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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. We formulate a broadcast problem, where
based on their quality of observations, outputs at various re-
ceivers are represented on a graph (called “degradation graph”).
If receiver Z is a physically degraded version of receiver Y , then
node Z is a child of node Y in this graph. This generalization of
the classical degraded broadcast channel provides a framework
for various situations where at least some information should
be available to receivers with partial (or noisier) observations.
Upper and lower bounds are obtained on the capacity region.
The upper bound is based on auxiliary variables, whose structure
is described by the mirror image of the channel’s degradation
graph. As a special case of our problem, a packet broadcast
network is considered.

I. INTRODUCTION

The conventional information theory for point-to-point com-
munication focuses on the decoding of a block of data bits
from the observation of a block of output symbols of the chan-
nel. An extension of this theory, which is useful in network
communication systems, is to consider the data transmission
when only different forms of partial observations are available
at the receiver. It is natural to connect such problems to broad-
cast channels, where possible forms of partial observation are
mapped to virtual receivers, each decoding some part of the
data message. One difficulty of this approach is to describe the
relation between these different partial observations, which are
not necessarily degraded versions of one another. This gives
rise to our formulation of a broadcast network.
A simple manner in which these partial observations could

be related to each other is a Markov chain, which gives rise
to the classical degraded broadcast channel.

X − Y0 − Y1 − · · ·− YL−1 (1)

For this channel with input X , amongst any two outputs Yk

and Ym, one is a degraded version of the other. To get rid of
this limitation, we model the interdependence between these
partial observations using a “degradation tree” (see Figure 1
for example). This graph denotes that the network channel
PY W1W2Z1Z2|X can be decomposed as follows

PY W1W2Z1Z2|X = PY |XPW1W2|Y PZ1|W1
PZ2|W2

(2)

The root of this degradation tree denotes the input X , which is
followed by a unique output Y . It is followed by its degraded
versions W1 and W2, which in turn have their own degraded
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Fig. 1. An example of degradation graph.

versions Z1 and Z2. Note that here for example Z2 need not
be a degraded version of W1.
The users in this degradation graph and their partial observa-

tions could have various physical interpretations. For example,
it could represent users which are physically farther from the
transmitter and hence receive noisier observations. It could
also represent users which only listen during a fraction of the
entire message transmission. As discussed before, even when
there is only one physical user, the degradation graph could
be used to represent the possible forms of partial observation.
One should be able to disseminate information such that

even with partial observations, a user can receive some part
of the transmitted information. Moreover, the information
received should grow as the quality of observations improves.
For example, in image transmission, even the weaker users
would like to get a coarse image, whereas the stronger users
would want some additional image resolution.
To formalize this notion of information dissemination, we

can think of the degradation graph as a sequence of multiple
layers, where layer k denotes the set of nodes at distance k+1
from the root. Outputs received at users in layer k + 1 are
degraded versions of outputs received in layer k. Assuming
total L layers, let the total information be split into L parts.
In our formulation, even the last layer users should get the first
part of this information, the second last layer users should get
the first as well as the second part and so on. Specifically,
layer L − 1 should be able to decode message ML−1, layer
L−2 should decodeML−2 as well as ML−1. In general, layer
k should decode Mk, Mk+1 · · ·ML−1. For example in Fig. 1,
Z1 and Z2 are in layer 2,W1 andW2 are in layer 1 and Y is in
layer 0. Hence both Z1, Z2 want message M2; both W1, W2

want M1 andM2; and Y wants M0, M1 and M2.
Previous works addressing similar concept of information

dissemination include multilevel diversity coding [2] and pri-
ority encoded transmission [4].
We assume that messages M0, M2 · · ·ML−1 are mutually



independent. Message Mk (0 ≤ k ≤ L − 1) is chosen
uniformly from {1, 2 . . . , 2nRk}, where Rk denotes the rate
of message k and n denotes the block length. We want to
characterize the achievable rate region (R0, R2 . . . , RL−1).
We define degradation graphs to include slightly greater

generality than the trees illustrated in Figure 1. A degradation
graph could have a node in layer k which has two parents
in layer k − 1, provided it is a deterministic function of each
parent.
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Fig. 2. A degradation graph which is not tree.

