Finding the best mismatched detector

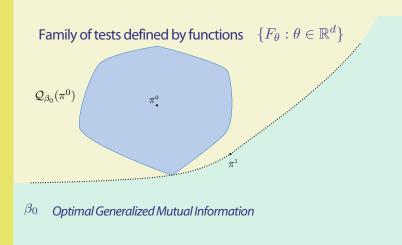
for channel coding and hypothesis testing

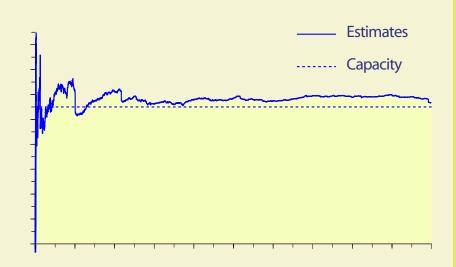
Team members: Muriel Me'dard, Sean Meyn and Lizhong Zheng

Graduate student member: Emmanuel Abbe

Question:

Given a family of linear detectors, how to find the best?





Goal: Robustness

Original motivation for the research on mismatched detectors

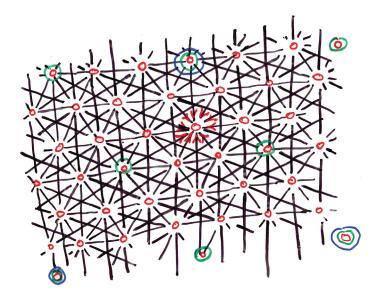
What is the impact on capacity given a poor model?
How should codes be constructed
to take into account uncertainty?

 $X \longrightarrow \text{memoryless channel} \longrightarrow Y$

Goal: Complexity

Detection and capacity - easy. Its just mutual information!!

Linear detectors suggest relaxation techniques for multiuser and network settings

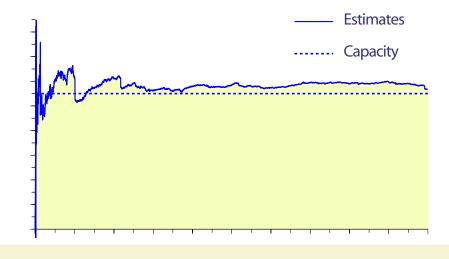


Goal: Adaptation

A new point of view!

How can a detector be tuned on-line in a dynamic environment?

This will depend on SNR Other users
Network conditions ...

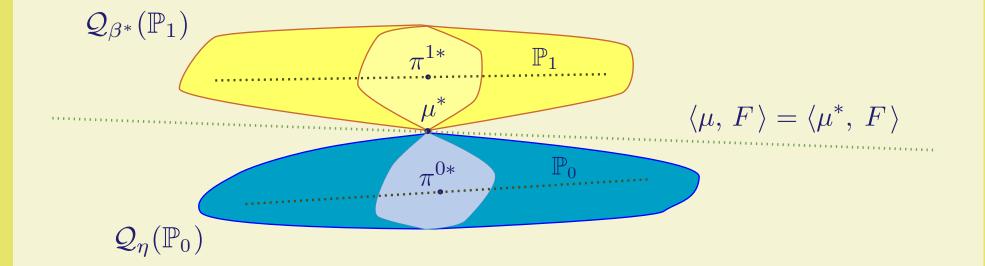


Background: Robust Hypothesis Testing

Uncertainty classes defined by moment constraints

There exists $\pi_0^* \in \mathbb{P}_0, \pi_1^* \in \mathbb{P}_1$ and μ^* solving,

$$\beta^* = \inf_{\pi_1 \in \mathbb{P}_1} \inf_{\mu \in \mathcal{Q}_{\eta}(\mathbb{P}_0)} D(\mu \parallel \pi_1)$$



F: Generalized Log Likelihood Ratio

Background: Mismatched channel

A given function F(x,y) defines a surrogate ML detector:

$$i^* = \underset{i}{\operatorname{arg\,max}} \langle \Gamma_n^i, F \rangle = \underset{i}{\operatorname{arg\,max}} \left\{ \sum_{t=1}^n F(X_t^i, Y_t) \right\}$$

Empirical distributions for *i*th codeword:

$$\Gamma_n^i = n^{-1} \sum_{t=1}^n \delta_{X_t^i, Y_t}$$

Reliably received rate (in general a lower bound): Generalized Mutual Information (Lapidoth, Csiszar)

