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Multiuser Detection in a Dynamic Environment—
Part II: Joint User Identification and Parameter
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Abstract—The problem of jointly estimating the number, the
identities, and the data of active users in a time-varying multiuser
environment was examined in a companion paper (IEEE Trans.
Information Theory, vol. 53, no. 9, September 2007), at whose
core was the use of the theory of finite random sets on countable
spaces. Here we extend that theory to encompass the more general
problem of estimating unknown continuous parameters of the
active-user signals. This problem is solved here by applying the
theory of random finite sets constructed on hybrid spaces. We do
so deriving Bayesian recursions that describe the evolution with
time of a posteriori densities of the unknown parameters and data.
Unlike in the above cited paper, wherein one could evaluate the
exact multiuser set posterior density, here the continuous-param-
eter Bayesian recursions do not admit closed-form expressions. To
circumvent this difficulty, we develop numerical approximations
for the receivers that are based on Sequential Monte Carlo (SMC)
methods (‘“particle filtering”’). Simulation results, referring to a
code-divisin multiple-access (CDMA) system, are presented to
illustrate the theory.

Index Terms—Bayesian recursions, multiuser detection, particle
filtering, random-set theory.

I. INTRODUCTION

HE estimate of the identities and the parameters of users
T in a dynamic environment has several applications to
communication systems, e.g., user localization in wireless sys-
tems, neighbor discovery in ad hoc networks, and power-con-
trol strategy optimization. Several approaches for tracking
single-user evolution have been proposed in the literature under
diverse models [18], [23], while in [7] a joint detection—es-
timation problem is formulated through Bayesian theory and
solved by Sequential Monte Carlo (SMC) method, yielding
better performance than traditional approaches (most of them
based on extended Kalman filtering [17] or sum-of-Gaussian
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approximation [1]) in a nonlinear, non-Gaussian environment.
The present paper aims at presenting a new approach to mul-
tiuser tracking in a scenario whereby users may appear and
disappear in a random manner from frame to frame, while the
parameters of persisting users are themselves time-varying. In
this scenario, tracking involves estimating the number of users,
their identities, possibly their data, and a number of channel
parameters, typically affected by users’ mobility. The object of
interest is thus the set of parameters of all users. The cardinality
of this set varies with time with a known probabilistic law.

As in the companion paper [6], the mathematical tool we use
is random-set theory (RST), which provides a natural, flexible,
and mathematically consistent framework for the problem under
study. The key concept here is to treat the collection of users as a
single set-valued state. After introducing appropriate notions of
probability density for random sets, known as Finite Sets Statis-
tics (FISST) (see [13], [19], [26], and [22, Ch. 11]) the multiuser
tracking problem can be rigorously formulated as a Bayesian
set-valued filtering problem. Unlike [6], where the Bayesian re-
cursions leading to the optimal detector could be evaluated ex-
actly, here we deal with finite random sets defined on hybrid
spaces, and hence an exact solution of this problem is not fea-
sible due to the lack, even for linear-Gaussian problems [4],
of closed-form expressions for the relevant densities. Among
the various techniques aimed at approximating the Bayesian re-
cursion, we have chosen here SMC filtering, which achieves
asymptotical optimality [10].

The balance of this paper is organized as follow. Section II
defines the signal model and states the problem, while Sec-
tion III defines optimal set estimators. Section IV describes the
SMC approximation of the Bayesian recursive filter. Section V
presents an application of our methodology to joint multiuser
detection and channel tracking in synchronous direct-sequence
code-division multiple-access (DS-CDMA) systems. Some nu-
merical results are also described. Two Appendices are devoted
to some technicalities of random-set theory, and to the definition
of a model for the evolution of user powers under the effects of
motion and fading.