For example in Figure 2, Z2 has two parents W1 and W2,
which means Z2 = f1(W1) = f2(W2) where f1 and f2 are
deterministic functions. This generalization of allowing multi-
ple parents is useful for modeling packet broadcast networks
for example. One can now think of the degradation graph as
a directed acyclic graph, where an edge directed from node A
to node B denotes that either B is a noisier version of A or
B is a deterministic function of A.
The remaining paper is organized as follows. Section II

studies the classical physically degraded broadcast channel. A
converse was proved for the case of two users in [1] and also
[5]. We first prove the converse for L > 2 users using a method
similar to [1] for two users. This proof is also useful for
the converse for a general degradation graph. As an example,
we consider broadcast over binary erasure channels. A simple
scheme of time-sharing between some binary linear codes can
achieve the capacity region of this channel.
A channel with arbitrary degradation graph is studied in

Section III. An achievable rate region is presented and a
converse is proved which is based on mirror image of the
degradation graph. This converse gives the capacity region
for a class of degradation graphs. As a special case of our
problem, a packet broadcast network is studied in Section 4,
where our achievable rate region calculated in closed form.
This example shows how various problems such as priority
encoded transmission and multilevel diversity coding ([2] and
[4]) can be analyzed using degradation graphs.

II. CLASSICAL DEGRADED BROADCAST CHANNEL WITH
MULTIPLE RECEIVERS

In a physically degraded broadcast channel to L users (Y0,
Y1 . . . YL−1), the network channel can be decomposed as

PY0Y1···YL−1|X = PY0|XPY1|Y0
· · ·PYL−1|YL−2

(3)

Thus this channel is fully described by the L probability tran-
sition functions PY0|X , PY1|Y0

· · ·PYL−1|YL−2
for this channel.

The following achievable region was proved in [6], [7] using
superposition codes.

Consider a Markov chain

UL−1 − UL−2 · · ·− U1 − X − Y0 − Y1 · · ·− YL−1 (4)

where UL−1, · · ·U1 are called auxiliary random variables. The
joint distribution of all variables above is given by

(QUL−1UL−2···U1X) · (PY0Y1···YL−1|X)

where the second term is described by the channel as in (3).
The first term denotes the joint distribution of input X and
auxiliary variables. It is chosen by the code designer and has
a Markov structure as follows. Throughout this paper, we will
use Q for distributions chosen by the code designer and P for
channel transition probabilities.

QUL−1UL−2···U1X = QUL−1

(

2
∏

k=L−1

QUk−1|Uk

)

QX|U1
(5)

Then rate tuples (R0, R1 · · ·RL−1) satisfying following in-
equalities are achievable,

RL−1 ≤ I(UL−1; YL−1)

Rk ≤ I(Uk; Yk|Uk+1) for k ∈ [1 : L − 2]

R0 ≤ I(X ; Y0|U1)

Let RQ denote this rate region for a particular choice of
Q satisfying (4) and (5). The achievable region is obtained
conv

(

⋃

Q∈MarkovRQ

)

where the union is taken over all joint
distributions Q with a Markov structure in (4,5) and conv(·)
denotes the convex hull operation (arising from time-sharing
arguments).
One may wonder why is it necessary that the auxiliary

variables should have a Markov structure. The code designer
could have chosen any joint distribution QUL−1UL−2···U1X ,
which need not have a Markov structure. Using similar random
coding construction as [7], one can show that rate-tuples
obeying following equation are achievable with superposition.

