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Abstract

We consider the distributed computation of a function of random sources with minimal
communication. Specifically, given two discrete memoryless sources, X and Y , a receiver
wishes to compute f(X, Y ) based on (encoded) information sent from X and Y in a distributed
manner. A special case, f(X, Y ) = (X, Y ), is the classical question of distributed source coding
considered by Slepian and Wolf (1973).

Orlitsky and Roche (2001) considered a somewhat restricted setup when Y is available
as side information at the receiver. They characterized the minimal rate at which X needs to
transmit data to the receiver as the conditional graph entropy of the characteristic graph of X
based on f . In our recent work (2006), we further established that this minimal rate can be
achieved by means of graph coloring and distributed source coding (e.g. Slepian-Wolf coding).
This characterization allows for the separation between “function coding” and “correlation
coding.”

In this paper, we consider a more general setup where X and Y are both encoded
(separately). This is a significantly harder setup for which to give a single-letter characterization
for the complete rate region. We find that under a certain condition on the support set of X and
Y (called the zigzag condition), it is possible to characterize the rate region based on graph
colorings at X and Y separately. That is, any achievable pair of rates can be realized by means
of first coloring graphs at X and Y separately (function coding) and then using Slepian-Wolf
coding for these colors (correlation coding). We also obtain a single-letter characterization
of the minimal joint rate. Finally, we provide simulation results based on graph coloring to
establish the rate gains on real sequences.

I. INTRODUCTION

Consider a sensor network where the sensors make some correlated measurements and
relay them to a central receiver. In practice, it is typical that the receiver wants to compute
a specific function of the incoming data. Thus, most of the received information is
irrelevant to the receiver. To increase system efficiency, we want to increase compression
gains as much as possible. What can be done to obtain such coding gains?

To answer that question, we consider two sources of compression gains: correlation
between the sources and the function to be computed in the end. Traditional distributed
data compression would use the correlation between the sources (see, e.g., [1]), but would
miss the gain associated with the end-users goal.

We begin with an example that illustrates the gains beyond simple correlation. Consider
two independent sources producing n-bit integers, X and Y , uniformly. Suppose the
receiver only wished to compute the parity of X +Y . If we ignored the receiver’s goals,



X

f(X,Y)

ENCODE

ENCODE

DECODE

Y

Fig. 1. The distributed encoding of X and Y such that f(X, Y ) is recovered at the decoder.

it would take at least n bits from the first source and n from the second. Nevertheless,
in this example, it is clear that simply sending the final bit of each integer allows the
receiver to compute the XOR to determine the parity of X +Y . Thus, using more clever
compression, we have reduced 2n bits to 2 bits, a huge potential compression gain.

A. Setup
We consider two discrete memoryless sources, X and Y , drawn from discrete (finite)

sets X and Y , respectively, according to a joint distribution p(x, y). The receiver wishes
to compute a function f : X ×Y → Z , where Z is some finite set. The goal of this paper
is to determine the set of all rates at which X and Y can be encoded in a distributed
manner so that a decoder can reconstruct f with low probability of error.

Figure I-A illustrates the question of interest. Note that if f(X, Y ) = (X, Y ), then this
question is the classical distributed source coding problem considered in a seminal paper
by Slepian and Wolf [2]. Next, we introduce necessary notation and definitions.

1) Formal problem statement: We denote n-sequences of random variables X and Y
as X and Y, respectively, where n is clear from context. Because the sequence (X,Y)
is drawn i.i.d. according to p(x, y), we can write p(x,y) =

∏n
i=1 p(xi, yi). The receiver

is interested in computing a function f : X ×Y → Z or f : X n ×Yn → Zn, its obvious
vector extension.

For any n, Rx, and Ry, using the notation for the distributed source coding problem
from [3], we define a

((
2nRx , 2nRy

)
, n

)
-distributed functional code for the joint source

(X, Y ) and function f as two encoder maps,

ex :X n →
{
1, . . . , 2nRx

}
,

ey :Yn →
{
1, . . . , 2nRy

}
,

and a decoder map,

d :
{
1, . . . , 2nRx

}
×

{
1, . . . , 2nRy

}
→ Zn.

The probability of error is

P n
e = Pr[{(x,y) : f(x,y) #= d(ex(x), ey(y))}].