II. CHANNEL MODEL AND STATEMENT OF THE PROBLEM

We assume K users transmitting digital data over a common
channel. Let s(mgz)) denote the signal transmitted by the active
user 7,2+ = 1,..., K, at discrete time ¢, t = 1,2,.... Each
signal has in it a number of known parameters, included in the
deterministic function s(-), and anumber of random parameters,

summarized by the vector xgl). The index : reflects the identity
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of the user, and is typically associated with its signature. The
observed signal at time ¢ is a sum of the signals generated by
the users active at time ¢, which are in a random number, and of
stationary random noise 2;. We write

b= D

zﬁ”eXi

s(@") + 2 (1)

where X; is a random set, encapsulating what is unknown
about the active users. The set X; = {zgl), .. ,a:ﬁ“}, whose
k elements are random vectors (k is a random integer denoting
the number of active users), is a finite random set defined over
a hybrid space S (see, e.g., [13], [22], [26] and references
therein). As stated in [6], the same problem could be solved
by using point-process theory [28]. However, RST, and in
particular Mahler’s “FISST calculus” [13], [22], is advocated
here, because it leads to entities (e.g., the belief density) which
have immediate counterparts in standard-probability theory
(the probability density function), can be manipulated in the
same way, and allow one to exploit the engineering intuition
developed under the ordinary probability framework.

A finite random set (FRS) defined over a hybrid space S, is
a map between a sample space and a family of subsets of S,
where the hybrid space S is the Cartesian product § = U x R?
consisting of all pairs (u,d), with d € R? and v € U. R?
contains the values of the d real parameters of the active users,
and U is a discrete set. In our context, we may have, for example,
u={1,...,K} £ K, the set of the identities of the interferers,
or U = K x {41, —1}, the set of interferers each transmitting
binary antipodal data.

Formally, at time ¢ the random set that concerns us is given
by the union of singleton-or-empty sets

X, =Jx
kel
where
ng) _ { {.'I:Ek)}, if user k is active at time ¢
0, otherwise.

We may consider two distinct situations, namely:

(a) known-data (“trained”) systems, where U = K, S =
K x R4, and xEk) = [k, agk)]T, with aEk) a d-dimensional
random vector;

(b) unknown-data (“untrained”) systems, where U = K x M,
S = K xM x R?, with M an M -ary symbol alphabet, and
.'cgk) = (k, dgk), agk))T, dgk) the transmitted symbol.

For future use, we introduce the notation 7(QG) to denote the
finite discrete random set containing the identities of the users
in G. This is the projection of the interferer state G onto K,
i.e., the set of indices of the active users. Similarly, 7'(G) is the
projection of G onto R?, so that in a trained system, the elements
of set G have the form (7 (g), 7'(g)), g € G.

?

A. Measurement Model

With measurement model (1), the receiver observes a super-
position of signals. Thus, the random set describing the receiver,
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new users at time ¢

o

all potential users

users active at time 7-/

users surviving at t

Fig. 1. Dynamic model for users at time .

denoted Y, is the singleton {y, }, where g, has conditional prob-
ability density function (pdf) given by!

3 s(zi’“))) @)

zik)eXi

fYtlxt (| X+¢) = f2 (yt -

with f(-) the pdf of the additive noise.

B. Dynamic Model

The multiuser set can be expressed in the general form
Xt - St U Nt (3)

with S; the set of users surviving from time ¢ — 1 into time ¢,
and N, the set of newly born users. These two sets are related
by

7(Xe_1) (N =0 and w(S,) C m(Xe1).

The first condition expresses the fact that no user being active
at t — 1 can migrate to the set of new users; the second states
that the surviving users at ¢ are a subset of those active at £ —
1 (see Fig. 1). Since X; = S; U N, and since S; and N,
are conditionally independent given X, i, for the conditional
belief functions (Appendix A) we have

/Bxf.|Xt,71(Z | B) éP(Xt g Z | Xt—l = B)
=Ps.x, ,(Z|B)Bn,x, ,(Z|B). 4

We make the assumption that {X;}$2, forms a Markov set
sequence, i.e., that X; depends on its past only through X; 1,
and that the death-and-birth process is governed by a binomial
law. More precisely, denote by « the probability that a user in-
active at time ¢ — 1 becomes active at time ¢, and by p the prob-
ability that a user active at epoch ¢ — 1 survives into epoch ¢. We
assume a trained system first.

