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Abstract—We consider transmission of stationary ergodic
sources over non-ergodic composite channels with channel state
information at the receiver (CSIR). Previously we introduced
alternative capacity definitions to Shannon capacity, including
outage and expected capacity. These generalized definitions relax
the constraint of Shannon capacity that all transmitted informa-
tion must be decoded at the receiver. In this work alternative end-
to-end distortion metrics such as outage and expected distortion
are introduced to relax the constraint that a single distortion level
has to be maintained for all channel states. Through the example
of transmission of a Gaussian source over a slow-fading Gaussian
channel, we illustrate that the end-to-end distortion metrics
dictate whether the source and channel coding can be separated
for a communication system. We also show that the source and
channel need to exchange information through an appropriate
interface to facilitate separate encoding and decoding.

I. INTRODUCTION
End-to-end distortion is a well-accepted metric for trans-

mission of a stationary ergodic source over stationary ergodic
channels. In this work we consider transmission of a station-
ary ergodic source over non-ergodic composite channels. A
composite channel is a collection of channels {WS : S ∈
S} parameterized by S, where the random variable S is
chosen according to some distribution p(S) at the beginning
of transmission and then held fixed. We assume the channel
realization is revealed to the receiver but not the transmitter.
The capacity of a composite channel is given by the Verdú-

Han generalized capacity formula [1] as

C = sup
X

I(X; Y ),

where I(X; Y ) is the liminf in probability of the normalized
information densities. This formula highlights the pessimistic
nature of the Shannon capacity definition – the capacity and
consequently the end-to-end distortion are dominated by the
performance of the “worst” channel, no matter how small
its probability. To provide more flexibility in capacity defi-
nitions, in [2], [3] we relax the constraint that all transmitted
information has to be correctly decoded and derive alternative
capacity definitions including the outage and expected capac-
ity. Previously examined in [4], outage capacity is a common
criterion used in wireless fading channels. In [5] Shamai et al.
also derives the expected capacity for a Gaussian slow-fading
channel.
Similarly, in considering end-to-end distortion we can relax

the constraint that a single distortion level has to be main-

tained for all channel states. Along these lines we introduce
generalized end-to-end distortion metrics including the outage
distortion and the expected distortion. The outage distortion
is characterized by a pair (q, Dq), where the distortion level
Dq is guaranteed with probability no less than (1 − q). The
expected distortion is defined as ESDS , where DS is the
achievable distortion when the channel is in state S and the
expectation is taken with respect to the underlying distribution
p(S). These alternative distortion metrics are also considered
in prior works. In [6] the overall distortion qσ2 + (1 − q)Dq,
averaged over the non-outage and outage states, was adopted
to analyze a two-hop fading channel. Here σ2 is the variance
of the source symbols. The expected distortion was analyzed
for the MIMO block fading channel in the high SNR regime
[7] and in the finite SNR regime [8], [9].
For transmission of a stationary ergodic source over a sta-

tionary ergodic channel, the separation theorem [10, Theorem
2.4] asserts that a target distortion level D is achievable if the
channel capacity C exceeds the source rate distortion function
R(D), and a two-stage separate source-channel code suffices
to meet the requirement. However, there are examples in multi-
user channels [11] where the separation theorem fails. In this
work we study whether the source-channel separation holds for
generalized channel models and distortion metrics in point-to-
point communications.
Source-channel separation can be defined in terms of code

design. For transmission of a source over a channel the system
consists of three concatenated blocks: the encoder fn that
maps the source symbols V n to the channel input Xn; the
channelWn that maps the channel input Xn to channel output
Y n, and the decoder φn that maps the channel output Y n

to a reconstruction of source symbols V̂ n. Source-channel
separation dictates that the encoder fn is separated into a
source encoder

f̂n : V n → {1, 2, · · · , Ms}

and a channel encoder

f̃n : {1, 2, · · · , Mc} → Xn,

where Ms ≤ Mc. Similarly the decoder φn is separated into
a channel decoder φ̃n and a source decoder φ̂n. In contrast
joint source-channel coding is a loose label that encompasses
all coding techniques where the source and channel coders
are not entirely separated. Consider as an example the direct



transmission of a Gaussian source CN (0, σ2) over a Gaussian
channel with input power constraint P . The linear encoder
X = f(V ) =

