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Abstract—An achievable region, outer bounds and a capacity
result are established for two-sender two-receiver interference
channels with one cognitive transmitter. Specifically, we assume
that one transmitter knows either the full or, more realistically,
the partial message of the other transmitter due to its cognitive
capabilities. The achievable region is obtained by a rate-splitting
strategy, which generalizes prior strategies under both weak and
strong interference conditions. The outer bounds are based on an
extension of the Nair-El Gamal outer bound for the broadcast
channel capacity. When only the partial message is known to
the cognitive user, the capacity region in strong interference is
established. In this regime, the interference is such that both
receivers can decode both messages with no rate penalty.

I. INTRODUCTION AND RELATED WORK

Two-sender, two-receiver channel models allow for various
forms of transmitter cooperation. An encoder that has knowl-
edge about the other user’s message can use it to improve its
own rate and the other user’s rate. The level of cooperation
and performance improvement will depend on the amount of
information the encoders share. When senders are unaware of
each other’s messages, we have the interference channel [1],
[2]. This paper considers channel models in which one sender
knows either the full message of the other user, allowing
for full unidirectional cooperation, or a part of the message
allowing for partial unidirectional cooperation.

The considered channel models have some characteristics of
networks with cognitive users. Cognitive radio [3] technology
is aimed at developing smart radios that are both aware of and
adaptive to the environment. Such radios can efficiently sense
the spectrum, decode information from detected signals and
use that knowledge to improve the system performance. This
technology motivates new information-theoretic models that
try to capture the cognitive radio characteristics. Somewhat
idealistically, we assume that if a user is cognitive, it knows
either the full message or, more realistically, a part of the
message of the other encoder. The interference channel with
full unidirectional cooperation was dubbed the cognitive radio
channel and achievable rates were presented in [4], [5]. The
capacity region for the Gaussian case of weak interference
was determined in [6] and [7]. A more general scheme was
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Fig. 1. Interference channel with unidirectional cooperation.

proposed in [8]. We present a scheme that generalizes the
ones in [6]-[9]. Our scheme is similar to the one in [8]: as
in [8] and [4], the encoders use rate-splitting [2] to enable
the receivers to decode part of the interference; the cognitive
transmitter cooperates in sending the other user’s message and
uses Gel’fand-Pinsker binning to reduce interference to its
receiver. The key difference of our contribution is in the way
the binning is performed. We also use the ideas of [10] and
[11] that, respectively, extend [12] and [13] to channels with
different states non-causally known to the encoder.

The assumption that the full message of one user is available
to the cognitive user may be an over-idealized model of the
cognitive network. Its capacity constitutes an outer bound on
the performance of more realistic models. For that reason, we
also consider a more general model in which only a part of
the message is known to the cognitive user. The proposed
achievable strategy generalizes to this case. We present outer
bounds for this case that extend the Nair-El Gamal broadcast
outer bound, [14]. For the full unidirectional cooperation, a
similar bound was presented in [9]. We also consider the
strong interference scenario in which interference is such that
both decoders can decode both messages with no penalty. The
capacity region of the strong interference channel with full
unidirectional cooperation was determined in [15], [16]. By
applying the same approach, we obtain the capacity region
of the interference channel with partial cooperation in strong
interference.

II. THE INTERFERENCE CHANNEL WITH FULL
UNIDIRECTIONAL COOPERATION

Consider a channel with finite input alphabets X1,X2,
finite output alphabets Y1,Y2, and a conditional probability



distribution p(y1, y2|x1, x2), where (x1, x2) ∈ X1 × X2 are
channel inputs and (y1, y2) ∈ Y1 × Y2 are channel outputs.
Each encoder t, t = 1, 2, wishes to send a message Wt ∈
{1, . . . , Mt} to decoder t in N channel uses. Message W2 is
also known at encoder 1, thus allowing for full unidirectional
cooperation (see Fig. 1). The channel is memoryless and time-
invariant in the sense that

p(y1,n, y2,n|xn
1 , xn

2 , yn−1
1 , yn−1

2 , w̄)
= pY1,Y2|X1,X2(y1,n, y2,n|x1,n, x2,n) (1)

for all n, where X1, X2 and Y1, Y2 are random variables rep-
resenting the respective inputs and outputs, w̄ = [w1, w2] de-
notes the messages to be sent, and xn

t =
[
xt,1, . . . , xt,n

]
.