The conditional belief functions (given X; ; = B) of sur-
viving and newly born user sets can be written as

/BSt‘Xf,—1 (Z|B)
|7§)| Z
i=0 =n(@)Cn(Z):|n(@)|=j
xP {8, CG|X,.1 =B.x(S)=x(G)} (5
Bn. x,_,(Z|B)
|7§)| Z
i=0 =(G)Cn(Z):|=(G)|=j
xP{N:CG|X;-1 = B,n(N:) =x(G)} (6

fr(soix._. (7(G)|B)

sfrv)ix,, (7(G)|B)

IThis measurement model is not the most general one. For more complex
models, including provisions for sensor failure, missed measures, multiple ob-
servers, etc., see [13].
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with [6]

frs)ix,, (7(G)|B)
2 P {n(8:) = (G)|X:—1 = B}
B {u|ﬂ(G)|(1 — ) BI=I=@I " if r(G) C 7 (B)
Yo otherwise

@)

?

and

frvoix, s (7(G)|B) 2 P {n(N,) = n(G)|X,_1 = B}
B {aw(G)l(l — @)E-IBI-@) it (G) N (B) = 0
Lo, otherwise.

®)

(k) are independent for k #

Likewise, assuming that a,
m, we have

and a{™

P S CG|Xi1 = B,(S)) = =(Q)}
:/ H IRCING @ | 6*))da (9
W'(G) k t t—1

en(G)
P{Nt caG | X, 1= B:W(Nt) = W(G)}
- / fuo (@) da®. (10)
(6 i@

Computing the set derivative of the above (see Appendix A)
we obtain, with some notational abuse

fx,x,_,(C|B)= frs,x,.,(m(C)N=(B) | B)

x ] TRCING) (a1 b™)
kex(C)N=(B)

X frvox._, (r(C)\7(C) N« (B)|B)

< I fw@) ap
ken(C)\w(C)Nn(B)

— u|7f(c)ﬂ7f(3)|(1 _ u)|B\—|7T(C)ﬂ7T(B)\
« o7 @\T(©)N(B)]
% (1 — )k~ IBI-I7@\=(©)n(B)

< I fawe @ 15%)

ken(C)Nx(B)

< I

ken(C)\w(C)N=(B)

Fa0 @®). (12

The companion case of untrained systems may be dealt with
in a very similar way. Indeed, if we denote by dgk) the data
transmitted by the kth user, the Markov assumption on X, is
not violated under either one of the following conditions:

(a) the source data are memoryless;

(b) the source data form a first-order Markov chain; in this

case, the densities f ) (-) and fd(l\-)‘d(k) (-] -), are as-
t t t—1
sumed known.
Under condition (b), which trivially subsumes (a), (11) general-
izes to

fx,x,_,(C|B)
— MIW(C)WF(B)I(l _ M)lB\—lﬂ(C)ﬂﬂ(B)\

% T O\T(©)N=(B)|

13)
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% (1 — a)K=1BI=I=@\x(©)(B)|

k k
X H Faor 40, (d]df™,)
k€x(C)nw(B) '

P ACINGY (a™ | ™)
X 11 fdgko(dgk))faim(agk))- (14)

ken(C)\w(C)N=(B)

III. OPTIMAL BAYESIAN SET ESTIMATORS

In causal dynamic set estimation, a random set at time ¢ is
described by its a posteriori belief density given the observa-
tions up to time ¢, which we denote fx,y,,(X: | 91.4). A
common method for the evaluation of the above density relies
on Bayesian recursions, which in RST take the form:2

th|Y1;t71(Xt | yl:t—l)
:/fX”XH(Xt | Xe—1)fx, oo (X1 | Y1.021) 0X—1
Ixove, (Xe ly) o< fyax, e | Xo) fxova— (Xe | 91.-1)

fort = 1,2,..., with fx 1y (X1 |¥) £ fx,(X1), a known
initial prior density (the notation X ;_; indicates that the inte-
gral is a “set integral” in the sense of random-set theory).