√

P/σ2V cannot be separated into a source en-
coder and a channel encoder. Therefore this direct transmission
is an example of joint-source channel coding.
Source-channel separation implies that the operation of

source and channel coding does not depend on the statistics
of the counterpart. However, the source and channel do need
to communicate through an interface. In the classical example
of station ergodic sources and channels, the source requires a
rate R(D) based on the target distortion D and the channel
decides if it can support the rate based on its capacity C. For
generalized source and channel models and distortion metrics,
the interface is not necessarily a single rate and may allow
multiple parameters to be agreed on between the source and
channel. In [12] Vembu et al. studied the transmission of non-
stationary sources over non-stationary channels. It is observed
that the appropriate interface requires the source to provide the
distribution of the entropy density and the channel to provide
the distribution of the information density [12, Theorem 7].
From the source’s point of view, there is a class of channels
that have the same information density distribution, and the
source can be transmitted over any channel within this class
and be recovered at the receiver. The source is indifferent to
the statistics of each individual channel and consequently the
source coding does not depend on these statistics. We can
argue similarly from the channel’s standpoint.
In this work we consider the transmission of a Gaussian

source over a slow-fading Gaussian channel and illustrate that
the end-to-end distortion metrics dictate whether the source
and channel coding can be separated for a communication
system: separation holds under the outage distortion metric but
fails under the expected distortion metric. We also show that
the source and channel need to exchange information through
an appropriate interface, which may not be a single rate, in
order to facilitate separate source-channel coding.
The rest of the paper is organized as follows. We review

alternative channel capacity definitions in Section II and define
generalized end-to-end distortion metrics in Section III. In
Section IV we study the transmission of a Gaussian source
over a slow-fading Gaussian channel. We show that the end-
to-end distortion metric dictates the separability of source
and channel coding and also the appropriate source-channel
interface. Conclusions are given in Section V.

II. BACKGROUND: CHANNEL CAPACITY METRICS

We review alternative channel capacity definitions derived in
[2], [3] to provide some background information. A composite
channel is a collection of ergodic stationary channels {WS :
S ∈ S} parameterized by S. The random variable S is chosen
according to some distribution p(S) at the beginning of the
transmission and then held fixed. The realization of S is known
at the receiver only and represented as an additional output.
The conditional distribution from input to output is

PS,Y n|Xn(s, yn|xn) = PS(s)PY n|Xn,S(yn|xn, s). (1)

The information density is defined similarly as in [1]

i(xn; yn|s) = log
PY n|Xn,S(yn|xn, s)

PY n|S(yn|s) . (2)

A. Outage Capacity
Consider a sequence of (n, 2nR) codes. Let P (n)

o be the
probability that the decoder declares an outage. Let P (n)

e be
the probability that the receiver decodes improperly given that
an outage is not declared. We say that a rate (1 − q)R is
outage-q achievable if there exists a sequence of (n, 2nR)
channel codes such that lim

n→∞
P (n)

o ≤ q and lim
n→∞

P (n)
e = 0.

The outage-q capacity of the above described channel is
defined to be the supremum over all outage-q achievable rates,
i.e. Co

q = (1 − q)Rq where

Rq = sup
X

sup

{

α : lim
n→∞

Pr

[

1

n
i(Xn; Y n|S) ≤ α

]

≤ q

}

.

