G0,
is the characteristic graph G.

Consider a graph G = (V,E) with the distribution, p(x),
over its vertices V . Let X denote the random variable over the
vertices with that distribution. The graph entropy of G with
respect to distribution of X , first introduced by Körner [5], is
defined as

HG(X) = min
X∈W∈Γ(G)

I(W ;X),

where Γ(G) is the collection of all independent sets1 of G.
To clarify, X ∈ W means that the joint distribution p(w, x)
on Γ(G) × X is such that p(w, x) > 0 implies x ∈ w. This
graph entropy can be shown to be the minimal rate at which
X must be sent to compute a function f(X) at the receiver [6]
with vanishing error. Equivalently, this is the characterization
of the minimal rate requirement for our problem of interest in
the special case when cardinality of Y is 1 and the distortion
is D = 0.

This was further improved by Orlitsky and Roche with the
restriction D = 0 of our problem of interest. They extended
the definition of graph entropy to conditional graph entropy
defined as

HG(X|Y ) = min
X∈W∈Γ(G)
W−X−Y

I(W ;X|Y ).

As in the definition of graph entropy, W is a random variable
over space of independent sets Γ(G) satisfying Markov prop-
erty W −X−Y and X ∈W as defined earlier. They showed
[7] that HG(X|Y ) is the minimum rate at which X must be
encoded in order for a receiver with side information Y to
compute a function f(X, Y ) at zero-distortion (i.e. D = 0)
with vanishing probability of error.

The rate distortion function, R(D), for the functional
source coding problem with side information evaluated at
D is defined as the minimum R such that there is a
code with parameters (n, R,D) that produces f within
distortion D. In other words, we can equivalently say
that there exists a sequence (in n) of codes such that
limn→∞E[d(f(X,Y), e2(e1(X),Y))] ≤ D because as n →
∞, ε→ 0.

As stated earlier, Yamamoto fully characterized the rate
distortion function [8] in terms of auxiliary random variable
W . The rate distortion function is:

R(D) = min
p∈P(D)

I(W ;X|Y )

where P(D) is the collection of distributions on (W,X, Y )
such that W − X − Y forms a Markov chain and such that
there exists a g : W×Y → Z , where W is the alphabet of W ,
with E[d(f(X, Y ), g(W,Y ))] ≤ D. The cardinality of W can
be bounded as in the Wyner-Ziv result (|W| ≤ |Y|+1). Feng,
Effros, and Sevari [9] considered the same problem with X̃
and Ỹ , noisy versions of X and Y , available instead of the
sources.

1A subset of the vertex set of a graph G is an independent set of the graph
if no two nodes in the subset are adjacent to each other in G.



D. Our Contribution
When D = 0, any distribution over independent sets of the

characteristic graph (with the Markov property W −X−Y ) is
also in P(0). Further, any distribution in P(0) can be thought
of as a distribution on independent sets of a graph G. When
D > 0, is the same true? Can we parameterize the graph G
with D and improve on the rate?

First, we show that finding g in the Yamamoto result is
equivalent to finding a suitable reconstruction function, f̂ . Let
Fm(D) denote the set of all functions f̂m : Xm×Ym → Zm

for any m with the property that

lim
n→∞

E[d(f(X,Y), f̂(X,Y))] ≤ D.

Above, n → ∞ refers to the block length of f̂ -values
increasing without bound. In other words, the functions in the
expectation above are actually functions on Xmn × Ymn.

Let F(D) =
⋃

m∈N Fm(D). Let G(f̂) denote the char-
acteristic graph of X with respect to f̂ , Y and p(x,y) for
any f̂ ∈ F(D). Note that this must be a subgraph of the
characteristic graph Gm (for the appropriate m). Because
Gm has finitely many edges, there are only finitely many
subgraphs. Thus, for each m, there are finitely many graphs
G(f̂m) to consider and the total number of graphs (as opposed
to functions) to consider is countable. For each m and all
functions in Fm(D), denote, for brevity, the normalized graph
entropy 1

mHG(f̂)(X|Y) as HG(f̂)(X|Y ). Then,

Theorem 1:

R(D) = min
f̂∈F(D)

HG(f̂)(X|Y )

Theorem 1 gives meaning to the auxiliary random variable
from Yamamoto’s result. The auxiliary random variable is over
the independent sets of the characteristic graph with respect
to a distortion-D approximation f̂ of f . The above is not
single-letter, but motivates the single-letter achievable rate we
describe next.