A rate pair, (Rx, Ry), is achievable if there exists a sequence of
((

2nRx , 2nRy
)
, n

)
-

distributed functional codes such that P n
e → 0 as n → ∞. The achievable rate region is

the closure of the set of all achievable rates.
2) The goal: Our goal is to find the achievable rate region for the above problem. Fur-

thermore, we would like a modular architecture that effectively decouples the “correlation
coding” from the “function coding,” where the correlation coding could be implemented
using Slepian-Wolf codes.

B. Previous results
To state some important previous results, as well as our own, we need more notation.

The characteristic graph Gx = (Vx, Ex) of X with respect to Y , f , and p(x, y) is defined
as follows: Vx = X and an edge (x1, x2) ∈ X 2 is in Ex if there exists a y ∈ Y such
that p(x1, y)p(x2, y) > 0 and f(x1, y) #= f(x2, y). Effectively, Gx is the “confusability
graph” from the perspective of the receiver. This was first defined by Witsenhausen [4].
The characteristic graph of Y with respect to X , f , and p(x, y) is defined analogously
and denoted Gy.

The graph entropy of any graph G with a distribution on its vertices was defined by
Körner [5] as:

HG(X) = min
X∈W∈Γ(G)

I(W ; X),

where Γ(G) is the set of all independent sets1 of G. We explain the notation: X ∈ W
is equivalent to saying that p(w, x) > 0 implies x ∈ w for the joint distribution p(w, x).
Witsenhausen [4] showed that the graph entropy is the minimum rate at which a variable
can be encoded such that a function of that source is recovered (when the graph is defined
so x and x′ have an edge when f(x) #= f(x′)).

Orlitsky and Roche [6] defined an extension of Körner’s graph entropy, the conditional
graph entropy, as:

HG(X|Y ) = min
X∈W∈Γ(G)
W−X−Y

I(W ; X|Y ).

Further, when G is the characteristic graph of X with respect to Y , f , and p, they
established that HG(X|Y ) is the minimum required transmission rate from X to receiver
to compute function f(X, Y ) with small probability of error when Y is available as side
information.

A natural extension of this problem is the computation of rate distortion region. Ya-
mamoto gives a full characterization of the rate distortion function for the side information
functional compression problem [7] as a generalization of the Wyner-Ziv side-information
rate-distortion region [8]. Feng, Effros, and Savari [9] build upon the Yamamoto function.
The rate distortion when Y is a separate source is an open problem and future work.

To describe some of the more interesting results for graph entropies, we require more
notation. Alon and Orlitsky denoted [10] the OR-power graph of G as Gn = (Vn, En)
where Vn = V n and two vertices (x1,x2) ∈ En ⊆ V 2

n if any component (x1i, x2i) ∈ E.
We introduce standard graph vertex coloring where a coloring is any function c : V →

N of a graph G = (V, E) such that (x1, x2) ∈ E implies c(x1) #= c(x2). The entropy of

1A subset of vertices of a graph is an independent set if no two nodes in the subset are adjacent to each other in G.



a coloring is the entropy of the induced distribution on colors p(c(x)) = p(c−1(c(x)))
where c−1(x) = {x̄ : c(x̄) = c(x)} and is called a color class.

Next, we define ε-colorings (for any ε > 0). Let A ⊂ X × Y be any subset such that
p(A) ≥ 1 − ε. Define p̂(x, y) = p(x, y) · 1(x,y)∈A. While this is not a true probability,
our definition of characteristic graph of X (or Y ) with respect to Y (or X), f , and p̂
is valid. Denote these characteristic graphs Ĝx and Ĝy. Note that the edges of Ĝx and
Ĝy are subsets of the edges of Gx and Gy. Finally, we say cx and cy are ε-colorings of
GX and Gy if they are valid colorings of Ĝx and Ĝy defined with respect to some high
probability set A.

Alon and Orlitsky [10] defined the chromatic entropy of a graph G as:

Hχ
G(X) = min

G-colorings c
H(c(X)).

We defined [11] a natural extension, the conditional chromatic entropy, as follows:

Hχ
G(X|Y ) = min

G-colorings c
H(c(X)|Y ).

