Competition and cooperation

Ramesh Johari

Competition and cooperation

- Fundamental question: When can local competition yield global cooperation?
- Fundamental limit:

The cost of failure to coordinate

- Two key subproblems:
 - Distributed coordination
 - Managing noncooperative incentives

- There exists a "good" operating point, but nodes have no way of coordinating to reach it.
- Design the system so individually "selfish" behavior leads to a collectively "good" outcome.

1) Wireless resource allocation

Cognitive radios (CRs) must find and utilize space, time, and frequency "holes."

If many CRs are in the same area, they will all react to each other.

1) Wireless resource allocation Frequency: Interference effects Time: "Evolution of cooperation" Space: Spatial reuse

What CR strategies perform well when the environment is reactive?

Roadmap

1) Wireless resource allocation

frequency competition among CRs
(current)

-comparison of CR strategies in a

temporally varying model

-spatial variation in CR strategies

large system limits

2) Topology formation

If MANETs try to build a network topology (for routing, distributed computation or control, etc.), they suffer from a *lack of global information*.

2) Topology formation

Encourage selfish link formation and destruction, but with a "contracting model" that ensures eventual topology is efficient and robust.

What local link formation dynamic leads to a good global topology?

Roadmap

2) Topology formation

- -study local information exchange needed to converge to good global topology *(current)*
- -study tradeoff between *complexity* of local exchange and *robustness* of global dynamic

Managing incentives

When some nodes are noncooperative or adversarial, the MANET must still function.

- Thus we need mechanisms to:
 - -detect misbehavior and
 - -punish misbehavior

Managing incentives

Is there a distributed notion of "reputation" that can be sustained in the network? Can benign nodes "learn" over time and cooperatively counteract adversarial behavior?

What architectures make "deviating from the norm" a bad idea?