We parameterize the characteristic graph G on D (specifi-
cally, we use GD) and implicitly find a class of f̂ (up to graph
equivalence), though the rate given by this graph is perhaps
not tight. By restricting to a subset of F1(D), we make the
optimization defined by Theorem 1 tractable. In fact, this is
now a finite optimization. The modular architecture implied by
the following theorem is the main contribution of this paper.

Theorem 2: The rate HGD (X|Y ) is achievable, where GD

is the D-characteristic graph of X with respect to Y , f , and
p(x, y).

E. Implications
A coding scheme that employs a modular architecture

(preprocessing followed by a Slepian-Wolf [15] code) is
an immediate corollary. See Figure 2. The preprocessing is
coloring of the data with respect to the graph GD. This is
followed by a Slepian-Wolf code. At the decoder side the
reconstructed colors can be matched up to a particular f̂ value,
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Fig. 2. Coloring based coding allows separation between functional coding
and distributed source coding to compute a function of the sources within a
given expected distortion as shown above.

which is within D of f . This follows by our previous work
(with Jaggi) [10]. The details are given in section III.

II. PROOFS

A. Proof of Theorem 1

We restate Theorem 1 for completeness:

R(D) = min
f̂∈F(D)

HG(f̂)(X|Y )

Proof: We prove that the given characterization is valid
by first showing the rate HG(f̂)(X|Y ) is achievable for any
f̂ ∈ F(D), and next showing that every achievability scheme
must be in F(D).

By Orlitsky and Roche [7], we know that the
rate HG(f̂)(X|Y ) is sufficient to determine the
function f̂(X,Y) at the receiver. By definition,
limn→∞E[d(f(X,Y), f̂(X,Y))] ≤ D. Thus, the rate
HG(f̂)(X|Y ) is achievable.

Next, suppose we have any achievable rate R, with cor-
responding sequence of encoding and decoding functions en

1

and en
2 respectively. Then the function f̂(·, ·) = en

2 (en
1 (·), ·)

is a function f̂ : Xn × Yn → Zn with the property (by
achievability) that limn→∞E[d(f(X,Y), f̂(X,Y))] ≤ D
(again because as n→∞, ε is driven to 0). Thus, f̂ ∈ F(D),
completing the proof of Theorem 1.

This characterization is mostly illustrative. Indeed, F(D) is
an (uncountably) infinite set, but as stated before, the set of
graphs associated with these functions is countably infinite.
Moreover, any allowable graph dictates an ordinal function,
but it has no meaning in terms of distortion. Given the ordinal
function f̂ , choosing the cardinal values that minimize ex-
pected distortion is a tractable optimization problem. Further,
this shows that if one could find an approximation function
f̂ , the compression rate will improve (even when f̂ is not
optimal).

The problem of finding an appropriate function f̂ is equiv-
alent to finding a new graph whose edges are a subset of the
edges of the characteristic graph. This motivates Theorem 2
where we use the D-characteristic graph to look at a subset
of F(D).



B. Proof of Theorem 2

In this section, we prove Theorem 2, which states that
HGD (X|Y ) is an achievable rate.

Proof: We show that HGD (X|Y ) is achievable by demon-
strating that any distribution on (W,X, Y ) satisfying W −
X − Y and X ∈ W ∈ Γ(GD) also satisfies the Yamamoto
requirement (i.e. is also in P(D)).

Suppose p(w, x, y) is such that p(w, x, y) = p(w|x)p(x, y),
or W −X − Y is a Markov chain. Further suppose that X ∈
W ∈ Γ(GD). Then define g(w, y) = f(x∗, y) where x∗ is any
(say, the first) x ∈ w with p(x∗, y) > 0. This is well-defined
because the nonexistence of x such that p(x, y) > 0 is a zero
probability event, and x ∈ w occurs with probability one by
assumption.

Further, because w is an independent set, for any x1, x2 ∈
w, one must have (x1, x2) /∈ ED, the edge set of GD.
By definition of GD, this means that for all y ∈ Y
such that p(x1, y)p(x2, y) > 0, it must be the case that
d(f(x1, y), f(x2, y)) ≤ D.

Therefore,

E[d(f(X, Y ), g(W,Y ))] = E[d(f(X, Y ), f(X∗, Y ))] ≤ D

because both X ∈W and X∗ ∈W are probability 1 events.
We have shown that for a given distribution achieving the

conditional graph entropy, there is a function g on W × Y
that has expected distortion less than D. In other words, any
distribution satisfying W −X − Y and X ∈ W ∈ Γ(GD) is
also in P(D). Further, any such distribution can be associated
with a coding scheme, by Orlitsky and Roche’s work [7],
that achieves the rate I(W ;X|Y ). When the distribution is
chosen such that I(W ;X|Y ) is minimized, this is by definition
equal to HGD (X|Y ). Thus, the rate HGD (X|Y ) is achievable,
proving Theorem 2 and providing a single-letter upper bound
for R(D).

