Source Coding, Separation, & Feedback for MANETs Introduction

What we know:

Joint-source-network channel designs tailored to a specific to one application and a particular instantiation of a source/network probability distribution will have great performance.
BUT they in general will *lack robustness and adaptability* Why are These Problems Interesting?:

- •Joint-source channel coding paradigm not completely well-defined
- •Functional compression problem is not even completely characterized theoretically
- •Common properties of provably good architectures not well understood
- An ITMANET vision we aspire to:

•Developing robust architectures that are provably good across a broad class of source reconstruction metrics, and statistical properties of sources/channel/network topologies.

Source Coding, Separation, and Feedback for MANETs

Introduction (cont'd)

Numerous reconstruction demands/metrics

- Near-lossless reconstruction of original sources
- Near-lossless reconstruction of *functions* of sources
- Lossy distortion metrics
- *Arbitrary* demand structures in line networks (beyond multicast/unicast)

Robust architectures

- Using successively refinable codes
- Modularized Graph Coloring/Slepian-Wolf Coding

Various statistical source/channel/network topology scenarios

- •Communicating across *non-ergodic* channels
- •Line networks
- •*Random* network *topologies*

Source Coding, Separation, and Feedback for MANETs

Future work in this arena

•Consider non-iid sources for lossless, functional,

lossy reconstruction metrics

Incorporate common aspects of sources into network designs *Feedback* provides possibilities for highly adaptive universal approaches in such scenarios. Fundamental question(s):

•For sources with memory, joint coding and feedback, how should we balance *forward error correction* versus as *adaptive feedbacktriggered error correction*?

•Note (as we'll see with Ralf's work) we must look at this from *beyond a link-based feedback perspective*

•Should we do mostly forward error correction or mostly adapt?

•What is the right *balance* between the two and how is this *modulated by the memory of the sources?*

•Understand this from *lossless* achievability, *error exponent*, *lossy* achievability, and *distortion exponent* perspectives

Qualification of definition of source-channel coding (Coleman et al)

• *General problem*: correlated sources, a network, each receiver wants to losslessly reconstruct them

• *Separation* at encoder *and* decoders *insufficient*

•*Separation* at *encoder* and *joint source-channel decoding* achieves whole capacity region

•A *robust, optimal* architecture

•There are *more degrees of freedom* in the separation vs. no separation question *than previously thought*

- •The best rate (Orlitsky. Roche): $H_{\mathcal{G}}(n) W; XY_{WXY_{-}}()$ G is a graph defined by the function f(X,Y) and the distribution p(X,Y) called the characteristic graph.
- • $H_G(X|Y) < H(X|Y)$, disparity determined by complexity of function f
- This rate can be achieved using graph colorings of powers of G.

Network coding and network error correction (Koetter, Kschischang)

Random network coding is susceptible to modifications
of packets (adversary, jamming, non-hostile, packet erasures)
Error correction in combination with network coding was considered by Yeung et al., and Zhang, --- here the network topology plays a central role
We consider a network as a modeled by a random linear operator reflecting the operation of *random network coding* on a network of unknown topology

 $U = \mathcal{H}_k(V) \oplus E$

Bounds and codes

- Already known (Lun et al) for erasures:

 even if you allow feedback on a *link* by *link basis*, network coding still
 beats out a protocol (feedback-based)
 mechanism
 - reason: forcing retransmissions on links still constrains encoding to be point-to-point, loss of diversity
- Here: when arbitrary errors are injected, network coding still wins
- Usually, cost for an error is *twice* cost for an erasure. Here, errors and erasures have the *same* cost
- A Singleton bound has been derived
- Codes meeting this bound can be constructed form Gabidulin's rank error correcting codes
- These codes come with fast encoding and decoding!

Network Coding of Correlated Sources in Line Networks (Koetter, Effros et al)

• Independent sources and a special class of dependent sources

•Fully characterize the capacity region of line networks for *all possible demand structures* (e.g., multiple unicast, mixtures of unicasts and multicasts, etc.)

•Achievability bound is derived by decomposing a line network into components that have exactly one demand and adding the component rate regions to get rates for the parent network.

• For dependent sources, an achievability result is provided examples where the result is and is not tight.

Joint Source-Channel Coding without CSI at the Transmitter (Goldsmith et al)

- Transmission of Gaussian source without CSIT.
 - Quasi-static block fading. Decoding is delay-limited.
 - Channel is non-ergodic: separation is suboptimal.
 - Transmitter knows the fading distribution.
- Minimize expected distortion $E_H[D]$ of reconstruction.
 - Power constraint *P*.
 - Bandwidth ratio: *b* source symbols per channel use.

Layered Broadcast Coding with Successive Refinement

- Layered broadcast coding:
 - Superposition coding: one layer for each fading state.
 - Receiver decodes the layers supported by the channel realization.
 - Undecodable layers are treated as noise.
 - Successive decoding is capacityachieving for single-antenna Gaussian broadcast channel.
- Gaussian source is successively refinable:
 - Each layer successively refines the description in the lower layer.

Optimized power allocation for minimum expected distortion

Two-layer power allocation:

- Allocate power to higher layer up to a power ceiling.
- Multiple layers:
 - Recursively apply two-layer optimization.
- Continuous fading distribution:
 - Solution given by a set of first-order linear differential equations
- Minimum expected distortion:
 - At high SNR, large benefits from diversity.