It should be noted that finding minimum entropy colorings is an NP-hard problem [12].
Now, we restate Körner’s result [5] as follows:

lim
n→∞

1

n
Hχ

Gn(X) = HG(X).

The implications of this result are that for large enough n, one can color a high probability
subgraph of the power graph Gn and send the colors to achieve near optimal functional
source coding (assuming G is the characteristic graph).

We extended Körner’s result to the side information case in [11] to obtain:

lim
n→∞

1

n
Hχ

Gn(X|Y) = HG(X|Y )

This can also decouple the function (graph coloring) from the correlation. We want to
extend such graph coloring techniques to our current problem of interest.

C. Our Contribution
In this paper, we extend the results and arguments of Körner [5]. As the main result

of this paper, we show that when a condition is imposed on the support of (X, Y ), valid
colorings completely characterize the rate region.

The condition we must impose we call the zigzag condition for reasons made clear
by the definition. The condition requires that for any (x1, y1) and (x2, y2) in X × Y ,
p(x1, y1) > 0 and p(x2, y2) > 0 imply either p(x1, y2) > 0 or p(x2, y1) > 0.

For any variables X and Y , denote by R(X, Y ) the Slepian-Wolf achievable rate region
[2]. In other words, R(X, Y ) is the set of all (Rx, Ry) such that:

Rx ≥ H(X|Y ),

Ry ≥ H(Y |X),

Rx + Ry ≥ H(X, Y ).



Also, for any n, and functions gx and gy defined on X n and Yn respectively, denote by
Rn(gx, gy) the Slepian-Wolf region for the induced variables gx(X) and gy(Y) normalized
by the block length. In other words, Rn(gx, gy) is the set of all (Rx, Ry) such that:

Rx ≥ 1

n
H(gx(X)|gy(Y)),

Ry ≥ 1

n
H(gy(Y)|gx(X)),

Rx + Ry ≥ 1

n
H(gx(X), gy(Y)).

Define Sε =
⋃∞

n=1

⋃
(cn

x ,cn
y ) Rn(cn

x, cn
y ) where for all n, cn

x and cn
y are ε-colorings of Gx

and Gy. We can now state our main result in the notation just given.

Theorem 1: Let S be the subset of Sε, for all ε > 0, such that any other subset, A, is
a subset of S. The achievable rate region, R, for the distributed functional source coding
problem, under the zigzag condition, is the set closure of S.

Thus, under the zigzag condition, for any n, any colorings of high probability subgraphs
of Gn

x and Gn
y will allow for computation of the function. Furthermore, no other encodings

can achieve smaller rates. Thus, we have decoupled the encoding such that we first color
our graph, and then we apply a Slepian-Wolf code on the colors. Further, while the above
characterization is not single letter, any coloring (except that in which the coloring is a
1-1 function of the source) necessarily does better than the Slepian-Wolf rates, by the
Data Processing Inequality (cf. [3]). Also, we know that the Orlitsky-Roche bound is on
the border of our region. Moreover, we can derive a characterization of the minimal joint
rate, Rx + Ry, in terms of graph entropies.

Corollary 1: Under the zigzag condition, the joint rate Rx +Ry = HGx(X)+HGy(Y )
is achievable. Further, when there is a unique point that achieves this joint rate, it is the
minimal joint rate.

We can approach the rates given for Rx and Ry by the previous result of Körner [5]
where it requires a minimum entropy coloring of the product graph [10] (or using Körner’s
scheme). This implies (as shown later) that the mutual information of the minimum
entropy colorings of Gn

x and Gn
y goes to zero as n → ∞.

We now provide proofs of our results.

II. PROOFS

We first show that if colors are available at the decoder, the decoder can reconstruct
the function. This will prove the achievability of all such rates because we know how
many bits are required to send the colors using a Slepian-Wolf code. Next, we show that
all valid encodings are in fact ε-colorings of the characteristic graph (and its powers).
This will establish the converse.