RL−1 ≤ I(UL−1; YL−1)

Rk ≤ I(Uk; Yk|Uk+1Uk+2 · · ·UL−1) , k ∈ [1 : L − 2]

R0 ≤ I(X ; Y0|U1U2 · · ·UL−1)

We need to slightly modify the coding scheme in [7] for
achieving the rates above. Now the distribution of the Uk code-
book for user Yk depends on all previous auxiliary codewords
(in Uk+1, Uk+2 · · ·UL−1) for users Yk+1, Yk+2 · · ·YL−1. In
[7], this only depended on auxiliary Uk+1 codeword for user
Yk+1. Similarly, now the distribution of X codeword for user
Y0 depends on all auxiliary codewords instead of just the
auxiliary U1 codeword for Y1.
Let the achievable region above be denoted by R∗

Q, where
Q could be any joint distribution of auxiliaries and input. Since
mutual information can decrease or increase by conditioning,
it is unclear whether the convex hull conv

(

⋃

Q R∗
Q

)

over all
joint distributions Q remains unchanged when Q is restricted
to have a Markov structure. Next subsection clarifies this and
proves the optimality of Markov structure.



A. Converse for Degraded Broadcast Channels
Now let us prove optimality of this achievable region on

similar lines of Gallager’s proof for the two-user case1 [1].
This proof is helpful when proving the converse for general
degradation graphs.
First we define the following function over non-zero vectors

λ ≡ (λ1,λ2, · · · ,λL−1) ≥ 0,

C(λ) = sup
Q∈Markov

(

I(X ; Y0|U1) +
L−1
∑

k=1

λkI(Uk; Yk|Uk+1)

)

(6)

where the last term in the summation, I(UL−1; YL−1|UL), is
a shorthand for I(UL−1; YL−1). The supremum is over all
Markov chains UL−1 − UL−2 · · ·U1 − X . Similar to [1], it
can be shown that the supremum above is unchanged even if
we restrict the cardinality of each Ui to that of X .
We will show that an achievable rate-tuple must satisfy

R(λ) ≡ R0 +
L−1
∑

k=1

λkRk ≤ C(λ) ∀ λ ≥ 0 (7)

More specifically, we show that if a rate-tuple disobeys the
bound above for any λ ≥ 0, then vanishing error probability
cannot be achieved for all users. By convex programming, this
is the same as showing that any point outside the achievable
region conv

(

⋃

Q∈MarkovRQ

)

is not achievable, which proves
the optimality of the achievable region in [7]. The proof mainly
follows from the following lemma.
Lemma 1: Let Y 1:n

k denote a shorthand for all outputs at
user Yk from time 1 to n.

nC(λ) ≥ I(M0; Y
1:n
0 |M1M2 · · ·ML−1) (8)

+
L−2
∑

k=1

λkI(Mk; Y 1:n
k |Mk+1Mk+2 · · ·ML−1) (9)

+ I(ML−1; Y
1:n
L−1) (10)

Choice of auxiliaries: The proof of the lemma is omitted but
its main component is our substitution of auxiliary random
variable Uk at time j. It is defined as the set of
1) Past symbols (up to time j − 1) observed at user Yk

as well as the past symbols observed at its physically
degraded users (i.e., Yk+1, Yk+2, · · ·YL−1) and

2) the messages for layer i and all further layers, i.e.,
MkMk+1 · · ·ML−1.

This method for choice of auxiliaries is also used in proving
our converse for general degradation graphs.
Theorem 2: For some λ ≥ 0 , ε > 0, if a rate-tuple satisfies

R(λ) ≥ ε+ C(λ) (11)

then error probability cannot vanish for all users, because error
probabilities (p0, p1 · · · pL−1) of the L receivers satisfy

(1 + p0nR0) +
L−1
∑

k=1

λk(1 + pknRk) ≥ nε (12)

1It should be mentioned that we could not extend the converse proof in [5]
for more than two users.