We will follow the convention of dropping subscripts of
probability distributions if the arguments of the distributions
are lower case versions of the corresponding random variables.

An (M1, M2, N, Pe) code has two encoding functions

XN
1 = f1(W1, W2) (2)

XN
2 = f2(W2) (3)

two decoding functions

Ŵt = gt(Y N
t ) t = 1, 2 (4)

and an error probability

Pe = max{Pe,1, Pe,2} (5)

where, for t = 1, 2, we have

Pe,t =
∑

(w1,w2)

1
M1M2

P
[
gt(Y N

t ) #= wt|(w1, w2) sent
]
. (6)

A rate pair (R1, R2) is achievable if, for any ε > 0, there is
an (M1, M2, N, Pe) code such that

Mt ≥ 2NRt , t = 1, 2, and Pe ≤ ε.

The capacity region of the interference channel with full
unidirectional cooperation is the closure of the set of all
achievable rate pairs (R1, R2).

A. Inner Bound
To obtain an inner bound, we employ rate splitting. We let

R1 = R1a + Rc (7)
R2 = R2a + R2b (8)

for nonnegative R1a, Rc, R2a, R2b which we now specify.
In the encoding scheme, encoder 2 uses superposition cod-

ing with two codebooks X N
2a, XN

2b . Encoder 1 repeats the steps
of encoder 2 and adds binning: it encodes the split message
W1 with two codebooks which are Gel’fand-Pinsker precoded
against XN

2a, XN
2b . In particular:

1) Binning against XN
2a, XN

2b is used to create a codebook
UN

1c of common rate Rc.
2) Binning against XN

2a, XN
2b conditioned on U1c is used to

create a codebook U N
1a with private rate R1a.

The encoding structure is shown in Fig. 2.
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Fig. 2. Encoding structure.

For the interference channel with full unidirectional coop-
eration we have the following result.
Theorem 1: (sequential decoding) Rates (7)-(8) are achiev-

able if

R1a ≤ I(U1a; Y1|U1c, Q) − I(U1a; X2a, X2b|U1c, Q) (9)
Rc ≤ min{I(U1c; Y1|Q), I(U1c; Y2, X2a|Q)}
− I(U1c; X2a, X2b|Q) (10)
R2a ≤ I(X2a; Y2|Q) (11)
R2b ≤ I(X2b; Y2, U1c|X2a, Q) (12)

for some joint distribution that factors as
p(q)p(x2a, x2b, u1c, u1a, x1, x2|q)p(y1, y2|x1, x2) and for
which the right-hand side of (9) and (10) are nonnegative. Q
is a time sharing random variable.

Proof: See the appendix.
Theorem 2: (joint decoding) Rates (7)-(8) are achievable if

R1a ≤ I(U1a; Y1|U1c, Q)
− I(U1a; X2a, X2b|U1c, Q) (13)
R1a + Rc ≤ I(U1c, U1a; Y1|Q)
− I(U1c, U1a; X2a, X2b|Q) (14)
R2a + R2b ≤ I(X2a, X2b; Y2, U1c|Q) (15)
R2a + R2b + Rc ≤ I(X2a, X2b, U1c; Y2|Q) (16)
R2b ≤ I(X2b; Y2, U1c|X2a, Q) (17)
R2b + Rc ≤ I(X2b, U1c; Y2|X2a, Q) (18)

for some joint distribution that factors as
p(q)p(x2a, x2b, u1c, u1a, x1, x2|q)p(y1, y2|x1, x2) and for
which all the right-hand sides are nonnegative.

