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Abstract— We consider the remote computation of a function
of two sources where one is receiver side information. Specifically,
given side information Y , we wish to compute f(X, Y ) based on
information transmitted by X over a noise-less channel. The goal
is to characterize the minimal rate at which X must transmit
information to enable the computation of the function f .

Recently, Orlitsky and Roche (2001) established that the
conditional graph entropy of the characteristic graph of the
function is a solution to this problem. Their achievability scheme
does not separate “functional coding” from the well understood
distributed source coding problem. In this paper, we seek a
separation between the functional coding and the coding for
correlation. In other words, we want to preprocess X (with
respect to f ), and then transmit the preprocessed data using a
standard Slepian-Wolf coding scheme at the Orlitsky-Roche rate.

We establish that a minimum (conditional) entropy coloring of
the product of characteristic graphs is asymptotically equal to the
conditional graph entropy. This can be seen as a generalization of
a result of Körner (1973) which shows that the minimum entropy
coloring of product graphs is asymptotically equal to the graph
entropy. Thus, graph coloring provides a modular technique to
achieve coding gains when the receiver is interested in decoding
some function of the source.

I. INTRODUCTION

Consider a network of sensors relaying correlated measure-
ments to a central receiver with measurements of its own.
Usually, the receiver is interested in computing a function of
the received data. Hence, to the receiver the bulk of the data
received from the various sensors is irrelevant. Contemporary
data compression techniques (see [1], [2]) compress the data
utilizing only the correlation of the measurements and do not
take the receiver’s function of interest into account. To increase
the efficiency for such a system, we seek to implement better
compression rates by exploiting the end-user’s intentions (the
computation of the function f of the data received).

Consider the following example: suppose there is a source
(uniformly) producing an n-bit integer. The receiver also
produces an n-bit integer and is only interested in the parity
of the sum. Assuming independence of the integer data,
contemporary techniques would have the source transmit all n
bits, when it is clear that only the final bit is necessary. The use
of such compression techniques enables possibly large gains
over contemporary methods depending upon the complexity
of the function.

As a first step towards the implementation of methods like
this, we consider the case (as in the example) where there is a
single source, denoted by the random variable X with support
X . The information available at the receiver is denoted by
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Fig. 1. X is encoded such that f(X, Y ) is recovered based on the coded
information and side information Y .

the random variable Y with support Y . Both X and Y are
discrete memoryless sources. The receiver wishes to compute
a function f : X × Y → Z , where Z is some finite set.
The goal here is to minimize the rate at which X transmits
information to the receiver so as to enable computation of f
at the receiver. Figure 1 illustrates the question of interest.

A. Setup and Related Work
This question has been very well studied in different con-

texts in the literature [3], [4], [5]. Among them, Orlitsky and
Roche [5] recently characterized the minimum rate require-
ment as the conditional graph entropy of the characteristic
graph. We introduce the necessary definitions and notation to
explain these results as well as formally state our question of
interest.

Assume that the random variables X and Y have some
joint distribution p(x, y). The n-sequence of random variables,
denoted by X and Y are such that (X,Y) = {(Xi, Yi)}n

i=1

are i.i.d. with each (Xi, Yi) drawn according to p(x, y). The
receiver is interested in computing a function f : X ×Y → Z
or f : Xn × Yn → Zn, its obvious extension. The primary
goal is to determine the minimal rate for X to transmit data
to the receiver so that the receiver can compute the function
f with vanishing probability of error.

Wyner and Ziv [6] considered the side information rate dis-
tortion problem. Yamamoto [4] extended their rate distortion
function to the case of functional compression. Their functions
relied on auxilliary random variables. In a sense, this paper
makes those variables explicit for the zero distortion case.
Further, we describe them in such a way that our scheme
builds upon a Slepian-Wolf coding scheme [7] layered with
a preprocessing of the source data.

Define the characteristic graph of X with respect to Y , f ,
and p(x, y) is G = (V,E) with V = X and E defined as
follows: an edge (x1, x2) ∈ X 2 is in E if there exists a y ∈
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Y such that p(x1, y), p(x2, y) > 0 and f(x1, y) $= f(x2, y).
Effectively, G is the “confusability graph” from the perspective
of the receiver with side information Y . This was first defined
by Witsenhausen [8].