(3)
In the case of a composite channel, the encoder uses a single
code book and sends information at rate Rq. The receiver
correctly decodes the information proportion (1 − q) of the
time and declares an outage proportion q of the time. Thus the
average rate is Co

q . The value q can be chosen to maximize
the outage capacity Co

q .
B. Expected Capacity
Another strategy for increasing reliably-received rate is to

use a single encoder at a rate Rt and a collection of decoders,
each parameterized by s and decoding at a rate Rs ≤ Rt.
The transmitter is forced to use a single encoder without
channel side information, nevertheless the receiver can choose
the appropriate decoder based on CSIR. Denote by P (n,s)

e the
probability of error associated with channel s. We define the
expected capacity Ce as the supremum of all achievable rates
ESRS of any code sequence that satisfies ESP (n,S)

e → 0.
The expected capacity of the composite channel in (1) is

closely related to the capacity region of a broadcast (BC)
channel with |S| receivers, where we denote by |S| the
cardinality of the user index set S. In the broadcast system
the channel from the input to the output of receiver s is

PY n
s |Xn(yn

s |xn) = PY n|Xn,S(yn
s |xn, s).

The capacity region CBC of the above broadcast channel with
common information is defined similarly as in [13, page 421].
We have message sets Wp = {1, 2, · · · , 2nRp}, where p ⊆ S
is a non-empty subset of S. The transmitted codeword is based
on the Cartesian product of all messages

∏

p⊆S Wp. The user
with index s, upon receiving the channel output Y n

s , will
decode these messages Wp where s ∈ p. The BC capacity
region consists of rate vectors (Rp) such that the decoding
error vanishes with increasing block length. The following
result in [3] relates the expected capacity of a composite
channel to the capacity region of the corresponding BC:

Ce = sup
(Rp)∈CBC

∑

p⊆S

Rp

∑

s∈p

P (s) = sup
(Rp)∈CBC

∑

s∈S

P (s)
∑

s∈p

Rp,

(4)
where the achievable rate Rs =

∑

s∈p Rp for channel state s.



III. END-TO-END DISTORTION METRICS

We consider an ergodic stationary source that produces
source symbols V1, V2, · · · , Vn drawn i.i.d. from a distribution
P (V ). The source is transmitted over a composite channel
Wn : Xn → (Y n, S) with conditional output distribution

Wn(yn, s|xn) = PS(s)PY n|Xn,S(yn|xn, s).

Note that source and channel encoders, whether joint or
separate, do not have access to channel state information S.

A. Outage Distortion
The objective is to achieve a distortion Dq with outage

probability q. More specifically, we want to design an encoder
fn : V n → Xn that maps the source symbols to the channel
input and a decoder φn : (Y n, S) → V̂ n that maps the channel
output to an estimation of source symbols such that

Pr
{

(V n, V̂ n) : d(V n, V̂ n) ≤ Dq

}

≥ 1 − q, (5)

where d(V n, V̂ n) = 1
n

∑n
i=1 d(Vi, V̂i) is the distortion mea-

sure between the source sequence V n and its reconstruction
V̂ n. In order to evaluate (5) we need the conditional distri-
bution P (V̂ n|V n). Assuming the encoder fn and the decoder
φn are deterministic, this distribution is given by

∑

(Xn,Y n,S)

Wn(Y n, S|Xn)·1
{

Xn = fn(V n), V̂ n = φn(Y n, S)
}

.

(6)
Here 1{·} is the indicator function. Note that the channel
statistics Wn and the source statistics P (V n) are fixed, so
the code design is essentially the appropriate choice of the
encoder-decoder pair (fn, φn).

B. Expected Distortion
For the expected distortion metric, our design objective now

changes from (5) to

E(V n,V̂ n)

{

d(V n, V̂ n)
}

≤ De, (7)

where De is the target expected distortion. Using the condi-
tional distribution P (V̂ n|V n) in (6), the expected distortion
can be rewritten as

E(V n,V̂ n)

{

d(V n, V̂ n)
}

= ESDS =
∑

S

P (S)DS.