Proof of Theorem 2: If (11) holds, then by Lemma 1,

nR(λ) ≥ nε+ I(M0; Y
1:n
0 |M1M2 · · ·ML−1) (13)

+
L−2
∑

k=1

λkI(Mk; Y 1:n
k |Mk+1Mk+2 · · ·ML−1) (14)

+ I(ML−1; Y
1:n
L−1) (15)

But each mutual information above can be bounded as:

I(Mk; Y 1:n
k |Mk+1Mk+2 · · ·ML−1)

≥ H(Mk|Mk+1Mk+2 · · ·ML−1) − H(Mk|Y
1:n
k )

= nRk − H(Mk|Y
1:n
k )

≥ nRk − (1 + pknRk)

where the first inequality follows since conditioning reduces
entropy, the second equality is due to independence of mes-
sages and the last step is due to Fano’s inequality. Rearranging
this and substituting back (13) yields (12). QED.

B. Binary Erasure Channels
Consider this simple achievable scheme for L binary erasure

channels with erasure probabilities e1, e2 · · · eL. The block
length n is divided into L separate blocks, where block k
has length nαk. Receiver k’s message of nRk information
bits is converted to nαk coded bits. This can be done with a
linear operation r = Ab, where b denotes a vector of the nRk

information bits, r is the vector of nαk coded bits and A is a
nαk × nRk generator matrix.
We can choose each entry of A independently with uniform

binary distribution. As block length grows large, essentially
any nRk rows of this matrix will be linearly independent
with high probability. Thus with high probability, receiving
any nRk elements of r is sufficient to decode b. Now note
that essentially (1 − ek)nαk coded bits will reach unerased
at receiver k. Hence if αk(1 − ek) > Rk, then with high
probability, receiver k can decode its message of nRk bits.
Any receiver with smaller erasure probability will also decode
this message. Since sum of αk’s is at most unity,

L
∑

k=1

Rk/(1 − ek) <
L

∑

k=1

αk ≤ 1

This indeed is the capacity region for this broadcast channel.
Thus a simple scheme of dividing the block-length amongst
random linear codes achieves the capacity region here.

III. ACHIEVABILITY AND CONVERSE FOR GENERAL
DEGRADATION GRAPHS

Consider an arbitrary degradation graph (such as Figure 1
or Figure 2). Recall that layer k denotes all nodes at distance
k + 1 from the root node of input X . All nodes in layer k of
this degradation graph are interested in Mk, Mk+1 · · ·ML−1,
where L is the depth of the graph from the root node. The
rate of message Mi is denoted by Ri.
We can use similar random coding construction as [7],

which is based on superposition. Using standard typicality
arguments, we can prove the following achievable rate region.



For concreteness and clarity, we will state our the result for the
particular degradation graph in Figure 1. Similar rate-region
can be written down for any degradation graph.
As the degradation graph in Figure 1 has L = 3 layers, we

choose L−1 = 2 auxiliary random variables U1, U2 such that
joint distribution of all auxiliaries, input X and all outputs has
the following Markov structure.

U1U2

W1 Z1

W2 Z2

YX

Fig. 3. Markov structure for achievability

Thus the joint distribution of all variables is given by

QU2U1XPY W1W2Z1Z2|X

where the second term is determined by the network channel
as in (2). The first term is chosen by the code designer and
satisfies the Markov structure in above figure.
Theorem 3: For every choice of QU2U1X consistent with

the Markov structure above, rate-tuples obeying following
conditions are achievable:

R2 ≤ min (I(U2; Z1), I(U2; Z2))

R1 ≤ min (I(U1; W1|U2), I(U1; W2|U2))

R0 ≤ I(X ; Y |U1)

Let RQ denote this region where Q is joint distribution of
(U1, U2, X). Then any rate-tuple in conv(

⋃

Q∈MarkovRQ) is
achievable where Q denotes all distribution satisfying the
Markov structure in Figure 3.
Similar to Section II, one may wonder why restrict to a

Markov chain for auxiliaries. We can indeed choose QU2U1X

which is not a Markov chain U2 − U1 − X . By similar
arguments as in Section II, we get the following achievable rate
region, called as R∗

Q, for every distribution Q on (U2, U1, X).