The graph entropy of a graph G with some distribution on
its vertices was introduced by Korner [3] and is defined as:

HG(X) = min
X∈W∈Γ(G)

I(W ; X),

where Γ(G) is the set of all independent sets1 of G. Here,
X ∈ W means that the joint distribution p(w, x) on Γ(G)×X
is such that p(w, x) > 0 implies x ∈ w. To motivate the
importance of graph entropy, consider the following: given a
function g : X → Z , define deterministic random variable Y
on Y = {1} and set f(x, 1) = g(x) for all x ∈ X . Then,
the graph entropy HG(X) is the minimal rate required to
distinguish functional values of g [8].

Orlitsky and Roche [5] established that the conditional
graph entropy, an extension of graph entropy, is the minimum
required transmission rate from X to receiver to compute func-
tion f(X, Y ) with small probability of error. The conditional
graph entropy is defined as

HG(X|Y ) = min
X∈W∈Γ(G)
W−X−Y

I(W ; X|Y ),

A natural extension of this problem is the computation
of rate-distortion region. Yamamoto characterized the rate-
distortion function for the question posed here by extending
the Wyner-Ziv side information result [6]. This was recently
built upon by Feng, Effros and Savari [9].

Our work in this paper is closer (in spirit) to the result by
Körner [3]. In essence, Körner showed that achieving the graph
entropy is the same as coloring a large graph and sending the
colors.

Consider the OR-product graph of G, denoted as Gn =
(Vn, En) where Vn = V n = Xn and two vertices (x1,x2)
are in En if any component (x1i, x2i) ∈ E. By coloring, we
mean standard graph vertex coloring, i.e. a function c : V →
N of a graph G = (V,E) such that (x1, x2) ∈ E implies
c(x1) $= c(x2). The entropy of a coloring is given by the
induced distribution on colors p(c(x)) = p(c−1(c(x))) where
c−1(x) = {x̄ : c(x̄) = c(x)}.

Next, we define ε-colorings of any graph G (for any ε > 0).
Let A ⊂ X × Y be any subset such that p(A) ≥ 1 − ε.
Define p̂(x, y) = p(x, y) ·1(x,y)∈A (where 1Q is the indicator
function for condition Q). While this is not a true probability,
our definition of characteristic graph of X with respect to Y ,
f , and p̂ is valid. Denote this characteristic graph as Ĝ. Note
that the set of edges of Ĝ is a subset of the set of edges of G.
Finally, we say c is an ε-coloring of G if it is a valid colorings
of Ĝ defined with respect to some high probability set A.

The chromatic entropy of a graph is

Hχ
G(X) = inf

ε>0
{H(c(X)) : c is an ε-coloring of G} .

1A subset of vertices of a graph is an independent set if no two nodes in
the subset are adjacent to each other in G.
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Fig. 2. Coloring based coding allows separation between functional coding
and distributed source coding as shown above.

We define it’s natural extension conditional chromatic en-
tropy as follows:

Hχ
G(X|Y ) = inf

ε>0
{H(c(X)|Y ) : c is an ε-coloring of G} .

Now, we state the Körner’s result [3] as follows:

lim
n→∞

1
n

Hχ
Gn(X) = HG(X).

The result requires ε-colorings and not the simple colorings
because, as seen in [10], the ratio of the above quantities can
be arbitrarily large. The implications of this result are that for
large enough n, one can color a high probability subgraph
of the product graph Gn to achieve near optimum functional
source coding when the function is only of one source. This
effectively layers the solution to a problem of graph coloring
followed by using standard coding techniques to transmit the
color sequence.

The Orlitsky and Roche’s solution is an end-to-end solution.
That is, it includes functional and distributed source coding.
Their achievability scheme involves coding over the space
of independent sets. It is a larger class than the space of
colors because each coloring gives rise to disjoint independent
sets. Like the implication of Körner’s result, the coloring will
allow for separation between functional coding and distributed
source coding. Hence we want a result similar to that of
Körner’s result so that the problem can be decoupled without
losing any coding gains asymptotically.

B. Our Contribution
As the main result of this paper, we show that the mini-

mum conditional entropy coloring of the OR-product graph is
asymptotically the same as the conditional chromatic number.

Theorem 1:

lim
n→∞

1
n

Hχ
Gn(X|Y) = HG(X|Y )

This validates the idea of using graph coloring to achieve
better compression ratios. The variable W and the distribution
on it that achieves HG(X|Y ) is the auxilliary random variable
from the Yamamoto result. In the entropy sense, the induced
variable, c(X), converges to W . This method thus leads to a
natural layering of the problem just as in Körner’s case. Figure
2 illustrates the layering.