Here we denote by DS the achievable average distortion when
the channel is in state S, and it is given by

DS =
∑

P (V n)Wn(Y n|Xn, S)d(V n, V̂ n),

where the summation is over all (V n, Xn, Y n, V̂ n) such that
Xn = fn(V n) and V̂ n = φn(Y n, S).
Notice that when a stationary ergodic source is transmitted

over a stationary ergodic channel, we can design source-
channel codes such that d(V n, V̂ n) approaches the same limit
as n → ∞. However, in the case of a composite channel it is
possible that d(V n, V̂ n) approaches different limits depending
on the channel state S, so the expected distortion metric
captures the distortion averaged over various channel states.

IV. SOURCE-CHANNEL CODING
In this section we consider transmission of a stationary

ergodic source over non-ergodic composite channels. Through
the example of transmission of a Gaussian source over a
slow-fading Gaussian channel, we illustrate that the end-to-
end distortion metrics dictate whether the source and channel
coding can be separated. We also show that the source and
channel need to exchange information through an appropriate
interface to facilitate separate encoding and decoding.
We recall the definition of a source rate-distortion function

as [14, page 342]

R(D) = min
P (V̂ |V ):Ed(V,V̂ )≤D

I(V ; V̂ ). (8)

For a stationary ergodic source and channel, it is shown that if
R(D) < C then the source can be transmitted over the channel
subject to an average fidelity criterion E

{

d(V n, V̂ n)
}

≤ D.
Conversely, if the transmission satisfies the average fidelity
criterion, we also conclude R(D) ≤ C [10, page 130].
Next we consider composite channel models and generalized
distortion metrics.

A. Source Channel Coding under an Outage Distortion Metric
Lemma IV.1 The source can be transmitted over the channel
and satisfy the outage distortion constraint (5) if

R(Dq) < Rq = Co
q /(1 − q),

where Co
q is the outage capacity, Rq is defined in (3) and

R(Dq) is the source rate distortion function (8) evaluated at
distortion level Dq.

This lemma gives a sufficient condition for the source to be
transmitted over the channel subject to the outage distortion
constraint (5). In the proof we see the design of encoder fn

and decoder φn involves a two-stage procedure, i.e the encoder
fn consists of a source encoder f̂n and a channel encoder f̃n,
and similarly for the decoder φn. In fact Lemma IV.1 can be
viewed as the direct part of source-channel separation under
the outage distortion metric.
In the rate distortion theory for source coding, one often

imposes the average fidelity criterion

E

{

d(V n, V̂ n)
}

≤ D. (9)

The main challenge here is to satisfy the condition (5) which
is based on the tail of the distortion distribution rather than on
its mean. So for source coding, instead of the global average
fidelity criterion (9), we impose the following local ε-fidelity
criterion [10, page 123]

Pr
{

(V n, V̂ n) : d(V n, V̂ n) ≤ D
}

≥ 1 − ε. (10)

In the limit of ε approaching 0, the ε-fidelity criterion (10)
is a stronger condition than the average fidelity criterion (9).
But for a fixed ε > 0, neither of the criterions (9) and (10)
implies the other. It is well known that for any δ > 0 there
exist source codes with rate R < R(D) + δ such that the



average fidelity criterion is satisfied [14, page 351]. In order
to prove Lemma IV.1, we need a stronger result as given by
the following lemma [10, page 125]:

Lemma IV.2 For any 0 < ε < 1 there also exist source codes
with rate R < R(D) + δ such that the ε-fidelity criterion (10)
is satisfied.

The existence of these codes is essential to the following proof
of Lemma IV.1.

Proof: In the following we denote R = R(Dq) and C =
Rq = Co

q /(1 − q) to simplify notation. The outage distortion
metric (5) is satisfied through a two-stage separate source-
channel encoder and decoder. By Lemma IV.2, for any 0 <
ε < 1 and δ > 0, there exists source encoder

f̂n : V n → U ∈ {1, 2, · · · , 2n(R+δ)}

and source decoder

φ̂n : Û ∈ {1, 2, · · · , 2n(R+δ)} → V̂ n

such that
Pr

{

d(V n, V̂ n) ≤ D
}

≥ 1 − ε.

