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Question:
  Given a family of linear detectors, how to find the best?
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Goal:  Robustness

Original motivation for the research on mismatched detectors

What is the impact on capacity given a poor model?
How should codes be constructed 
      to take into account uncertainty?

X memoryless  Y channel



Goal:  Complexity 

Detection and capacity - easy.  Its just mutual information!!

Linear detectors suggest relaxation techniques for multiuser
and network settings



Goal:  Adaptation

A new point of view!

How can a detector be tuned on-line 
      in a dynamic environment?

This will depend on SNR
Other users
Network conditions ...

X memoryless  Y channel
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Background:  Robust Hypothesis Testing

Uncertainty classes defined by moment constraints

F : Generalized Log Likelihood Ratio
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Background:  Mismatched channel

A given function F (x,y) defines a surrogate ML detector:

Empirical distributions for ith codeword:

Reliably received rate (in general a lower bound):  
Generalized Mutual Information   (Lapidoth,  Csiszar)

Γi
n = n−1

n∑
t=1

δXi
t ,Yt

i∗ = arg max
i
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n,F〉 = arg max
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{ n∑
t=1

F (Xi
t , Yt)

}



Mismatched Detector:  Sanov’s Theorem

π0

Sanov’s Theorem (in form of Chernoff’s Bound) gives 

ILDP(PX ;F ) := i D(Γ‖PX ⊗ PY ) : 〈Γ 〉 = 〈PXY ,F,F 〉nf
{ }

log Pe ≤ −nILDP(PX ;F )

β0 = ILDP(PX ;F )

PXY

) =

 =

{ {Γ : D(ΓQβ0
β0(π0 ) ≤π0

π0 PX ⊗ PY

〈Γ 〉 = 〈PXY ,F,F 〉



Mismatched Detector:  Generalized Mutual Information

Generalized Mutual Information

IGMI(PX ;F ) := i D(Γ‖PX ⊗ PY ) : 〈Γ 〉 = 〈PXY ,F ,,F 〉nf
{

log Pe ≤ −nIGMI(PX ;F )
}

Γ2 = PY

Derivation of GMI bound using Sanov:  For any function G(y),

log Pe ≤ −nILDP(PX ;F G any G(y))

i∗ = arg max
i

〈Γi
n, F + G〉 = arg max

i

{ n∑
t=1

[F (Xi
t ,Yt) + G

 +

(Yt)]
}



Mismatched Detector:  Generalized Mutual Information

Generalized Mutual Information

G  : Lagrange multiplier for equality constraint

IGMI(PX ;F ) := i D(Γ‖PX ⊗ PY ) : 〈Γ 〉 = 〈PXY ,F ,,F 〉nf
{

log Pe ≤ −nIGMI(PX ;F )
}

Γ2 = PY

Γ2 = PY

sup
G(y)

ILDP(PX ;F + G) = IGMI(PX ;F )

log Pe ≤ −nILDP(PX ;F G ) +

*

any G(y)



Mismatched Neyman Pearson Hypothesis Testing

X

Parallel simulation for a range of η

1 uniform on [0, 1], X0 =
5
√

X1
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Optimal Linear Test Obtained
Using Stochastic Newton-Raphson



AWGN Channel

Y = X + N

Estimates

Capacity
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Basis:  

SNR = 2 

ψ = (x2, y2,xy)T

Optimal Linear Test Obtained
Using Stochastic Newton-Raphson



Conclusions

Geometry based on Sanov’s Theorem combined
with Stochastic Approximation provides powerful 
computational tools

Future work:

Application to MIMO will simultaneously resolve coding
and resource allocation.  Extensions to network coding possible?

Simulation algorithm exhibits high variance.  Application of 
importance sampling?  Revisit robust approach?  




