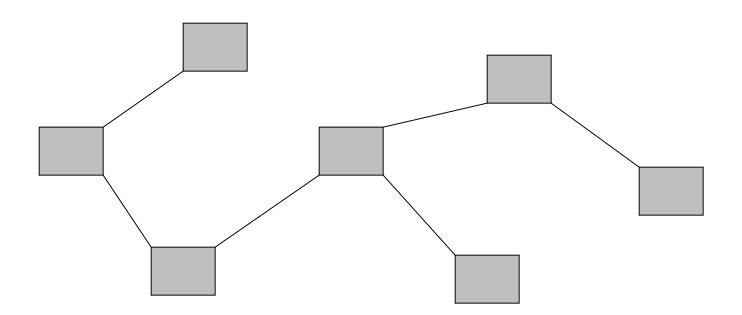
Distributed Functional Compression through Graph Coloring

Vishal Doshi, Devavrat Shah, Muriel Medard

Massachusetts Institute of Technology

Distributed Functional Compression

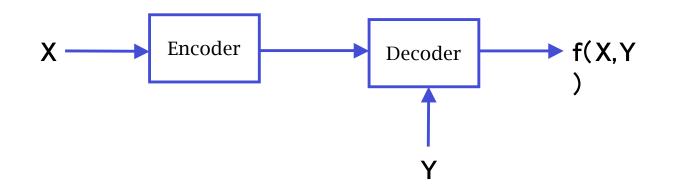


- Nodes (sensors, cameras) in a network have pieces of information
 - Different nodes have different use of the information in network
 - i.e. they wish to compute different functions of the information
- Question: what is the minimal transmission rates between nodes
 - So as to allow different nodes to compute their functions
 - And, nodes have to do this in a distributed manner

Applications

- Distributed function compression
 - Marriage of information theory, networks and computation
 - Grand challenge for modern information theory
- Algorithmic applications
 - Surveillance cameras gather a lot information
 - But only *small* amount of information is useful
 - Distributed compression can lead to an efficient network
- Policy guidelines
 - Privacy preservation of sensitive information, e.g. Census DB
 - Information theoretic results provide bounds on "information transmission" so as to preserve privacy of people
 - Or, Privacy preservation of people while using cameras for surveillance in public places

First Step : Functional Side Information



- At what rate must X be encoded such that the computation of f(X,Y) is possible at the receiver?
 - Here, f can be any deterministic function
- More importantly,
 - Can we come up with "implementable" coding schemes to achieve (close to) the optimal rate?

• The minimal rate was characterized by Orlitsky-Roche (2001):

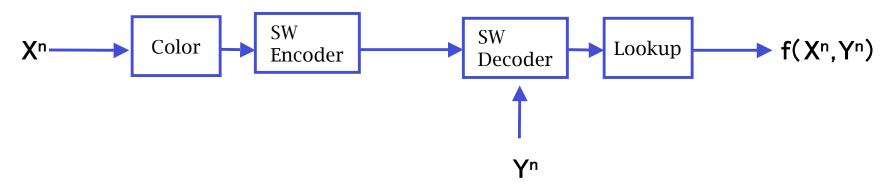
$$H_{X}(\min) W; XY_{WXY_{-X} \in \Gamma()} (|)$$

where G is a graph defined by the function f(X,Y) and the distribution p(X,Y) called the characteristic graph.

- H_G(X|Y) < H(X|Y) and the disparity is determined by the complexity of the function
 - Thus, functional compression definitely provides gains
- However, the above scheme is somewhat complicated
 - We provide coding scheme using notion of graph coloring
 - It can achieve the optimal rate
 - Leads to design of good simple-to-implement heuristics

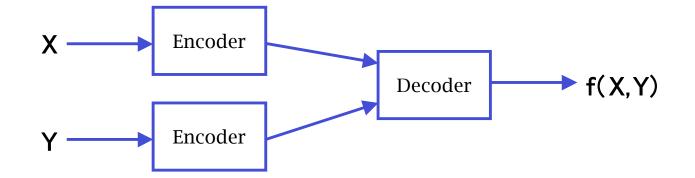
Our Coding Scheme

• The following scheme achieves the optimal rate:



- 1. Construct **G**ⁿ and color it (gains even without min entropy colorings)
- 2. Color each source symbol
- 3. Do Slepian-Wolf style coding to recover $c(X^n)$ and Y^n at the receiver
- 4. With high probability, $c(X^n)$ and Y^n uniquely determine $f(X^n, Y^n)$
- Our scheme is built on existing distributed source coding
 - Provides separation between "functional coding" and "data