By definition of C = Co
q /(1 − q) there exist channel codes

with channel encoder

f̃n : U ∈ {1, 2, · · · , 2n(C−δ)} → Xn

and channel decoder

φ̃n : (Y n, S) → Û ∈ {1, 2, · · · , 2n(C−δ)}

such that lim
n→∞

P (n)
o ≤ q and lim

n→∞
P (n)

e = 0. For sufficiently
small δ we have R + δ < C − δ, which guarantees the output
of the source encoder f̂n always lies in the domain of the
channel encoder f̃n. Now

Pr
{

d(V n, V̂ n) ≤ D
}

≥ Pr
{

d(V n, V̂ n) ≤ D, U = Û
}

≥ (1 − P (n)
o )(1 − P (n)

e )(1 − ε) → 1 − q

as n → ∞ and ε → 0.
We illustrate the separate source and channel codes con-

structed in the proof of Lemma IV.1 by the following example.
As shown in Figure 1, a Gaussian source CN (0, σ2) is
transmitted over a Rayleigh slow-fading Gaussian channel
with fading distribution

p(γ) = (1/γ̄) e−γ/γ̄ ,

where γ̄ is the average channel power gain. The transmitter
has a power constraint P . The additive Gaussian noise is i.i.d.
and normalized to have unit variance. In this example we index
each channel by the power gain γ, which has the same role as
the previous channel index s. For an outage probability q the
corresponding threshold of channel gain is γq = −γ̄ log(1−q),
so in non-outage states the channel can support a rate of

Rq = log(1 + Pγq) = log [1 − P γ̄ log(1 − q)] . (11)

The rate distortion function of a complex Gaussian source is
given by R(Dq) = log(σ2/Dq). From Lemma IV.1 if

σ2/Dq < 1 − P γ̄ log(1 − q), (12)

then the outage distortion requirement (5) can be satisfied by
concatenation of a source code at rate R(Dq) and a channel
code at rate Rq as given in (11).

DecoderChannelEncoderV n
fnCN (0, σ2)

Xn Y n

φnp(γ)
V̂ n

Fig. 1. Transmission of Gaussian source over slow-fading Gaussian channels

It is well known that the uncoded scheme is optimal for
transmission of a Gaussian source over a Gaussian channel
when the number of channel uses per source symbol is 1
[15]. The optimality is in the sense that a linear code X =
√

P/σ2V can achieve the minimum distortion

D∗
γ =

σ2

1 + Pγ
(13)

for each channel state γ. It is easily seen that the optimal
uncoded scheme also requires (12) in order to satisfy the
outage distortion constraint.
We conclude that source-channel separation holds for this

system under the outage distortion metric. The source-channel
interface compares R(Dq) and Rq = Co

q /(1−q) to determine
whether the target distortion Dq is achievable with probability
no less than (1 − q). If R(Dq) < Rq then a separate source
channel coding scheme suffices; if R(Dq) > Rq then the
outage distortion constraint can never be satisfied even for
optimal joint source-channel coding.
For other systems that transmit ergodic stationary sources

over composite channels, Lemma IV.1 gives the direct part
of the source-channel separation under the outage distortion
metric. A general converse is under investigation.

