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Question:
Given a family of linear detectors, how to find the best?
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Goal: Robustness

Original motivation for the research on mismatched detectors

What is the impact on capacity given a poor model?

How should codes be constructed
to take into account uncertainty?
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Goal: Complexity

Detection and capacity - easy. Its just mutual information!!

Linear detectors suggest relaxation techniques for multiuser
and network settings
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Goal: Adaptation

A new point of view!

How can a detector be tuned on-line
in a dynamic environment?
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This will depend on SNR
Other users
Network conditions ...
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Background: Robust Hypothesis Testing

Uncertainty classes defined by moment constraints

There exists =} € Pg, 77 € P; and p* solving,

B* = inf inf  D(ul m)
7T1€]P)1 MEQn(Po) 1

F: Generalized Log Likelihood Ratio



Background: Mismatched channel

A given function F'(x,y) defines a surrogate ML detector:

it = arg max(Ffl, F) = arg max{z F(XZ,Yt)}
1 1 t—1

Empirical distributions for :th codeword:
FZ’;L — n_l Z 5X§,Yt
t=1

Reliably received rate (in general a lower bound):
Generalized Mutual Information (Lapidoth, Csiszar)



Mismatched Detector: Sanov's Theorem

Sanov’s Theorem (in form of Chernoff’'s Bound) gives

log P, < —nlypp(Px; F)

Loe(Px; F) = inf{D(T|Px ® Py) : (T, F) = (Pxy, F) }

= Px®Fy




Mismatched Detector: Generalized Mutual Information

Generalized Mutual Information
log P, < —nlowi(Px; F)

Iown(Px; F) :=nt{ D(T||Px ® Py) : (T, F) = (Pxy, F), T2 = Py
Derivation of GMI bound using Sanov: For any function G(y),

i* = argmax(l'},, F+ G) = arg maX{Z[F(Xf, Vi) + G(Yt)]}
L ! t=1

log P, < —nlipp(Px; F+G) any G(y)



Mismatched Detector: Generalized Mutual Information

Generalized Mutual Information
log P, < —nlgw(Px; F)
Iowi(Px; F) = iﬂf{D(FHPX ® Py) :(I',F) = (Pxy, F),I's = PY}
log P, < —nlpe(Px: F+ G) any G(y)

Slg-l; ILDP(PX§F‘|‘ G) — IGMI(PX;F)
G(y

G" : Lagrange multiplier for equality constraint T'; = Py



Mismatched Neyman Pearson Hypothesis Testing

] Optimal Linear Test Obtained
X1 uniformon [0,1], X" = VX! | Using Stochastic Newton-Raphson
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AWGN Channel

Optimal Linear Test Obtained

Y=X+N SNR=2
i Using Stochastic Newton-Raphson

Basis: ¢ = (22,92, 2y)"
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Conclusions

Geometry based on Sanov’s Theorem combined
with Stochastic Approximation provides powerful
computational tools

Future work:

Application to MIMO will simultaneously resolve coding
and resource allocation. Extensions to network coding possible?

Simulation algorithm exhibits high variance. Application of
importance sampling? Revisit robust approach?