Step II: Distributed Functional Compression



- Next we consider the distributed source coding set up
- Again, we wish to determine minimal transmit rates for X and Y such that f(X,Y) can be recovered at the receiver?
 - The sources cannot communicate with each other
- Can we extend our result for Step I to this more general problem?
 - Answer: Yes, but with some conditions

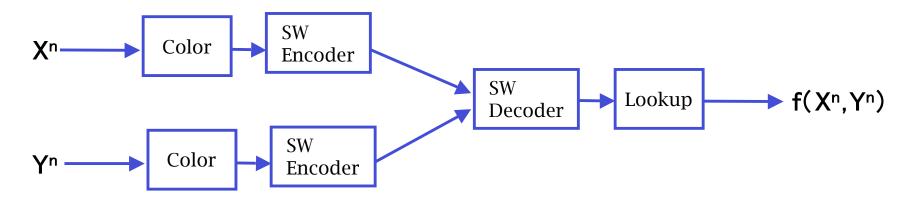
Distributed Functional Compression

- Condition: the joint distribution of sources is such that
 - $p(\mathbf{x}_1, \mathbf{y}_1) > 0$, $p(\mathbf{x}_2, \mathbf{y}_2) > 0$ implies $p(\mathbf{x}_1, \mathbf{y}_2) > 0$
 - This is a reasonable assumption for a wide array of applications
- Under this condition, our coding scheme is optimal
- The rate region is the closure of the set of all (R_X, R_Y) such that for some n and colorings c_X and c_Y of Gⁿ and Hⁿ, where Hⁿ is the characteristic graph of Y with respect to X, the following holds:

nR _x	$\geq H(c_X(X) c_Y(Y))$
nR _Y	$\geq H(\mathbf{c}_{Y}(\mathbf{Y}) \mathbf{c}_{X}(\mathbf{X}))$
n(R _x +R _y)	$\geq H(\mathbf{c}_{\mathbf{X}}(\mathbf{X}),\mathbf{c}_{\mathbf{Y}}(\mathbf{Y}))$

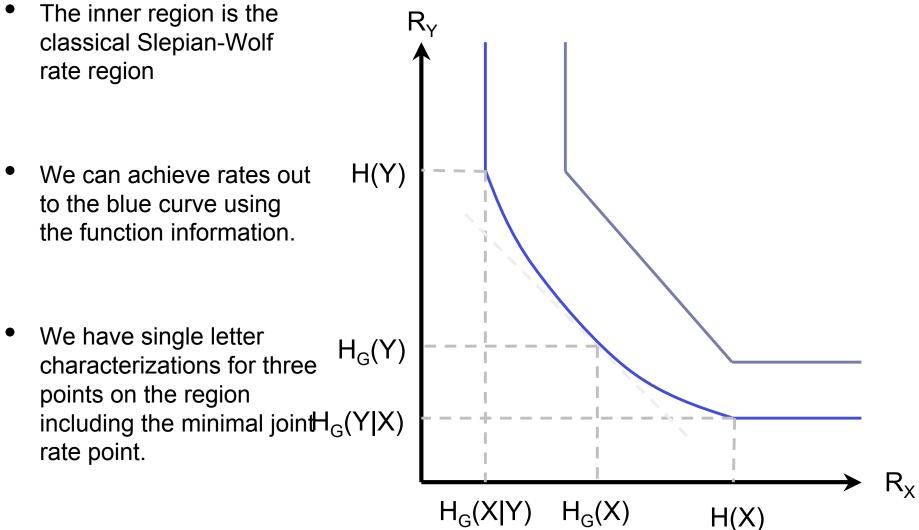
Our Coding Scheme

• The following scheme achieves the optimal rate:



- 1. Construct graphs \mathbf{G}^n and \mathbf{H}^n and color them
- 2. Color each source symbol
- 3. Do Slepian-Wolf style coding to recover $c_x(X^n)$ and $c_y(Y^n)$ at receiver
- 4. With high probability, $c_x(X^n)$ and $c_y(Y^n)$ uniquely determine $f(X^n, Y^n)$

Rate Region for Distributed Coding



 $H_{G}(X|Y)$ $H_{G}(X)$

Summary

- We are developing novel coding schemes that utilize graph coloring as a means to achieve optimal rates
- Our results extends to multiple sources and one receiver
- Our approach leads to layered architecture
 - Add "functional layer" on existing distributed compression schemes
- There is a lot of literature on Approximation algorithms for graph coloring
 - This allows for heuristics based on these algorithms
- And, it furthers the current project in the correct direction !