Once fx,|v,. (X¢|y;.,) is made available, we are faced with
the problem of defining a suitable set estimator. In general, if we
assume that an observation ¥ is given, and the a posteriori prob-
abilities fx (X | y) have been computed, they can be used to
generate a Bayesian estimator, i.e., a function X (y) that mini-
mizes the risk R = E[C(X, X)] associated with a given cost
function C (see, e.g., [25, p. 54 ff.] —[22, p. 63 {f.]), where the
expectation is taken with respect to the joint pdf of X and y.
Within RST, the choice of a cost function may not be an obvious
task. In fact, while with discrete sets a natural choice is the mini-
mization of error probability (i.e., the probability of choosing an
erroneous set of active users and their data), with hybrid sets one
must balance the cost of choosing the wrong set of users with the
cost of a discrepancy between the estimated and the correct set
of continuous parameters. In addition, the cost function chosen
should result in an estimator with tractable complexity.

Recall that the hybrid random set X has elements (b;, z;),
with z; a random vector, b; a random variable taking on a finite
number of values, and i = 1, ...,|X|. We have defined 7(X)
as the discrete part of X, i.e., the set {b1,...,bx}. Also, we
denote with a hat " the estimated quantities. Two common cost
functions related to hybrid random sets can be found in RST
literature. The cost Cy involves only the number of elements in
X[13, p. 192]

0, |X|=|X|

(15)
L |X|#|X].

Co(X,X) 2 {

In our context, this cost function implies that only the choice
of the correct number of active users has relevance. The cost

2We could also seek for a fixed-lag smoothing estimation. However, in this
paper we neglect this attractive alternative.
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function C weights the error in the estimate of the continuous
part of X[13, p. 192]

~

m(X) =n(X)
) b7:b7/Z:1,l

(X),n"(X) e A
1, otherwise

and
|X|, and

~

Ci1(X,X)

(1>
o

(16)

where A is a closed ball in R¥X|. The choice of this func-
tion implies that no cost is incurred whenever the number of
active users, their identities, and their discrete data are esti-
mated correctly, and in addition there exists an index permuta-
tion such that the two d| X |-dimensional vectors (Z1, ..., Z|x|)
and (Zr1,...,%- x|) are close enough (the size of A reflects
the definition of “closeness,” i.e., the amount of tolerable dif-
ference between the two vectors). If any of these conditions is
not satisfied, then the cost is 1. Before commenting on the suit-
ability of C in our context, let us observe the structure of the
estimators derived from the cost functions above. Minimization
of the cost function Cy yields the estimator (whose consistency
has not been proved) known as GMAP-I [13, p. 191], also called
a Marginal Multitarget Estimator in [22, p. 497 ff.]

il £ argmax fopy(n | y) (17)
X; 2 arg max fxw(X ) (18)
|X|=n
where
1w = [ X 1weX. )

This is a two-step estimator, which first evaluates the number
of active users, next their parameters under the assumption that
the number of active users is known and coincides with 7. Min-
imization of the cost function Cy + C yields the consistent es-
timator known as GMAP-II [13, p. 191], [19], also called a Joint
Multitarget Estimator in [22, p. 497 ff.]

s A Xl

X =arg max Ixpy(X | ZI)W (20)
where c is a small constant reflecting the size of .4, and hence the
accuracy to which the estimate need be performed [22, p. 500].
Unlike GMAP-I, this estimator is based on a single operation,
although it can also be realized in two steps as follows [22, p.
500]. For all n, compute

X, 2 arg max IxwX |y)

next

~ -~

X1 éXﬁ
where
~ A > c"
£ argmax fxiy(Xn | 9)5.