B. Source-Channel Separation Fails for Expected Distortion

Unlike the outage distortion metric, we do not believe that
source-channel separation holds for the expected distortion
metric. In the following we analyze the same example in
Figure 1 under the expected distortion metric. We give the
optimal expected distortion which is achievable with uncoded
transmissions. We also analyze the achievable expected distor-
tion under separate source-channel coding and characterize the
corresponding distortion increase as compared to the optimal
case.
1) Optimal Joint Source-Channel Coding: As aforemen-

tioned in Section IV-A, the uncoded scheme with a linear
code X =

√

P/σ2V can achieve the minimum distortion (13)
for each channel state γ, and therefore achieves the optimal
expected distortion

(De)∗ =

∫ ∞

0

σ2e−γ/γ̄

1 + Pγ
· dγ

γ̄
=

σ2e1/P γ̄

P γ̄
Ei

(

1

P γ̄

)

, (14)



where
Ei(x) =

∫ ∞

x

(

e−t/t
)

dt

is the exponential integral function. Next we characterize the
end-to-end distortion with separate source-channel coding.
2) Source-Channel Separation with Channel Codes for

Outage Capacity: Consider using a channel code for outage
capacity Co

q and a source code at rate Rq = Co
q /(1 − q)

with Rq defined in (3). With probability q the channel is
in outage so the receiver estimates the transmitted source
symbol by its mean and the distortion is its variance σ2. With
probability (1−q) the channel can support the rate Rq and the
end-to-end distortion is Dq = D(Rq). The overall expected
distortion is averaged over the non-outage and outage states,
i.e. De

1(q) = qσ2 +(1− q)Dq . This fidelity criterion was also
adopted in [6] to analyze a two-hop fading channel.
Under separate source-channel coding and channel codes for

outage capacity, the minimum achievable distortion is obtained
by optimizing De

1(q) over q ∈ (0, 1). For the example in
Figure 1 this becomes

De
1 = min

0<q<1
De

1(q) = min
0<q<1

qσ2 +
(1 − q)σ2

1 − P γ̄ log(1 − q)
(15)

and the solution is to evaluate De
1(q) at

q∗D = 1 − exp

{

− 2

1 +
√

1 + 4P γ̄

}

. (16)

One might be tempted to think that the channel should
optimize its outage capacity

max
0<q<1

Co
q = max

0<q<1
(1 − q) log [1 − P γ̄ log(1 − q)] (17)

and provide (q∗C , Rq∗

C
) as the interface to the source, where

q∗C is the argument that maximizes (17). In fact the solution

q∗C = 1 − exp

{

−eW (P γ̄) − 1

P γ̄

}

,

is in general different from q∗D in (16), where W (z) is the
Lambert-W function satisfying z = W (z)eW (z). In case of
separate source-channel coding where the channel has no
access to the source statistics, it is insufficient for the channel
to provide only (q∗C , Rq∗

C
) as the interface; instead it should

provide the entire (q, Rq) curve and let the source choose
the optimal operating point on this curve to minimize overall
average distortion. Similarly, given a target expected distortion
D, the source should determine for each outage probability q
the corresponding outage distortion Dq = (D − qσ2)/(1− q)
and provide the entire (q, R(Dq)) curve as the interface. With
separate source and channel coding and a channel code for
outage capacity, the expected distortion target is achievable if
and only if there exists q such that R(Dq) ≤ Rq .
We illustrate the source-channel interface with a numerical

example of the communication system in Figure 1: γ̄ = 1,
σ2 = 1 and P = 10. From (15) the minimum expected
distortion De

1 = 0.443 is obtained with q∗D = 0.237. For three
different expected distortion levels D = {0.9De

1, De
1, 1.1De

1},
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Fig. 2. Source channel interface with channel code for outage capacity

we compute for each outage probability q the corresponding
outage distortion Dq = (D − qσ2)/(1 − q) and the source
coding rate R(Dq). These curves are plotted in Figure 2
together with the outage capacity Co

q and the rate Rq that
can be supported by the channel for non-outage states. We
observe the outage capacity is maximized at q∗C = 0.38 )= q∗D,
so in general we should compare the entire curve (q, Rq) and
(q, R(Dq)) to determine whether the expected distortion target
can be achieved with channel codes for outage capacity.
3) Source-Channel Separation with Channel Codes for Ex-