Proof: An outline is given in the appendix.
Remark: The rates of Thm. 2 include the rates of Thm. 1.
Theorem 2 also includes the rates of the following schemes:

• The scheme of [6, Thm 3.1] for X2a = ∅, U1c = ∅, X2b =
(X2, U) and U1a = V achieving:

R2 ≤ I(X2, U ; Y2) (19)
R1 ≤ I(V ; Y1) − I(V ; X2, U) (20)



for p(u, x2)p(v|u, x2)p(x1|v).
• The scheme of [17, Lemma 4.2] for X2a = ∅, X2b = X2,

U1a = ∅, and R1 = Rc, R2 = R2b as:

R2 ≤ I(X2; Y2|U1c)
R1 ≤ min{I(U1c; Y1), I(U1c; Y2)}

for p(x2)p(u1c). The strategy in [17] considers the case
when I(U1c; Y1) ≤ I(U1c; Y2).

• Carbon-copy on dirty paper [11] for X 2a = ∅, U1a = ∅.
• For X2a = ∅, our scheme closely resembles the scheme

in [8]. One difference in our scheme is that two binning
steps are not done independently which brings potential
improvements.

It is also interesting to compare our scheme to the encoding
scheme in [4]. The latter combines rate splitting at both users,
with two-step binning at the cognitive user. Each user sends
a private index decoded by its receiver, and a common index
decoded by both. Again, one difference in our scheme is that
two binning steps are not independent.

III. THE INTERFERENCE CHANNEL WITH PARTIAL
UNIDIRECTIONAL COOPERATION

We next assume that the cognitive user knows only a partial
message of the other user. We model this by letting encoder 2
send two messages, W0, W2, to receiver 2 where only W0 is
known to encoder 1. As before, transmitter 1 also sends W1

to receiver 1. The two encoding functions become

XN
1 = f1(W1, W0) (21)

XN
2 = f2(W2, W0) (22)

and the decoding functions become

Ŵ1 = g1(Y N
1 ) (23)

(Ŵ0, Ŵ2) = g2(Y N
2 ) (24)

We refer to this channel as the interference channel with par-
tial unidirectional cooperation. We are interested in achievable
rate triples (R0, R1, R2).

A. Outer Bound
Theorem 3: The set of rate triples (R0, R1, R2) satisfying

R0 ≤ I(V ; Y2) (25)
R1 ≤ I(V, U1; Y1) (26)

R0 + R2 ≤ I(V, U2; Y2) (27)
R1 + R2 ≤ I(V, U1; Y1) + I(U2; Y2|V, U1) (28)

R0 + R1 + R2 ≤ I(U1; Y1|U2, V ) + I(V, U2; Y2) (29)

for input distributions p(v, u1, u2, x1, x2) that factor as

p(u1)p(u2)p(v|u1, u2)p(x2|v, u2)p(x1|v, u1, u2, x2) (30)

is an outer bound to the capacity region of the interference
channel with partial unidirectional cooperation.
We also have the following result:

Theorem 4: The set of rate triples (R0, R1, R2) satisfying

R0 ≤ I(V, U0; Y2) (31)
R1 ≤ I(V, U0, U1; Y1) (32)

R0 + R2 ≤ I(V, U0, U2; Y2) (33)
R1 + R2 ≤ I(V, U0, U1; Y1) + I(U2; Y2|V, U0, U1)

(34)
R0 + R1 + R2 ≤ I(U1; Y1|V, U0, U2) + I(V, U0, U2; Y2)

(35)
R0 + R1 + R2 ≤ I(U1, V ; Y1) + I(U0, U2; Y2|U1, V ) (36)

for input distributions p(v, u0, u1, u2, x1, x2) that factor as

p(u0)p(u1)p(u2)p(v|u0, u1, u2)
p(x2|v, u0, u2)p(x1|v, u0, u1, u2, x2) (37)

is an outer bound to the capacity region of the interference
channel with partial unidirectional cooperation.
Setting R2 = 0, U2 = ∅ in Thm. 3, and redefining R0 as R2

yields an outer bound to the capacity region of the interference
channel with full unidirectional cooperation.