We observe now that neither of the above estimators, in spite
of their relative simplicity and intuitively satisfactory structure,
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is perfectly suited to the problem considered in this paper. In
fact, GMAP-I does not weight the errors in the continuous pa-
rameters, while GMAP-II cost function is not sensitive to large
errors in the continuous parameters. A simple family of cost
functions appropriate to our problem is

Q, m(X) # =(X)
Ziew(x) 9(zi, %), m(X)=mn(X).

This assigns cost () to any wrong estimate of the set of active
users or of their data. If this estimate is correct, the cost de-
pends on a function g of the discrepancies between estimated
and true continuous parameters. The actual selection of () and
of g reflects the relative weight of an error in the discrete and the
continuous parameters. Straightforward modifications of the ar-
guments in [13, pp. 192-193] lead to the risk associated with
the cost function C'

R 2E[C(X,X)]
=QP(n(X) # m(X)) + P(r(X) = n(X))

C(X.X) 2 1)

xE| > gl@:,3)|m(X) =m(X) (22)
ien(X)

The resulting Bayesian estimator requires the minimization
of the sum (22). Besides the necessity of selecting () and g
(which may not be an obvious task), computation of the min-
imum may involve an unacceptable complexity. For this reason,
we define a suboptimum, simpler version of the estimator, one
that minimizes separately the two terms, and is realized with
a two-step procedure. The first step minimizes the probability
P(r(X) # n(X) | y). This is obtained through a maximum
a posteriori probability (MAP) estimator of 7 (X)), the set of ac-
tive users and their data, which maximizes the conditional pdf
of X by assuming the continuous parameters of X as nuisance.
In the second step, Ziew(?() Elg(z;,%;)] is minimized. If g is a
quadratic function, this second minimization yields the condi-
tional expectation

Ei:[E[$11|y], LEW(X)
We call GMAP-III the resulting estimator. 3

We finally observe that, although the above discussion refers
for simplicity to a single observation, we may easily extend it to
the estimation of a whole sequence X 1.7. In this case, i£ We con-
strain the estimator to be causal, that is, we have X; = X;(¥;.4),
the derivations in this section apply to the cumulated risk

T
R=SE [C(Xt,)?t)}
t=1
and result into the approximate estimators

7(X:) = argmax f(r(X:) | Y1)
&) <E e |y, ienX).

(23)

30bserve that, unlike GMAP-I and GMAP-1I, estimator GMAP-III relies
upon the condition |X| = |x(X)|. This is the requirement that the discrete
elements of the random set X be distinct. Now, this condition is obviously
met in the multiuser communication scenario of this paper, where each user is
uniquely identified, but may not be in multitarget applications [22], where the
discrete elements could identify type or threat level of the target. In the latter
applications, since different targets may share the same type or threat level, we
have in general | X| > |7(X)|. See also [22, p. 505 ff.].
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These equations, along with their counterparts obtained for dif-
ferent cost functions, emphasize the relevance of Bayesian re-
cursions.

We hasten to observe that the computational complexity in-
volved by the exact implementation of the proposed estimation
rules may be intolerable if the number of potential users is large.
As in [6], joint multiuser detection and parameters estimation
yields a complexity of the order O(2%) for trained systems and
O((IM] + 1)X) for untrained systems, which shows how the
complexity of the optimal detector scales exponentially with
the number of users. Techniques aimed at reducing the com-
putational burden, and yet retaining reasonable performance at
the price of a moderate loss of optimality, are available: see,
e.g., [2].