Mismatched Detector: Sanov's Theorem

Sanov's Theorem (in form of Chernoff's Bound) gives

$$\log P_e \le -nI_{\text{LDP}}(P_X; F)$$

$$I_{\text{LDP}}(P_X; F) := \inf \Big\{ D(\Gamma || P_X \otimes P_Y) : \langle \Gamma, F \rangle = \langle P_{XY}, F \rangle \Big\}$$

$$\mathcal{Q}_{\beta_0}(\pi^0) = \{ \Gamma : D(\Gamma \parallel \pi^0) \le \beta_0 \}$$

$$\pi^0 = P_X \otimes P_Y$$

$$\langle \Gamma, F \rangle = \langle P_{XY}, F \rangle$$

$$P_{XY}$$

$$\beta_0 = I_{\text{LDP}}(P_X; F)$$

Mismatched Detector: Generalized Mutual Information

Generalized Mutual Information

$$\log P_e \le -nI_{\text{GMI}}(P_X; F)$$

$$I_{\text{GMI}}(P_X; F) := \inf \left\{ D(\Gamma || P_X \otimes P_Y) : \langle \Gamma, F \rangle = \langle P_{XY}, F \rangle, \Gamma_2 = P_Y \right\}$$

Derivation of GMI bound using Sanov: For any function G(y),

$$i^* = \underset{i}{\operatorname{arg\,max}} \langle \Gamma_n^i, F + G \rangle = \underset{i}{\operatorname{arg\,max}} \left\{ \sum_{t=1}^n [F(X_t^i, Y_t) + G(Y_t)] \right\}$$

$$\log P_e \le -nI_{\text{LDP}}(P_X; F + G)$$
 any $G(y)$

Mismatched Detector: Generalized Mutual Information

Generalized Mutual Information

$$\log P_e \le -nI_{\text{GMI}}(P_X; F)$$

$$I_{\text{GMI}}(P_X; F) := \inf \{ D(\Gamma || P_X \otimes P_Y) : \langle \Gamma, F \rangle = \langle P_{XY}, F \rangle, \Gamma_2 = P_Y \}$$

$$\log P_e \le -nI_{\text{LDP}}(P_X; F+G)$$
 any $G(y)$

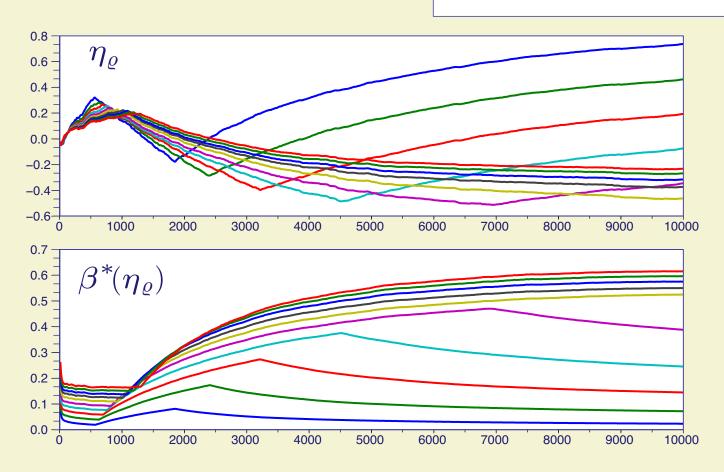
$$\sup_{G(y)} I_{\text{LDP}}(P_X; F + G) = I_{\text{GMI}}(P_X; F)$$

 G^* : Lagrange multiplier for equality constraint $\Gamma_2 = P_Y$

Mismatched Neyman Pearson Hypothesis Testing

 X^1 uniform on $[0,1], \quad X^0 = \sqrt[5]{X^1}$

Optimal Linear Test Obtained Using Stochastic Newton-Raphson



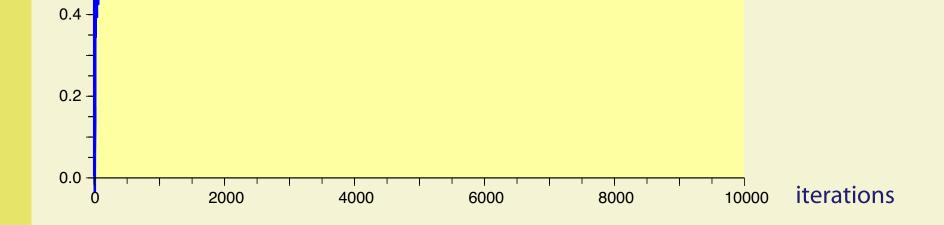
Parallel simulation for a range of η

AWGN Channel

1.0

Basis: $\psi = (x^2, y^2, xy)^{T}$

Optimal Linear Test Obtained Using Stochastic Newton-Raphson



Conclusions

Geometry based on Sanov's Theorem combined with Stochastic Approximation provides powerful computational tools

Future work:

Application to MIMO will simultaneously resolve coding and resource allocation. Extensions to network coding possible?

Simulation algorithm exhibits high variance. Application of importance sampling? Revisit robust approach?