B. Capacity Region in Strong Interference
The approach of [15], [16] can be applied to determine the

capacity region in strong interference.
Theorem 5: An interference channel with partial unidirec-

tional cooperation that satisfies the strong interference condi-
tions [18]

I(X1; Y1|X2) ≤ I(X1; Y2|X2) (38)
I(X2; Y2|X1) ≤ I(X2; Y1|X1) (39)

for input distributions p(x1, x2) that factor as p(x1)p(x2) and

I(X1, X2; Y2) ≤ I(X1, X2; Y1) (40)

for all p(x1, x2), has the capacity region

C =
⋃

{(R0, R1, R2) : R0 ≥ 0, R1 ≥ 0, R2 ≥ 0

R1 ≤ I(X1; Y1|X2, U) (41)
R2 ≤ I(X2; Y2|X1, U) (42)
R1 + R2 ≤ min{I(X1, X2; Y1|U), I(X1, X2; Y2|U)} (43)
R0 + R1 + R2 ≤ I(X1, X2; Y2) (44)

where the union is over all joint distributions that factor as

p(u)p(x1|u)p(x2|u)p(y1, y2|x1, x2). (45)
Proof: See the appendix.

IV. CONCLUSION

We developed an encoding strategy for the interference
channel with full unidirectional cooperation that generalizes
previously proposed encoding strategies. We plan to further
evaluate its performance and compare it to the performance
of other schemes, focusing on the Gaussian channel. For the
interference channel with partial unidirectional cooperation,
we developed a new outer bound that extends the Nair-El
Gamal broadcast outer bound, and obtained the capacity result
in the strong interference.



Error event Arbitrarily small positive error probability if
E1 (ŵc != 1, w1a = 1) Rc + R′

c ≤ I(U1c, U1a; Y1)
E2 (ŵc = 1, w1a != 1) R1a + R′

1a ≤ I(U1a; Y1|U1c)
E3 (ŵc != 1, w1a != 1) Rc + R′

c + R1a + R′
1a ≤ I(U1c, U1a; Y1)

E′
1 (ŵ′

2a != 1, w′
2b = 1, w′

c = 1) R2a ≤ I(X2a, X2b; Y2, U1c)
E′

2 (ŵ′
2a != 1, w′

2b != 1, w′
c = 1) R2a + R2b ≤ I(X2a, X2b; Y2, U1c)

E′
3 (ŵ′

2a != 1, w′
2b = 1, w′

c != 1) R2a + Rc + R′
c ≤ I(X2a, X2b, U1c; Y2) + I(U1c; X2a, X2b)

E′
4 (ŵ′

2a != 1, w′
2b != 1, w′

c != 1) R2a + R2b + Rc + R′
c ≤ I(X2a, X2b, U1c; Y2) + I(U1c; X2a, X2b)

E′
5 (ŵ′

2a = 1, w′
2b != 1, w′

c = 1) R2b ≤ I(X2b; Y2, U1c|X2a)
E′

6 (ŵ′
2a = 1, w′

2b != 1, w′
c != 1) R2b + Rc + R′

c ≤ I(X2b, U1c; Y2|X2a) + I(U1c; X2a, X2b)

TABLE I
ERROR EVENTS IN JOINT DECODING AND CORRESPONDING RATE BOUNDS.

V. APPENDIX

Proof: (Theorem 1) Code construction: Ignore Q.
Choose a distribution p(x2a, x2b, u1c, u1a, x1, x2).

• Split the rates as in (7)-(8).
• Generate 2NR2a codewords xN

2a(w2a) using PX2a (·),
w2a = 1, . . . , 2NR2a .

• For each w2a: Generate 2NR2b codewords xN
2b(w2a, w2b)

using PX2b|X2a
(·|x2a), w2b = 1, . . . , 2NR2b , where

x2a = x2a,i(w2a). Similar notation is used in the rest
of the code construction.

• For each pair (w2a, w2b) : Generate xN
2 (w2a, w2b). It

can be shown that it is enough to choose x2 to be a
deterministic function of (x2a, x2b).