R2 ≤ min (I(U2; Z1), I(U2; Z2))

R1 ≤ min (I(U1; W1|U2), I(U1; W2|U2))

R0 ≤ I(X ; Y |U1U2)

That is, mutual information between Uk and an output in layer
k is conditioned on Uk+1Uk+2 · · ·UL−1 instead of just on
Uk+1 as in the case of a Markov chain.
Theorem 4: An achievable region is given by

conv(
⋃

Q R∗
Q), where the union is over all joint distributions

of auxiliaries and input X .
However, we believe that similar to the classical degraded

broadcast channel in Section II, Markov chain of auxiliaries
is optimal for superposition coding and achieves the entire
capacity region.
Conjecture 5: We conjecture that superposition coding with

a Markov chain of auxiliary variables is optimal. That is,
achievable region in Theorem 3, i.e. conv(

⋃

Q∈MarkovRQ),
equals the capacity region.

Next section provides a converse for the rate-region, which
verifies the conjecture for a class of degradation graphs. How-
ever, it does not prove the conjecture for a general degradation
graph. Note that our problem formulation ensures that a node
(say A) in layer k can decode all the messages for any node
in further layers (say B). This holds true even if B is not
a degraded version of A. For example, Z2 is not a degraded
versionW1 in Fig. 1, but W1 can decode what Z1 can decode.
We believe this property can be used to prove our conjecture
using ideas from [8].

A. Mirror Image Converse
Using the same guideline for the choice of auxiliaries as

discussed in Section II, we can obtain the following upper
bound on the achievable rate region.
We consider the degradation graph in Figure 2 for con-

creteness and converse for a general degradation graph can be
expressed similarly. Furthermore, for better clarity, lets convert
the degradation graph in Figure 2 to a directed graph, where
a directed edge from node A to node B denotes that B is
degraded version of A. For example, an edge directed from
Y to W1 represents that W1 is a degraded version of Y . If
multiple edges are directed towards a node (e.g. Z2), then it
is a deterministic function of all its parents (e.g. W1 and W2).
With this setup up we are ready to state the converse. Given

the degradation graph, create its mirror image and attach it
behind the root node X as follows:

Ẑ1

Ẑ2

Ŵ1

Ŵ2

W1 Z1

W2 Z2

YX

Fig. 4. Upper bound with mirror image structure of auxiliaries

The auxiliary variables (Ẑ1, Ẑ2, Ŵ1, Ŵ2) thus have
the same degradation graph as the channel outputs
(Z1, Z2, W1, W2). For example, Ẑ1 is a degraded version of
Ŵ1, whereas Ẑ2 is a deterministic function of both Ŵ1 and
Ŵ2. For a distribution Q on auxiliaries satisfying the above
mirror structure, let R̄Q denote the following rate-region.

R2 ≤ min
(

I(Ẑ1; Z1), I(Ẑ2; Z2)
)

R1 ≤ min
(

I(Ŵ1; W1|Ẑ1Ẑ2), I(Ŵ2; W2|Ẑ2)
)

R0 ≤ I(X ; Y |Ŵ1Ŵ2)

Here each mutual information between a channel output and
its mirror image auxiliary variable is conditioned on all the
children of the mirror auxiliary variable in the mirror structure.
Theorem 6: Every achievable rate-tuple is in the convex

hull conv(
⋃

Q∈Markov R̄Q), where the union is over all dis-
tributions of auxiliaries which satisfy the mirror structure.
Note that converse for the classical degraded broadcast

channel in Section II is a special case of this converse



because mirror image of a straight line is a straight line. This
incidentally proved optimality of the achievable rates in [7],
where a Markov chain of auxiliaries is used for superposition
coding.
Moreover, using this converse and a simple property of

mutual information, we can prove Conjecture 5 for a class of
degradation graphs. This class of graphs is where all outputs
in layer k are children of every node in previous layer (see
Figure 5). In this case, edges between two adjacent layers
form a complete bi-partite graph. Nonetheless, for an arbitrary
degradation graph, our converse may not match our achievable
region because mutual information could either decrease or
increase by conditioning.

