Fundamental Limits of Networks with Cognitive Users

Ivana Marić, Andrea Goldsmith, Gerhard Kramer and Shlomo Shamai (Shitz)

Goals

- Propose channel models that capture cognitive radio network characteristics:
- 1) Have both primary and secondary users
- 2) Secondary users have more capabilities such as
 - Sense the environment efficiently
 - Can decode information from detected signals
 - Extra power, multiple antennas
- Use an information-theoretic approach to evaluate performance
 - Derive achievable rates
 - Derive outer bounds
 - Present scenarios for which the capacity results can be obtained

How can the senders improve their rates?

- → Propose cooperative strategies:
- Based on the capabilities of the cognitive users
- · Primary users can be oblivious of the secondary users or
- Decide to cooperate
- Secondary users may be required to limit their transmissions such that they do not reduce the rates of primary users
- This limits operation to a specific point of the capacity region

Considered Cognitive Radio Settings

- Consider two-transmitter, two-receiver network:
- Interference channel model
 - Capacity region unknown
 - Senders are unaware of each other's messages
 - Signals transmitted at one sender ignored at the other

- Cognitive radio network: One transmitter is a cognitive radio
- •It can "overhear" transmission of the primary user
- •It obtains *partially* the primary user's message **s** it can cooperate

Idealized Model

- Secondary user learns the full message W₂
- Encoding functions: $\mathbf{x}_1 = f_1(W_1, W_2)$ $\mathbf{x}_2 = f_2(W_2)$
- Decoding functions: $\hat{W_1} = g_1(\mathbf{Y}_1)$ $\hat{W_2} = g_2(\mathbf{Y}_2)$
- The error probability $P_e = \max\{P_{e,1}, P_{e,2}\}$ for $P_{e,t} = P[g_t(\mathbf{Y}_t) \neq W_t]$ t = 1,2

Prior work:

- Cognitive Radio Channel [Devroye, Mitran, Tarokh, 2004]
 - Derived an achievable rate region
- The Interference Channel with Unidirectional Cooperation [Marić, Yates & Kramer, 2005]
 - Showed capacity in strong interference
- The Interference Channel with Degraded Message Set [Wu, Vishwanath & Arapostathis, 2006]
 - Showed capacity for weak interference and Gaussian channels in weak interference
- Cognitive Radio Channel [Jovicic Wiswanath, 2006]
- Showed capacity for Gaussian channels in weak interference

Ongoing Work: Interference Channel with Unidirectional Cooperation

- We derived a new achievable rate region:
- The coding strategy employs:
 - Rate-splitting to reduce the interference at the receivers
 - Coding techniques for channels with states non-causally known to the transmitter
- We demonstrated the scheme for Gaussian channels
- The proposed coding strategy improves on the previously proposed schemes

- Outer bounds:
 - We derived a general outer bound that is based on the Nair-El Gamal outer bound on the broadcast channel capacity
 - It has the same form as Nair&El Gamal bound
- The difference is in the factorization of the input distribution reflecting the fact that only one-way cooperation is possible
- 2) We derived a general outer bound that holds if

$$I(X_1; Y_1 | X_2) \le I(X_1; Y_2 | X_2)$$

 When the condition is satisfied, decoder 2 experiences strong interference, i.e., it can decode W, with no rate penalty

Ongoing Work: Interference Channel with Partial Cooperation

- Secondary user overhears message W_2 as it is transmitted
 - It can only use it in the next encoding block
 - Encoder 2 uses Block Markov Encoding
- · As a consequence:
 - At each time, secondary user has partial information about what is currently being sent at primary user •Common part at time i: $W_2[i-1]$
- We model this as a common message at two transmitters

- The encoding scheme devised for the full cooperation can be generalized for the partial cooperation case
- We derived the general outer bounds on the capacity of this channel
- We determined the capacity region in the strong interference:
- Theorem: An interference channel with partial cooperation that satisfies

$$I(X_1; Y_1 | X_2) \le I(X_1; Y_2 | X_2)$$

 $I(X_2; Y_2 | X_1) \le I(X_2; Y_1 | X_1)$

for all product input distribution $p(x_1)p(x_2)$ and

If all product input distribution
$$p(x_1)p(x_2)$$
 and
$$I(X_1,X_2;Y_2) \leq I(X_1,X_2;Y_1) \quad \text{ for all } p(x_1,x_2) \quad \text{has capacity region}$$

$$C = \bigcup \{(R_0,R_1,R_2): R_0 \geq 0, R_1 \geq 0, R_2 \geq 0 \}$$

$$R_1 \leq I(X_1;Y_1 \mid X_2,U)$$

$$R_2 \leq I(X_2;Y_2 \mid X_1,U)$$

$$R_1 + R_2 \leq I(X_1,X_2;Y_1 \mid U), I(X_1,X_2;Y_2 \mid U)$$

$$R_0 + R_1 + R_2 \leq I(X_1,X_2;Y_2)\}$$

where the union is over $p(u)p(x_1|u)p(x_2|u)p(y_1,y_2|x_1,x_2)$

Future Work: More Realistic Models, Large Networks and Simple Schemes

- Presented achievable rate region and the outer bound are next to be evaluated and compared for Gaussian interference channels with unidirectional cooperation
 - Scenarios for which the bounds are tight are to be identified if possible
- Channel models that take into account the delay at the cognitive transmitter in obtaining the message of the primary user are to be considered
- Based on the results, the operating points for the networks with cognitive users such as encoding schemes, power and bandwidth allocation are to be characterized
- · Results are to be generalized to large networks with cognitive users
- Simple encoding schemes for such networks need to be devised
- Different scenarios will be considered:
- When primary users are oblivious of the secondary users
- · When primary users can help transmission of the secondary users
- Channel models that are tractable and that incorporate additional characteristics of cognitive radios such as multiple antennas or extra power are to be developed