Nevertheless, we need large enough n to achieve rates
close to the conditional graph entropy. Consider the following
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example from [5]. We have X = Y = {1, 2, 3}, p(x, y) = 1
6

for all x $= y, and f(x, y) = 1 if x > y and 0 otherwise. Then,
our graph G has only one edge: (1, 3). Because of uniformity,
we know Hχ

G(X|Y ) = 2
3 using the coloring c(1) = c(2) = 1

and c(3) = 2. But HG(X|Y ) ≈ 0.54 bits as calculated in [5].
This is worrisome because minimum entropy graph coloring

has been shown to be NP–complete [11]. Nevertheless, the
problem is layered into two. The second part is that of
distributed source coding which is well understood. There
exist methods to achieve corner points of the Slepian-Wolf
rate region (e.g. [1]), and there exist methods to achieve all
other points on the rate region (e.g. [2]). Further, the first part,
that of graph coloring, has very rich literature (e.g. [10], [12])
and heuristics exist (e.g. [13]) for this hard problem.

II. PROOF OF MAIN RESULT

We borrow some techniques that are present in Körner [3],
Orlitsky and Roche [5]. First, we recall some useful known
results. Then, we establish the claimed equality in Theorem 1.

A. Preliminaries
We begin by listing the results that we will use in our proof.
Definition 1 (Typicality): We use the notion of ε-strong

typicality defined in [14, p. 358]. For any n, and any sequence
x of length n, define the empirical frequency of the symbol
x in x as

νx(x) =
|{i : xi = x}|

n
.

Then a sequence x is ε-strongly typical for ε > 0 if for all
x ∈ X with p(x) > 0,

|νx(x) − p(x)| ≤ ε

|X | ,

and for all x ∈ X with p(x) = 0, νx(x) = 0. The set of all
such ε-strongly typical sequences, called the ε-typical set will
be denoted as Tn

ε (X), or Tn
ε when the variables are clear from

context. A similar definition naturally extends for the case of
joint variables.

Lemma 1: Suppose (X,Y) is a sequence of n random
variables drawn independently and according to the joint
distribution p(x, y), which is the marginal of p(w, x, y). Let
an n-sequence W be drawn independently according to its
marginal, p(w). Suppose the joint distribution p(w, x, y) forms
a Markov Chain, W−X−Y (i.e. p(w, x, y) = p(w|x)p(x, y)).
Then, for all ε > 0, there is a ε1 = k · ε, where k depends
only on the distribution p(w, x, y), such that for sufficiently
large n,

1) P [X /∈ Tn
ε ] < ε1, P [Y /∈ Tn

ε ] < ε1, and P [(X,Y) /∈
Tn

ε ] < ε1,
2) For all x ∈ Tn

ε , P [(x,W) ∈ Tn
ε ] ≥ 2−n(I(W ;X)+ε1).

3) For all y ∈ Tn
ε , P [(y,W) ∈ Tn

ε ] ≤ 2−n(I(W ;X)−ε1).
4) For all (w,x) ∈ Tn

ε ,

P [(w,Y) ∈ Tn
ε |(x,Y) ∈ Tn

ε ] ≥ 1 − ε1.
Part 1 follows from Lemma 13.6.1, parts 2 and 3 follow from
Lemma 13.6.2, and part 4 follows from Lemma 14.8.1, all
from [14].
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Fig. 3. We use Slepian-Wolf codes with Y sending at full rate to achieve
the corner point Rx = H(c(X)|Y ).

B. Lower bound
To prove the lower bound, consider any n and the corre-

sponding OR-product graph Gn. Let the coloring c of Gn be
such that

Hχ
Gn(X|Y) = H(c(X)).

Such a coloring exists because the number of possible col-
orings for a graph with n vertices is a finite set. Using this
coloring, we will show that there is a scheme that requires rate
1
nHχ

Gn(X|Y) and provides a way to compute the function at
receiver with small probability of error. This will establish the
achievability of rate 1

nHχ
Gn(X|Y). By Orlitsky and Roche [5],

no scheme can achieve rate smaller than HG(X|Y ).
Lemma 2:

lim inf
n→∞

1
n

Hχ
Gn(X|Y) ≥ HG(X|Y ).

Proof: Given n > 0, let the coloring c, as above, denote
one the coloring that achieves Hχ

Gn(X|Y) for the OR-product
graph Gn. For every color, σ and y, define g(σ,y) = f(x,y)
where x is any element of c−1(σ) = {x : c(x) = σ} such
that p(x,y) > 0. If no such x exists, g is undefined.