W1 Z1

W2 Z2

YX

Fig. 5. A degradation graph for which Conjecture 5 is true.

IV. PACKET BROADCAST NETWORKS
As an application of the degradation graph framework, we

consider a situation where transmitter emits a fixed number L
of n-bit packets. Each of these packets can be either perfectly
received or be erased completely. A user can receive any of the
2L−1 possible subsets of these L packets. We want to ensure
that any user who gets k number of packets can decode the
k messages (ML−k, ML−k+1, · · ·ML−1). Earlier problems
of multilevel diversity coding [2], [3] and priority encoded
transmission [4] can be modeled this way. Degradation graphs
provide a common framework to address them. In addition,
this framework can be also used to model errors in packets.
Let us assume L = 3 packets are transmitted for simplicity,

although similar analysis can be performed for any L. The
degradation graph in this situation is shown below. The
actual transmission is denoted as (X1, X2, X3) where each
Xi represents a bit from packet i. Various receivers receive
all seven subsets of this transmission. For better clarity, X123

is used to denote (X1X2X3) for example.

U2 U1

X3

X2

X1

X23

X12

X13

X123

X123

Fig. 6. Solid line shows the degradation graph for packet broadcast network.
Dotted line and U1, U2 are the auxiliaries for achievability in Theorem 3.

Degradation graphs can be also used to model asymmetric
situations, where only certain subsets of transmitted packets
can be received. For example, there may not be any user
who gets packets 2 and 3. This can be modeled by simply
removing X23 from the degradation graph. These asymmetric

situations seem particularly relevant for distributed storage [3].
In a distributed storage system with L storage locations, each
user may have access to a subset of these locations. Moreover,
now the effect of errors in stored data can also be analyzed
using degradation graphs.
Now let us calculate the achievable region for Fig. 6 from

Theorem 3. We show that this achievable rate-region is given
by R2 + R1/2 + R0/3 ≤ 1, where Rk is the rate of message
Mk for layer k. From Theorem 3,

R2 ≤ I(U2; X1), R2 ≤ I(U2; X2) & R2 ≤ I(U2; X3) (16)
R1 ≤ I(U1; X12|U2) (17)
R1 ≤ I(U1; X13|U2) (18)
R1 ≤ I(U1; X23|U2) (19)

R0 ≤ I(X123; X123|U1) = H(X123|U1) (20)

Adding inequalities in (16)×2+(17)+(18)+(19)+(20)×2
implies 6R2 + 3R1 + 2R0 is not greater than
[

2
3

∑

i=1

H(Xi)

]

−



2
3

∑

i=1

H(Xi|U2) −
∑

i$=j

H(Xij |U2)





+



2H(X123|U1) −
∑

i$=j

H(Xij |U1)





First bracket above is at most 6, second bracket equals
∑

i$=j I(Xi; Xj |U2) and hence non-negative. Third bracket
equals −I(X3; X1|X2, U1) − I(X2; X13|U1), which is non-
positive. Thus 6R2 + 3R1 + 2R0 ≤ 6, proving our achievable
region. This inequality can be achieved with equality if Xi’s
are independent conditioned on U1 and pairwise independent
conditioned on U2.
For any K number of packets, similar analysis can be

done to prove that achievable region in Theorem 3 equals
∑K−1

i=0
Ri/(K − i) ≤ 1. In fact, this was shown to be the

entire capacity region in [2], [4]. Thus our conjecture is
verified in this problem.
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