Iterative Power Control in Wireless Networks with Interference

Stephen BoydNikolaos TrichakisDan O'NeillAndrea GoldsmithArgyris ZymnisSachin Adlakha

Electrical Engineering Department, Stanford University

ITMANET PI meeting 01/07

The Questions

- what's the rate region for a wireless network with interference and power control?
- how hard is it to find the powers that maximize some utility function such as the sum of the rates?
 - for high SINRs (*i.e.*, small interference), *easy*
 - otherwise, hard
- how well do heuristics do?
- we don't consider: interference cancellation, network coding, distributed methods, unknown and/or random path gains, . . .

Wireless Network with Interference

- *n* links (transmitter-receiver pairs)
- G_{ij} : gain from transmitter of link j to receiver of link i
- P_i : link *i* transmit power, with constraint $0 \le P_i \le P_i^{\max}$
- σ_i^2 : link *i* receiver noise
- γ_i : link *i* SINR

$$\gamma_i = \frac{G_{ii}P_i}{\sigma_i^2 + \sum_{j \neq i} G_{ij}P_j}$$

- $R_i = \log(1 + \gamma_i)$: link *i* rate
- (no interference cancellation, etc.)

Sum Rate Maximization

• we take the sum rate

$$R^{\text{tot}} = \sum_{i=1}^{n} R_i = \log \prod_{i=1}^{n} (1 + \gamma_i)$$

as an overall utility measure (could take others)

- maximizing R^{tot} is a hard, nonconvex problem
- maximizing sum high SINR approximation

$$\hat{R}^{\text{tot}} = \sum_{i=1}^{n} R_i = \log \prod_{i=1}^{n} \gamma_i$$

is, however, an easy problem (GP); \hat{R}^{tot} is a concave function of $\log P_i$

Iterative Algorithm

- basic idea: iterate to convergence
 - form GP compatible approximation \hat{R}_i of R_i , accurate at current point
 - maximize $\sum_{i=1}^{n} \hat{R}_i$
- a standard scheme, used in GP applications such as circuit design
- yields a local, but not necessarily global, optimal point (*i.e.*: it can fail to find the actual maximum sum rate)
- in any case, seems to give quite good choice of powers

Convex Inner Approximation of Rate Region

with monomial $1 + \gamma_i$ approximation, rate region is convex

Iterative Power Optimization Algorithm

at iteration \boldsymbol{k}

• approximate $\prod_i (1 + \gamma_i)$ as

$$\prod_{i} (1 + \gamma_i^{(k)}) \gamma_i^{\beta_i^{(k)}}, \qquad \beta_i^{(k)} = \frac{\gamma_i^{(k)}}{1 + \gamma_i^{(k)}}$$

- solve GP $\begin{array}{l} \max i maximize & \prod_i \gamma_i^{\beta_i^{(k)}} \\ \sup ject \ to & P_i \leq P_i^{\max} \end{array}$ to get $P_i^{(k+1)}$

can start from powers found using high SINR approximation

ITMANET PI meeting 01/07

ITMANET PI meeting 01/07

Larger Example — High SINR ($\rho = 0.1$)

11 out of 25 links are on; 14 are off

Larger Example — Low SINR ($\rho = 0.5$)

 $2 \ {\rm out} \ {\rm of} \ 25 \ {\rm links}$ are on; $23 \ {\rm are} \ {\rm off}$

Wireless Network Example

width shows power of link

ITMANET PI meeting 01/07

Extensions & Conclusions

extensions (easy):

- any GP compatible constraints (*e.g.*, on power)
- joint allocation of bandwidth, power; flow routing

what's next:

- upper bounds on $R^{\text{tot}\star}$?
- decentralized version?