• Generate 2N(R1c+R1c′ ) codewords uN
1c(wc, bc), wc =

1, . . . , 2NR1c , bc = 1, . . . , 2NR1c′ using PU1c(·).
• For each uN

1c(wc, bc): Generate 2N(R1a+R′
1a) codewords

uN
1a(wc, bc, w1a, b1a), w1a = 1, . . . , 2NR1a , b1a =

1, . . . , 2NR′
1a using PU1a|U1c

(·|u1c).
• For (w1, w2) : Generate xN

1 (w2a, w2b, wc, bc, w1a, b1a)
where x1 is a deterministic function of
(x2a, x2b, u1c, u1a, x2).

Encoders: Encoder 1:
1) Split the NR1 bits w1 into NR1a bits w1a and NRc

bits wc. Similarly, split the NR2 bits w2 into NR2a bits
w2a and NR2b bits w2b. We write this as

w1 = (w1a, wc), w2 = (w2a, w2b).

2) Try to find a bin index bc so that
(uN

1c(wc, bc), xN
2a(w2a), xN

2b(w2a, w2b)) ∈
Tε(PU1cX2aX2b ). If no such bc is found, choose
bc = 1.

3) For each (wc, bc): Try to find a bin index b1a such
that (uN

1a(wc, bc, w1a, b1a), xN
2a(w2a), xN

2b(w2a, w2b),
uN

1c(wc, bc)) ∈ Tε(PU1aX2aX2bU1c). If cannot, choose
b1a = 1.

4) Transmit xN
1 .

Encoder 2: Transmit xN
2 .

Decoders: Decoder 1: Given yN
1 :

1) Choose (ŵc, b̂c) if (uN
1c(ŵc, b̂c), yN

1 ) ∈ Tε(PU1cY1).
2) Choose (ŵ1a, b̂1a) if

(uN
1a(ŵc, b̂c, ŵ1a, b̂1a), uN

1c(ŵc, b̂c), yN
1 ) ∈

Tε(PU1aU1cY1).

When there are multiple pairs that satisfy one of the above
conditions, choose one pair.

Decoder 2: Given yN
2 :

1) Choose ŵ′
2a if (xN

2a(ŵ′
2a), yN

2 ) ∈ Tε(PX2aY2).
2) Choose (ŵ′

c, b̂
′
c) if (uN

1c(ŵ′
c, b̂

′
c), xN

2a(ŵ′
2a), yN

2 ) ∈
Tε(PU1cX2aY2).

3) Choose ŵ′
2b if (xN

2b(ŵ′
2a, ŵ′

2b), uN
1c(w̃′

c, b̃
′
c), xN

2a(ŵ′
2a), yN

2 )
∈ Tε(PX2bU1cX2aY2).

If no message can be chosen in any step, declare an error.
Analysis: See [9].
Proof: (Theorem 2) The code construction and encoders

are the same as in the proof of Thm. 1.
Decoders: Decoder 1: Given yN

1 , choose (ŵc, b̂c, ŵ1a, b̂1a)
if (uN

1c(ŵc, b̂c), uN
1a(ŵc, b̂c, ŵ1a, b̂1a), yN

1 ) ∈ Tε(PU1cU1aY1). If
there is more than one such a quadruple, choose one.

Decoder 2: Given yN
2 , choose (ŵ′

2a, ŵ′
c, b̂

′
c, ŵ

′
2b)

if (xN
2a(ŵ′

2a), uN
1c(ŵ′

c, b̂
′
c), xN

2b(ŵ
′
2a, ŵ′

2b), y
N
2 ) ∈

Tε(PX2aU1cX2bY2). If there is more than one such a
quadruple, choose one.
Analysis: Table I shows the possible error events and

the corresponding rate bounds that guarantee that the error
probability of each event can be made small as N gets large.
The other bounds for events E1, E′

1, E
′
3 are loose. The other

rate expressions in Table I yield (13)-(18).
Proof (Theorem 3): Consider an (M0, M1, M2, N, Pe) code.

