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Challenges in the Design of Structured Codes

– Generalize capacity region and scaling laws, parameterized by various system assumptions and
constraints, characterized as a function of energy, delay, and outage

Why is short and structured codes important in ITMANET?
Real-time applications, simple protocols, and wireless environments give
sharp delay and reliability constraints;
Cooperative transmission requires early decoding (partial or soft
information);
Network coding results suggest transmission of small pieces of
information over the network;
Conjecture: joint source-channel-network codes require new
performance metrics (eg. MDS) ;

Why is this hard?
Shannon’s results based on long block codes;
Randomization as the key step of information proofs;
Error exponents not well-understood:

Esp(R) = max
Px

max
ρ≥0

{− log(
y

(
x

Px(x)Wy|x(y|x)(1/1+ρ))1+ρ) − ρR}
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Advantage of Geometric Approach

i-Projection and Sanov’s theorem:

Exponential family charac-
terizing typical error event

PSfrag replacements
P

Q∗

C

Differential analysis allows layered coding structure with good reliability;
eg. unequal error protection:

(M1,M2, ...,Mk) ⇒ X → Y1 → Y2 → . . .→ Yk

Relation to estimation related quantities allowing new encoder/decoder
designs;

D(Pt||P0) = Fisher Information
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Useful Properties of Information GeometryPSfrag replacements
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Differential (local) Property:

∂ψ

∂t
= η,

∂φ

∂η
= t,

∂η

∂t
= g

Moment Generating Property.

Marginalization: QP xyxy

Linear Family with Given 
Y marginal

Weighted Exponential
Family
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Capacity and Error Exponents

Er(R) = min
t
D(pt||p1) + [D(pt||p0) −R)]+

PPxy

Linear Family with Given 

x PY

Er

R

Y marginal

For R > Rcrit, + active,

Er(R) = D(pt||p1), where D(pt||p0) = R

For R < Rcrit, + not active,

Er(R) =

�

min
t
D(pt||p0) +D(pt||p1)

�

−R
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Capacity with Mismatched Decoders

Mismatched Receiver with decoding metric F : X × Y → <: pick the
codeword with the largest value of

n

i=1

F (xi, yi)

ML decoder corresponds to F (x, y) = log
Pxy(x,y)

Px(x)Py(y)
.

Motivations
Wireless channel with non-perfect CSIR;
F maybe much simpler to evaluate than likelihood.

Known results (Kaplan et.al.’94, Csiszar et.al.’95): optimization over input
distributions difficult.
Slightly different question: best mismatch out of a linear family of decoding
metrics.
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Geometric Solutions

For given input distribution Px, channel W ,

R = min
Qxy :EQ[F ]=EµJ

[F ],Qy=Py

D(Q||µP )
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Very Noisy Sitation

PSfrag replacements

p q

Πp,q

Tp Tq

PSfrag replacements

C/2 −R

Er(R)
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(
√
C −

√
R)2

Euclidean approximation of
probability model

Quadratic approximation of diver-
gence, oth order approximation of
Fisher information

Mismatched capacity in very noisy channels: C = 1
2

〈F̃ ,L〉

‖F̃‖2
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Layered Codes

Two message tree code:

a n (1-a) n

M M Mx1 1 2

In very noisy case, at high rates,

Pr(E1) = exp

�

−n

�√
C −

√
aR1 −

�

(1 − a)R2

� 2

�

Pr(E2) = exp

�

−(1 − a)n

�√
C −

�

R2/(1 − a)

� 2

�

Degraded broadcasting network (ISIT 07)
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