A. Achievability
We prove the achievability of all rates in our region.



Lemma 1: Suppose we have a joint source (X, Y ) drawn i.i.d. Then for any colorings
cx and cy of Gx and Gy, respectively, there exists

f̂ : cx(X ) × cy(Y) → Z

such that f̂(cx(x), cy(y)) = f(x, y) for all (x, y) such that p(x, y) > 0.
Proof: We proceed by constructing such a f̂ . Suppose we have two colors, γ ∈

cx(X ) and σ ∈ cy(Y), respectively. Then, let x̂ and ŷ be any (say the first) elements of
the color classes c−1

x (γ) and c−1
y (σ), and let f̂(γ, σ) = f(x̂, ŷ).

We now show that this function is well-defined on the support set of (X, Y ). Suppose
(x1, y1) and (x2, y2) are in X × Y and both pairs have positive probability. Suppose
further that cx(x1) = cx(x2) and cy(y1) = cy(y2). Then we know that there is no edge
(x1, x2) in Gx or (y1, y2) in Gy.

By the zigzag condition, p(x1, y2) > 0 or p(x2, y1) > 0. By the definition of Gx, for
all y such that p(x1, y)p(x2, y) > 0, (a) f(x1, y) = f(x2, y). By definition of Gy, for all
x such that p(x, y1)p(x, y2) > 0, (b) f(x, y1) = f(x, y2).

If p(x1, y2) > 0, (a) would imply that f(x1, y2) = f(x2, y2). Further, (b) would imply
f(x1, y1) = f(x1, y2). Thus, f(x1, y1) = f(x2, y2).

If p(x2, y1) > 0, a similar argument applies. Thus, our function f̂ is well-defined and
has the desired property.

This argument can be clearly extended to valid colorings of Gn
x and Gn

y where the
function is now the n-fold Cartesian product of the original function. Thus, Lemma 1
implies that we can successfully recover our function f from colors of the characteristic
graphs and their powers.

Thus, if the receiver is sent colors, it can look up f based on its table of f̂ . The
question is now of faithfully (with probability of error less than ε) transmitting these
colors to the receiver. However, when we consider the colors as sources, we know the
achievable rates.

Lemma 2: For any n, colorings cn
x and cn

y of Gn
x and Gn

y , respectively, the following
rates, (Rc

x, R
c
y), are achievable:

Rc
x ≥ H(cn

x(X)|cn
y (Y)),

Rc
y ≥ H(cn

y (Y)|cn
x(X)),

Rc
x + Rc

y ≥ H(cn
x(X), cn

y (Y)).
Proof: This follows directly from the Slepian-Wolf Theorem [2] for the separate

encoding of correlated sources.
Lemma 3: Lemma 2 applies when the colorings are ε-colorings.

Proof: For all elements of the high probability subset that the coloring covers, the
above proof works. Everything else, by definition, has probability less than ε. Declare
an error when the elements to color are not in the high probability subset. Thus, we
have an error if the elements we want to color are, in this sense, atypical, or if they
are typical and the Slepian-Wolf code fails. The probability of this event is less than 2ε
when the probability of a Slepian-Wolf code failure is less than ε. Thus, the rates for
successful transmission of the coloring, given in Lemma 2, are achievable when cn

x and
cn
y are ε-colorings.



Finally, in light of the fact that n source symbols are encoded for each color, the
achievable rates for X and Y are: for any ε, all rates (Rx, Ry) such that

Rx ≥ 1

n
H(cn

x(X)|cn
y (Y)),

Ry ≥ 1

n
H(cn

y (Y)|cn
x(X)),

Rx + Ry ≥ 1

n
H(cn

x(X), cn
y (Y)).

where cn
x and cn

y are achievable ε-colorings. Thus every (Rx, Ry) ∈ Sε is achievable for
all ε > 0. Therefore, every (Rx, Ry) ∈ S is achievable.

B. Converse
Next, we prove that any distributed functional source code with small probability of

error induces a coloring.
Suppose ε > 0. Define for all (n, ε),

Fn
ε = {f̂ : Pr[f̂(X,Y) #= f(X,Y)] < ε}.

This is the set of all functions that equal f to within ε probability of error. (Note that
all achievable distributed functional source codes are in Fn

ε for large enough n.)
Lemma 4: Consider some function g : X × Y → Z . Any distributed functional code

that reconstructs g with zero-error (with respect to a distribution p(x, y)) induces colorings
on the characteristic graphs of X and Y with respect to g, p(x, y), and Y and X ,
respectively.