IV. NUMERICAL APPROXIMATIONS OF BAYESIAN RECURSIONS

We have seen how Bayesian recursive filtering provides a
framework for optimal set estimation enabling sequential eval-
uation of the multiuser set a posteriori density. Now, the main
problem with Bayesian recursive filtering for random sets de-
fined over hybrid spaces is the lack of a closed form to imple-
ment the inference. In fact, for hybrid stochastic systems, not
even the linear-Gaussian case admits a closed form [4],4 which
calls for approximate methods. The simplest among these use
grid-based filters, in which the continuous parameters are dis-
cretized into a fixed grid. The main difficulty with this approach
is that, for reasonable accuracy, a very dense grid is needed,
which may easily result in unmanageable computational burden.
A more efficient approach relies on SMC, or “particle filtering,”
methods (see, e.g., [9] and references therein). Suppose we have
a set of random samples {X;_1 ;}7 ,, each associated with a
weight {w;_1;}Y ,, such that the sample-weight pairs (“par-
ticle”) represent the density fx,_,jy,,,_, as

N
th71|Y1:t71(Xt—1 | yl:tfl) ~ Zwt—l,ith,l(Xt—l,i)

=1
24)
where mx, (A) is the “0-1" measure defined by
1, ifACC
/ mx, (4) 8K, = { 0, otherwise. 25)

SMC methods provide a rule for propagating and updating
these samples and weights to obtain a set of new particles
{X:;, we} X representing fx,|y,, as

N

) = Z weimx, (X))

i=1

fxtlyl:t (Xt|y1:t (26)

Among the various SMC methods, the bootstrap filter [14] has
received considerable attention for its simplicity. With this, par-
ticles are recursively updated as follows:

Xt,z’ ~ fo|Xf,1 (Xt|Xt—1,i)7
Wei = wi—1,i fy,1x, (Y| Xt,i)

i=1,2,....,N

4The only case of hybrid systems that admits an optimum closed expression
seems to be the jump-Markov linear-Gaussian system [11]. Yet, this expression
is not a recursive one, and the optimum rule has a complexity which grows
exponentially with the frame length.
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Wt 4
N .
j=1Wt,j

(29)

Wi =

The feature that makes the bootstrap filter especially attractive
for approximation of the Bayesian recursive filter is its asymp-
totic optimality [10]. Indeed, as N grows to infinity, under weak
technical assumptions, [8] proves almost sure convergence to
the true ones of the empirical distributions generated by particle
filtering.

A common problem with (27)—(29) stems from the degen-
eracy phenomenon, which causes all but one particle to have
negligible weights after a few iterations [10]. A brute-force ap-
proach to reducing its effect consists of using a very large N,
thus increasing the computational effort. To reduce the degen-
eracy phenomenon with low complexity one could use adap-
tive resampling. This consists of eliminating particles that have
small weights, and concentrating on particles with large weights
whenever the degeneracy becomes relevant. An indicator of this
relevance is the effective sample size, Neg = 1/ Zsz thL
Here, Nog € [1, N], with a small Neg (in practice, smaller
than a threshold Ny, typically equal to N/4 or N/2 in most
applications) suggesting degeneracy. The resampling step in-
volves generating a new set of particles {X7 ;, w;,}, by re-
sampling (with replacement) N times from the approximate
posterior density in (26), computed by (27)—(29), in such a way
that

P(X;Z = Xt,i) = Wtq- (30)
The new weights are set to be uniform, i.e., w; ; = 1/N.Finally,
if resampling is performed, the a posteriori density is set to be

LN
— mx, (X
N

With a representation of fx,y,,, (X | 91.,) interm of particles,
the estimators described in Section III can be implemented in a
rather straightforward manner.