III. CODING SCHEME

To describe why a modular coding scheme is implied by
Theorems 1 and 2, we restate some past work in this area.

The OR-product graph of G = (V,E), denoted Gn =
(Vn, En), is defined as Vn = V n, and two vertices (x1,x2) ∈
En if any component (x1i, x2i) ∈ E.

A graph coloring is a function c : V → N with the property
that for any two x1, x2 ∈ V with c(x1) = c(x2), it must be the
case that (x1, x2) /∈ E. The entropy of any coloring is given by
the distribution induced on the colors (p(c(x)) = p(c−1(c(x)))
where c−1(x) = {x̄ : c(x̄) = c(x)}.

This definition can be extended to colorings of high prob-
ability subgraphs of the original graph. For any ε > 0, an
ε-coloring of a graph G is defined next. Let A ⊆ X × Y be
such that p(A) ≥ 1− ε. Let p̂(x, y) = p(x, y|(x, y) ∈ A) for
(x, y) ∈ A, and 0 otherwise. Let Ĝ denote the characteristic
graph of X with respect to Y , f , and p̂. Note that the edge
set of Ĝ is a subset of the edge set of G. Any coloring c of
Ĝ is an ε-coloring of G.

Let the conditional chromatic entropy of a graph G on
vertices X with respect to a distribution p(x, y) be defined
as:

Hχ
G(X|Y ) = inf

ε>0
{H(c(X)|Y ) : c is an ε-coloring of G} .

By our previous work (with Jaggi) [10],

lim
n→∞

1
n

Hχ
Gn(X|Y) = HG(X|Y ).

In other words, coloring high probability subsets of sufficiently
large power graphs of the characteristic graph is sufficient (and
in the limit, necessary) to compute a function at zero distortion
with arbitrary probability of error.

For Theorem 1, this implies that given any reconstruction
function f̂ ∈ F(D), the minimum entropy graph coloring of
G(f̂) is necessary and sufficient to compute f̂ . Computation
of f̂ means a distortion-D reconstruction of f . Thus, a graph
coloring scheme as in Figure 2 is achievable for any valid
reconstruction.

This directly applies to the result of Theorem 2, where the
graph is GD; coloring it and its powers is sufficient to compute
the function f(X,Y) to within a distortion D. This gives
the modular scheme we have sought. We now describe the
particulars of a coding scheme like that shown in Figure 2.

First, all atypical elements would be removed from consid-
eration. Then, the D-characteristic graph would be constructed
based on the function and the distribution (conditioned on
typicality). Finally, the graph would be colored, and the colors
are sent over the channel using a Slepian-Wolf code (at rate
H(c(X)|Y )). These colorings are then ε-colorings of the
original graph GD. At the receiver, the color is recovered.
And from the color, the function can be computed (to within
distortion D).

Finding minimum-entropy graph colorings (i.e. graph color-
ings that achieve the (conditional) chromatic entropy) is NP–
complete [11]. Nevertheless, the scheme provided is layered.
The distributed source coding module is well-understood (e.g.
[1], [2]). The graph coloring module has been well-studied;
algorithms and heuristics that perform well exist (e.g. [12],
[13]).

IV. CONCLUSION

In this paper, we have shown that Yamamoto’s rate dis-
tortion function can be achieved by finding the conditional
graph entropy minimizing approximation (to within distortion
D) of the function f . This is a hard optimization problem.
Nevertheless, the insight gained from this perspective led to a
simple modular achievability scheme.

The modules in the scheme are a graph coloring component
followed by a distributed source coding component. This
separation into a well-understood problem (distributed source
coding) and a NP–complete problem (minimum entropy graph
coloring) is beneficial because it allows for the use of the
many heuristics available in the graph coloring literature. This
scheme is likely suboptimal, but because ED ⊆ E, we must



have HGD (X|Y ) ≤ HG(X|Y ) ≤ H(X|Y ), and thus there is
guaranteed (weak) improvement.

The authors (with Jaggi) have examined the case where Y
is not side information in [14], completely characterizing the
region when a restriction is placed on the source distribution.
This extended the work of Slepian and Wolf [15]. The authors
intend to similarly extending the results for side information
from this paper to the case where Y is not side information.

One can approach many functional source coding problems
as graph coloring problems. This approach is attractive be-
cause it reduces the problems into smaller problems that are
well-studied, if not completely solved.
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