Proof: Suppose we have encoders ex and ey, decoder d, and characteristic graphs
Gn

x and Gn
y . Then by definitions, a zero-error reconstruction implies that for any (x1,y2),

(x2,y2) such that if p(x1,y1) > 0, p(x2,y2) > 0, ex(x1) = ex(x2), and ey(y1) = ey(y2),
then

f(x1,y1) = f(x2,y2) = d(ex(x1), ey(y1)). (1)

We now show that ex and ey are valid colorings of Gn
x and Gn

y . We demonstrate the
argument for X . The argument for Y is analogous. We proceed by contradiction. There
must be some edge with both vertices with the same color. In other words, there must exist
(x1,x2,y) such that p(x1,y)p(x2,y) > 0, ex(x1) = ex(x2), and f(x1,y) #= f(x2,y).
This is impossible (by taking y1 = y2 = y in equation (1)). Hence, we have induced
colorings of the characteristic graphs.

We now show that any achievable distributed functional code also induces an ε-coloring
of the characteristic graphs.

Lemma 5: All achievable distributed functional codes induce ε-colorings of the char-
acteristic graphs.

Proof: Let g(x,y) = d(ex(x), ey(y)) ∈ Fn
ε be such a code. Then, we know that

a zero-error reconstruction (with respect to p) of g induces colorings, ex and ey, of the
characteristic graphs with respect to g and p by Lemma 4. Let the set of all (x,y) such
that g(x,y) #= f(x,y) be denoted as C. Then because g ∈ Fn

ε , we know that Pr[C] < ε.
Therefore, the functions ex and ey restricted to C are ε-colorings of Gx and Gy (by
definition).

Thus, the Lemma 3 and Lemma 5 establish Theorem 1 in full.



RX

RY

H(X)HG(X)HG(X|Y)

HG(Y|X)

HG(Y)

H(Y)

Fig. 2. The rate region when there is an extreme point. The Orlitsky-Roche points are also shown.

C. Rate region
The region given in Theorem 1 has several interesting properties. First, it is convex.

This can be seen using time-sharing arguments for any two points in the region (as is
done for all rate region problems). Second, there is a unique minimal joint rate Rx +Ry.
This can be seen from Figure 2; note that G is assumed to be Gx for points on the Rx

axis and Gy for points on the Ry axis.
This rate region has (on its “corners”) the Orlitsky-Roche points, (HGx(X|Y ), H(Y ))

and (H(X), HGy(Y |X)), which can be achieved with graph coloring, in the limit sense,
as shown in [11]. For any rate Rx ∈ (HGx(X|Y ), H(X)), the joint rate required is less
than or equal to the joint rate required by a time-sharing of the Orlitsky-Roche scheme.

We can give another point on the “edge” of the region that can be characterized with
graph entropies when there is a unique rate pair that achieves the minimal joint rate. We
next prove Corollary 1 and describe this rate pair.

D. Corollary
First we note that the rate pair (HGx(X), HGy(Y )) can be achieved. This is true by

Körner’s result showing that graph colorings can achieve these rates. Because they are
colorings, they must be achievable rates.

Next, suppose there is a pair that achieves the minimal joint rate. On the part of the
rate region where Rx < H(X) and Ry < H(Y ), we can describe all edge points as close
to the corner points of Rn(cx, cy) for some ε-colorings cx and cy. Further, this implies
that the corner points, as one moves further away from Rx = H(X) and RY = H(Y )
must converge. Suppose this point of convergence is (R1, R2).

Thus, for any ε > 0, there exists an N such that for all n > N ,
∣∣R1 − 1

nH(cn
x|cn

y )
∣∣ <

ε,
∣∣R2 − 1

nH(cn
y |cn

n)
∣∣ < ε, and

∣∣R1 + R2 − 1
nH(cn

x, cn
y )

∣∣ < ε, for some cn
x and cn

y , ε-
colorings of Gn

x and Gn
y , respectively. We can combine the above inequalities to show∣∣R1 − 1

nH(cn
x)

∣∣ < 2ε,
∣∣R2 − 1

nH(cn
y )

∣∣ < 2ε, and
∣∣R1 + R2 −

(
1
nH(cn

x) + 1
nH(cn

y )
)∣∣ < 4ε.

