
Optimization in MANETs

Stephen Boyd

Electrical Engineering Department, Stanford University

ITMANET PI meeting 01/07



Application (users’) view

• multiple, competing application resources (bandwidth, latency, error
rate, reliability, . . . ) provided by network, needed to operate
applications at some level of quality

• we use vector r ∈ Rn to summarize resources made available to users

• some applications can adapt to varying levels of resources available;
others either work or don’t

• can be captured by user utility function Ui(r) (e.g., 0/1 for ‘works or
not’; −∞ for hard constraint)

• goal: maximize total user utility U(r) = U1(r) + · · · + Uk(r)
(can include idea of fariness)

ITMANET PI meeting 01/07 1



Network view

• allocate competing network resources
(link rates, buffer space, power, time-slot fraction)
to provide application resources r to applications/users

• can abstract to the achievable region R of all possible r that can be
offered to users

• improvements in hardware, algorithms, coding, protocols, etc., enlarge
R (we hope)

• our problem is to maximize U(r) over r ∈ R

ITMANET PI meeting 01/07 2



Some general comments

• r is interface variable between network and users

• it should contain everything needed for the users to determine their
happiness/satisfaction levels, i.e., utility

• from user’s view, all that matters is U(r)

• from network’s view, all that matters is whether r ∈ R or not

ITMANET PI meeting 01/07 3



Utility optimization

• how do we maximize U(r) over r ∈ R?

• this optimization problem can be tractable (convex, possibly after
change of coordinates, or otherwise globally solvable) or not

• how do we describe R? for n = 2 or 3, we can draw or plot it, but . . .

• let’s look at methods where the network doesn’t know U , and the users
don’t know R

• how much information has to pass between users and network to solve
the problem (possibly approximately)?

ITMANET PI meeting 01/07 4



Resource negotiation

• the battleship method

– users request a particular rreq

(presumably, one that has higher utility than the current r)
– network either provides rreq or says ‘sorry, can’t do it’
– this will take a long time . . .

• the counter-offer method

– users request a particular rreq

– network either provides rreq, or counter-offer rco

(hopefully close to rreq)
– better than battleship method, but network doesn’t know U , so the

counter-offer is only a guess as to what would please the users

ITMANET PI meeting 01/07 5



Resource negotiation

• the multiple counter-offer method

– users request a particular rreq

– network either provides rreq, or offers any one of a set of
counter-offers rco

1 , . . . , rco
p

– better than counter-offer method since one of the offers could please
users

• the infinite counter-offer method

– users request a particular rreq

– network either provides rreq, or counter-offers a small patch of
possible (typically Pareto optimal) resource vectors Rpatch ⊆ R

– now the users can choose one these (e.g., the one that maximizes U)
and (possibly) repeat

ITMANET PI meeting 01/07 6



Distributed optimization

• this is distributed (layered) optimization, with one interface r

• in some cases, converges to global optimum

• can also have users send a local description of U (i.e., ∇U) to the
network, so it can make a good counter-offer

ITMANET PI meeting 01/07 7



Distributed optimization

what optimization theory tells us:

• battleship and simple offer/counter-offer schemes will be very slow
(‘zeroth order methods’)

• if the network makes available a local patch of R, or if the users give a
local description of U (i.e., ∇U), fairly simple schemes can work
globally in some cases, and well in many
(primal and dual decomposition)

ITMANET PI meeting 01/07 8