pected Capacity: We have seen in Section II that a composite
channel can be viewed as a broadcast channel with virtual
receivers indexed by each channel state. A broadcast channel
code can be applied to achieve rate Rs when channel is in
state s. It is well-known that a Gaussian source is successively
refinable so we can design a multi-resolution source code
which, when combined with the broadcast channel code,
achieves a distortion D(Rs) for each channel state s. The
overall expected distortion is ESD(RS).
For the system under consideration, we assume a power al-

location ρ(γ) ≥ 0 which satisfies the overall power constraint
∫ ∞
0 ρ(γ)dγ = P . It is shown in [5] that the following rate is
achievable

R(γ) =

∫ γ

0

uρ(u)

1 + uI(u)
du

when the channel gain is γ. Here I(γ) =
∫ ∞

γ ρ(u)du is the
interference level when channel is in state γ. The minimum
expected distortion with a multi-resolution source code and a
broadcast channel code is then

min
ρ(γ)

∫ ∞

0
σ2e−R(γ)p(γ)dγ. (18)

The solution to the above optimization problem is obtained in
[9] as the limiting case of a discrete optimization. The optimal
power allocation satisfies

ρ∗D(γ) =

{

0, γ < γP or γ > γ̄,
−I ′(γ), γP ≤ γ ≤ γ̄,



where

I(γ) =

∫ γ
γ̄

(

1
2γ̄ − 1

u

)

e−u/2γ̄du

γe−γ/2γ̄
,

and γP satisfies I(γP ) = P . The corresponding minimum
expected distortion is

De
2 = σ2

[

D(γP ) +

∫ γP

0
p(γ)dγ

]

,

where

D(γ) =
e−1 − 1

γ̄

∫ γ
γ̄ e−(u+γ̄)/2γ̄ (u/γ̄)−1 du

(γ/γ̄)−1 e(γ−γ̄)/2γ̄
.

In general the optimal power allocation ρ∗C(γ) that maximizes
the expected capacity

∫ ∞
0 R(γ)p(γ)dγ, as determined in [5],

is different from ρ∗D(γ) that minimizes the expected distortion
(18). Assuming separate source and channel coding and a
broadcast channel code, the channel should provide the entire
capacity region {(Rs)} as the interface.
In Figure 3 we plot the expected distortion under the differ-

ent source-channel coding schemes explored in this section. It
is observed that the broadcast channel code combined with the
multi-resolution source code performs slightly better than the
channel code for outage capacity combined with a single rate
source code, but there is a large gap between their expected
distortion and that of the optimal uncoded scheme.
The uncoded transmission is essentially a joint source-

channel coding scheme. Under the expected distortion metric,
the source determines it is optimal to send uncoded symbols
directly over the channel only after incorporating the statistics
of a slow-fading Gaussian channel. The same uncoded trans-
mission scheme may not be optimal or even inapplicable if the
channel statistics change – consider instead we have a binary
symmetric channel where the source output (complex values)
does not match the channel input (binary values).
It is known that source-channel separation fails for certain

multi-user channels [11]. Here we consider transmission of
a Gaussian source over a slow-fading Gaussian channel and
illustrate that even for point-to-point communication systems,
under certain end-to-end distortion metrics such as expected
distortion, separation also fails and joint source-channel coding
is necessary to achieve the optimal performance.

V. CONCLUSION
We consider transmission of a stationary ergodic source

over non-ergodic composite channels with channel state infor-
mation at the receiver (CSIR). Similar to previously studied
alternative channel capacity definitions such as outage and
expected capacity, alternative end-to-end distortion metrics
including outage and expected distortion are introduced in this
work. We then study the transmission of a Gaussian source
over slow-fading Gaussian channels and illustrate that the
source-channel coding can be separated under an end-to-end
outage distortion metric, while joint source-channel coding is
optimal under an expected distortion metric. We also show that
the source and channel need to exchange information through

an appropriate interface in order to facilitate separate source-
channel coding.
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