This, the joint rate is within 4ε of 1
nH(cn

x) + 1
nH(cn

y ), and it is minimal. We know that



those rates are minimized in the limit as n increases without bound to HGx(X)+HGy(Y )
(by Körner’s result [5]). Thus, Rx = HGx(X) + ε and Ry = HGy(Y ) + ε will achieve
the minimum joint (achievable) rate. Thus, Corollary 1 is established.

This corollary implies that minimum entropy colorings have decreasing mutual infor-
mation as n increases. Thus, the Slepian-Wolf codes are unnecessary when achieving
the minimal joint rate! (Nevertheless, finding the minimum entropy colorings is, again,
NP-hard.)

E. Support issues
Throughout our analysis, we have assumed that the zigzag condition holds. Practically,

this assumption is quite reasonable as there is seldom the need to account for zero
probability events. In its absence, our simple analysis that colors are sufficient to compute
the function fails. Nevertheless, it is unclear whether a more robust proof exists that does
not require this condition. The next section shows some of our simulation results using
real data that shows that indeed that condition is not unreasonable.

III. SIMULATION RESULTS

We obtained tracking data2 from SRI. This data represents GPS location data (for
so-called ”Blue Force Tracking”). It includes information on various mobiles, including
latitude and longitude coordinates. We ignored the other information for the purpose of
this simulation.

We focused on two mobiles, our sources. We assume that our sources are the positional
differences (i.e. ∆-encoding), X1 and X2, where Xi is actually a pair, (X1a, X1b) of the
latitude and longitude data. The empirical distributions for these suggest that the latitude
and longitude data for each source is uncorrelated, and across sources, the information
is also uncorrelated. This means that any gains will be because the complexity of the
function has decreased from f(X, Y ) = (X, Y ) ∈ X × Y to recovering the function
described next. We use f(x1,x2) = 1|x1−x2|<D where D = 1.1 · 10−5 to construct our
characteristic graphs. Thus, this is a proximity function that equals 1 when the two
mobiles are within range of each other (and 0 otherwise).

We chose this value of D because it occurred with empirical probability 0.437. If
we chose a higher probability event, we would expect higher gains. We use n = 1
for the graphs and do not consider power graphs. Had we, our rate gains would be
higher, though the computational complexity would increase exponentially with n. Our
coloring algorithm was a simple greedy algorithm that did not use any of the probability
information nor was it an ε-coloring. We expect better gains with more advanced graph
coloring schemes.

We do not actually simulate the Slepian-Wolf coder, but rather assume the Slepian-
Wolf code will introduce no more error to the colors than it will to the original sources.
Thus, the entropy provides a good comparison point. All units are bits. The final column
represents the percent reduction of the second column with respect to the first column.
We find:

H(X1) = 3.94 H(c(X1)) = 3.51 10.9%

H(X2) = 3.99 H(c(X2)) = 2.56 35.8%

2Data available at: http://www.ai.sri.com/ajh/isat.



Thus, the joint rate reduction is 23.4%.

IV. CONCLUSION

We considered the distributed functional source coding problem. We found it was
possible to decouple the correlation coding from the functional coding under the zigzag
condition. Thus, we found that a layering of the functional compression problem is
possible. Further, the entire rate region can be accounted for in the layering. We have not
found a single-letter characterization for the rate region, but we have shown three points
in the rate region that can be described in terms of Körner’s graph entropy and Orlitsky
and Roche’s conditional graph entropy. Further, we have shown that in order to achieve
the minimal joint rate, we need to find minimum entropy colorings of the characteristic
graphs. In this case, the Slepian-Wolf code is unnecessary because the colorings have
very small mutual information. Moreover, we have shown, through simulation, that graph
coloring algorithms need not be complex to lead to large compression gains.

Future work includes a characterization of the boundary points for the region (not just
the three points we have computed). Further, we want to relax the zigzag condition. While
this condition is rather mild, we want to see if lower rates could be achieved as a result
of such a relaxation. Further, we want to relax the fidelity criterion, i.e. examine the rate
distortion problem. Yamamoto [7] and Feng, Effros, and Sevari [9] have demonstrated
rate distortion functions, and we wish to see if a graph coloring approach could be used
to achieve those rates.
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