Suppose x is the information at the source, and y is the
information at the receiver. Without loss of generality, presume
p(x,y) > 0. Suppose c(x) and y are available at the decoder.
Then, we have an error if g(σ,y) $= f(x,y). Suppose x′ ∈ X ,
c(x′) = c(x), and p(x′,y) > 0. Because x and x′ have the
same color, we know (x,x′) /∈ En, and therefore for all y
where p(x,y), p(x′,y) > 0, including ours, we must have
f(x,y) = f(x′,y). Because f has the same value for all x′

with p(x′,y) > 0, f(x, y) = g(σ,y). Thus, we have shown
that the color of X and Y are sufficient to determine the
function f(X,Y).

The Slepian-Wolf Theorem [7] states that for two sources,
X and Y , there exists a sequence of codes with vanishing
probability of error as n grows without bound for the rates:
R1 ≥ H(X|Y ), R2 ≥ H(Y |X), and R1 + R2 ≥ H(X, Y ).

We apply that theorem to the source (c(X),Y). In our case,
Y is side information. In other words, R2 ≥ H(Y ). See Figure
3 for an illustration.

Thus, we get the following per symbol rates are achievable
for an encoding of X where c is any ε-coloring of Gn (with
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ε > 0).
R1 ≥ 1

n
H(c(X)|Y).

Thus, the minimal value of R1 is by definition Hχ
Gn(X|Y).

Putting the above discussion together, we obtain the desired
result:

lim inf
n→∞

1
n

Hχ
Gn(X|Y) ≥ HG(X|Y )

C. Upper Bound
Next we show that, indeed, the information needed to

recover cn(X) given Y is at most HG(X|Y ).
Lemma 3:

lim inf
n→∞

1
n

Hχ
Gn(X|Y) ≤ HG(X|Y ).

Proof: Suppose ε, δ > 0. Suppose n is large enough
so that the following holds: (1) Lemma 1 applies with some
ε1 < 1, (2) 2−nδ < ε1, and (3) n > 2 + 3

2ε1
.

Let p(w, x, y) be the distribution that achieves HG(X|Y )
with the Markov chain, W − X − Y . Let marginals be
denoted simply as p(w), p(x), p(y). For any integer M , we
define an M -system (W1, . . . ,WM ) where each Wi is drawn
independently according to p(w) =

∏n
i=1 p(wi).

Declare an error if (x,y) /∈ Tn
ε . (Thus, we are in fact

looking at colorings over Tn
ε , or ε1-colorings.) This, by

construction, happens with probability less than ε1. Henceforth
assume that (x,y) ∈ Tn

ε .
Declare an error if there is no i such that (Wi,x) ∈ Tn

ε .
The probability for this event is

P [(Wi,x) /∈ Tn
ε ∀i]

(a)
≤

M∏

i=1

P [(Wi,x) /∈ Tn
ε ]

(b)
= (1 − P [(W,x) ∈ Tn

ε ])M

(c)
≤

(
1 − 2−n(I(W ;X)+ε1)

)M

(d)
≤ 2−M ·2−n(I(W ;X)+ε1)

where (a) and (b) follow because the Wi are i.i.d., (c) follows
from Lemma 1, part (2), and (d) follows because for α ∈ [0, 1],
(1 − α)n ≤ 2−nα. Assuming M > 2n(I(W ;X)+ε1+δ),

P [(Wi,x) /∈ Tn
ε ∀i] ≤ 2−δn < ε1,

because n is large enough.
Henceforth, fix an M -system (W1, . . . ,WM ) for some

M > 2n(I(W ;X)+ε1+δ). Further, assume there is some i such
that (Wi,x) ∈ Tn

ε .
For every x, let the smallest (or any) such i be denoted as

ĉ(x). Note that ĉ is a valid coloring of the graph Gn.
Next, for each y, define the following:

S(y) = {ĉ(x) : (x,y) ∈ Tn
ε },

Z(y) = {Wi : (Wi,y) ∈ Tn
ε },

s(y) = |S(y)|,
z(y) = |Z(y)|.

Using these definitions, s(y) =
∑M

i=1 1i∈S(y), where we
have used the fact that our coloring scheme ĉ is simply an
assignment of the indices of the M -system. Thus, we know

E[s(Y)] =
M∑

i=1

P [i ∈ S(Y)].