We start by deriving (27); (25) and (26) follow by similar
steps. Fano’s inequality implies that for reliable communica-
tion we require

N(R0 + R2) ≤ I(W0, W2; Y N
2 ) (46)

≤
N∑

i=1

I(W0, W2, Y
i−1
1 , Y N

2,i+1; Y2,i) (47)

=
N∑

i=1

I(U2,i, Vi; Y2,i) (48)

where Y j
t,i = (Yt,i, . . . , Yt,j). To obtain (48) we introduce, for

i = 1, . . . , N , auxiliary random variables

Vi = (W0, Y
i−1
1 , Y N

2,i+1), U1,i = W1, U2,i = W2. (49)



Similarly, choosing U0,i = W0, Vi = (Y i−1
1 , Y N

2,i+1) yields a
bound that corresponds to (33)

N(R0 + R2) ≤
N∑

i=1

I(Vi, U0,i, U2,i; Y2,i). (50)

We next consider the bound (29). Fano’s inequality implies
that for reliable communication we require

N(R0 + R1 + R2) (51)
≤ I(W1; Y N

1 ) + I(W0, W2; Y N
2 ) (52)

≤ I(W1; Y N
1 |W0, W2) + I(W0, W2; Y N

2 ) (53)

=
N∑

i=1

I(W1; Y i
1 |W0, W2, Y

N
2,i+1) − I(W1; Y i−1

1 |W0, W2, Y
N
2,i)

+ I(W0, W2; Y2,i|Y N
2,i+1) (54)

=
N∑

i=1

I(W1; Y i
1 |W0, W2, Y

N
2,i+1)

− [I(W1, Y2,i; Y i−1
1 |W0, W2, Y

N
2,i+1)

− I(Y2,i; Y i−1
1 |W0, W2, Y

N
2,i+1)] + I(W0, W2; Y2,i|Y N

2,i+1)

=
N∑

i=1

I(W1; Y1,i|W2, Vi) − I(Y2,i; Y i−1
1 |W1, W0, W2, Y

N
2,i+1)

+ I(W0, W2, Y
i−1
1 ; Y2,i|Y N

2,i+1) (55)

≤
N∑

i=1

I(U1,i; Y1,i|U2,i, Vi) + I(U2,i, Vi; Y2,i) (56)

where (53) follows from the independence of W 0, W1, W2;
(54) follows by expanding the first and second mutual informa-
tion expressions in (53) as a sum of differences and using the
chain rule for mutual information, respectively; (55) follows by
using the chain rule for mutual information; and (56) follows
by using the non-negativity of mutual information.

Note that a bound symmetric to (29) in which roles of
(U1, Y1) and (U2, Y2) are interchanged cannot be established
because W0 is not required at decoder 1 and hence an
inequality symmetric to (53) may not hold. Instead, following
similar steps as above, we derive (28) as:

N(R1 + R2) (57)
≤ I(W1; Y N

1 ) + I(W2; Y N
2 ) (58)

≤ I(W0, W1; Y N
1 ) + I(W2; Y N

2 |W0, W1) (59)

Note that (59) is symmetric to (53). The steps (53)-(56) can
therefore be applied to show that

N(R1 + R2) ≤
N∑

i=1

I(U2,i; Y2,i|U1,i, Vi) + I(U1,i, Vi; Y1,i).

Following standard methods, as in [14], the obtained bounds
can be reduced to their single-letter characterizations. We
observe from (49) that U1,i and U2,i are independent. Fur-
thermore, due to unidirectional cooperation, the following is
a Markov chain

U1 → (V, U2) → X2. (60)

Hence, the joint probability distribution factors as in (30). !
Proof (Theorem 4): Bounds (31)-(35) follow directly from

Thm. 3 by redefining V to be (V, U0). Bound (36) can be
proved by following the same steps as the Thm. 3 proof. !

Proof: (Theorem 5) Under conditions (38)-(40), the rates
(41)-(44) are the capacity region of the compound multiaccess
channel where (W0, W1, W2) are required at both decoders
[15]. When such decoding constraints are relaxed, as in the
considered channel, the rates (41)-(44) are still achievable.
For the converse, (41) and (42) follow by standard methods.
Following the steps in [15], one can derive (43) and (44).
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