Similarly, we get z(y) =
∑M

i=1 1Wi∈Z(y). Thus,

E[z(Y)] =
M∑

i=1

P [Wi ∈ Z(Y)]

≥
M∑

i=1

P [Wi ∈ Z(Y) and i ∈ S(Y)]

=
M∑

i=1

P [i ∈ S(Y)]P [Wi ∈ Z(Y)|i ∈ S(Y)]

We know that if i ∈ S(Y), there is some x such that ĉ(x) = i
and (x,Y) ∈ Tn

ε . For each such x, we must have (by
definition of our coloring), (Wi,x) ∈ Tn

ε . For each such x
where (Wi,x) ∈ Tn

ε ,

P [Wi ∈ Z(Y)|i ∈ S(Y)] = P [(Wi,Y) ∈ Tn
ε |(x,Y) ∈ Tn

ε ]
≥ 1 − ε1

by Lemma 1, part (4). Thus, we have E[z(Y)] ≥ (1 −
ε1)E[s(Y)]. This and Jensen’s inequality imply that

E[log s(Y)] ≤ log E[s(Y)]

≤ log E

[
z(Y)
1 − ε1

]
.

Finally, using a Taylor series expansion, we know log 1
1−ε1

≤
ε2 = 2ε1 + 1

2 when 0 < ε1 < 1. Thus,

E[log s(Y)] ≤ log E[z(Y)] + ε2, (1)

Next, we compute

E[z(Y)] =
M∑

i=1

P [(Wi,Y) ∈ Tn
ε ]

= M · P [(Wi,Y) ∈ Tn
ε ]

because the Wi are i.i.d. Therefore,

E[z(Y)] ≤ M · 2−n(I(W ;Y )−ε1) (2)

by Lemma 1, part (3).
By the definition of S(y), we know that determining ĉ given

Y = y requires at most log s(y) bits. Therefore, we have

H(ĉ(X)|Y) ≤ E[log s(Y)]. (3)
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Putting it all together, we have

Hχ
Gn(X|Y)

(a)
≤ H(ĉ(X)|Y)
(b)
≤ E[log s(Y)]
(c)
≤ log E[z(Y)] + ε2

(d)
≤ log

(
M · 2−n(I(W ;Y )−ε1)

)
+ ε2

(e)
= log

(
2n(I(W ;X)−I(W ;Y )+2ε1+δ) + 1

)
+ ε2

(f)
≤ n(I(W ; X) − I(W ; Y ) + 2ε1 + δ) + 1 + ε2

where (a) follows by definition of the conditional chromatic
entropy, (b) follows from inequality (3), (c) follows from
inequality (1), (d) follows from inequality (2), (e) follows
by setting M = +2n(I(W ;X)+ε1+δ),, and (f) follows because
log(α + 1) ≤ log(α) + 1 for α ≥ 1.

We know for Markov chains W − X − Y ,

I(W ; X) − I(W ; Y ) = I(W ; X|Y ).

Thus, for our optimal distribution p(w, x, y), we have

Hχ
Gn(X|Y) ≤ n(HG(X|Y ) + 2ε1 + δ) + 1 + ε2

Because n > 2 + 3
2ε1

, 1+ε2
n < ε1. Thus, 1

nHχ
Gn(X|Y) ≤

HG(X|Y ) + 3ε1 + δ. Therefore,

lim sup
n→∞

1
n

Hχ
Gn(X|Y) ≤ HG(X|Y ).

Combining the lower bound, Lemma 2, and the upper
bound, Lemma 3, we have our result:

lim
n→∞

1
n

Hχ
Gn(X|Y) = HG(X|Y ). (4)

III. CONCLUSION

We have validated the idea of graph coloring to achieve all
possible rates. As a consequence, it is possible to decouple
the side information functional source coding problem into
a problem of graph coloring followed by a coding scheme
that removed the redundancy between the colors (like Slepian-
Wolf). While the graph coloring problem is shown to be
NP–complete, this decoupling allows for the decomposition
of a hard problem into one for which many heuristics and

copious literature exist (graph coloring) and one that is solved
(distributed source coding).

We plan to show that this decoupling is possible in the
more general case when Y is a separate source (and not side
information). In this case, we will wish to code both X and Y .
This will generalize our current results where we assume the
rate for Y is H(Y ). Further, we plan to consider a relaxation
of the fidelity criterion. We will wish to see if Yamamoto’s
rate distortion function can be achieved with graph coloring, as
well as considering the case where Y is not side information.
Thus, we hope to have a unified solution that will allow for the
distributed compression of functions of correlated sources.
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