We would like to point out that the bootstrap filter, in spite
of its versatility and simplicity, is not the most efficient way
of approximating the Bayesian recursive filter. Indeed, if the
system is conditionally linear and Gaussian (a condition that
can be granted in our case by assuming that the users am-
plitude evolves according to a Gauss—Markov model), then a
Rao—Blackwellized particle filter (RBPF) can be used. In a
nutshell, RBPFs adopt an SMC algorithm to track births and
deaths of users, while, conditioned on the particles realizations,
their amplitudes are exactly estimated through Kalman filtering
[10]. Since the RBPF draws particles from a discrete space, the
number of particles required by a the latter is on average much
smaller than the number of particles required by the bootstrap
filter. RBPF has been previously applied in RST for multitarget
tracking [27] and for estimating abruptly time-varying multipath
channels in multiple-input, multiple-output (MIMO) systems
based on orthogonal frequency-division multiplexing (OFDM)
[3]. Since we are mainly concerned with a proof-of-concept
rather than with implementation details, here it suffices to add
that, since in most of the cases dealt with in this paper linearity

th‘let (Xf | Ylft) ~ (31)
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and Gaussianity cannot be granted, the bootstrap filter enables
the evaluation of the limiting performance.

V. AN APPLICATION: JOINT MULTIUSER DETECTION AND
AMPLITUDE ESTIMATION IN CDMA

Following in the footpath of [6], in this section we apply
the methodologies described above to the scenario of an un-
coded, synchronous, single-rate DS-CDMA system with a max-
imum number K of users, processing gain L, and additive white
Gaussian noise. Let us assume coherent detection, while the
amplitudes of transmitted signals are unknown. The chip-wise
matched-filtered received signal at time ¢ has the form

y, =Sv(X,)+2z, t=12,....,T (32)
where

(a) Sisan L x K matrix whose columns contain the spreading

codes of the users.

(b) v(X}) is a K-dimensional vector with nonzero entries in

the locations dictated by 7(X). In particular, we have

vm(Xt) — { dgm)agm) ifm E.’/T(Xt) (33)
0, otherwise
where, as before, d(m) denote the datum of user m at time
t, while ag ) is the corresponding received amplitude.

(c) 2z ~N(0,No/2Iy)is an L-dimensional white Gaussian
noise vector, where Ny /2 is the power spectral density
of the received noise, and Iy, denotes the L. x L identity
matrix.

As a consequence, the set X ; consists of a random number of
elements, each element containing the active-user identity, the
transmitted data, and the received power (in random-set theoret-
ical parlance, the hybrid space is now S = K x M x R*, with
M the symbol alphabet). Thus, the measurement model is

frox, @ X:) = f2(y, — Sv(X,)). (34)
We consider a binomial birth-and-death process with param-
eters « and p, as in (7)—(8). Assuming independent, equally-
likely symbols, and memoryless modulation, we have, defining
M 2 M|

1

PP 1 d2) = 1(d7) = 37, Vhen(X). (9

2
Denote now by Pt(k) = gagk) the power received from

the kth user at time ¢. Its level may vary with time, due to both
user mobility and fading. Using the model and the notations of

Appendix A, we define the random variable nt(k) such that
t( ) (k)P(k) (36)
Thus
()
(k) | pl) 1 by
f k)|p’v)1(P |Pt 1) Wf( ( (k)> (37)
t—1 Pz
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whereby the amplitude-transition model can be obtained as

o = /M aM) (38)

yielding

(k) agk)
fﬂrik)laﬁﬁ( ap (k) f\/(T( > (39)
and
2wf ) (w?), forw >0

- = un ’ 40
f\/ nﬁk)(w) {07 otherwise. (“40)

With this, the set densities in (11) and (13) are fully specified.

A. Trained CDMA

A synchronous, uncoded, single-rate DS-CDMA system with
processing gain L = 7 is assumed in this computer simulation.
The maximum number of active users is K = 3. Each user is
assigned an m-sequence of length 7, and the transmission has
duration T" = 10. Equations (11) and (34) describe the mea-
surement model and the dynamic model, respectively. The birth
rate and the persistence probability take values « = 0.2 and
u = 0.8, respectively. The parameters of the power-evolution
model are p*) = 0.9999, ¢*) = 1.2, and *) = 0.5 for all
k. We assume that the users transmit known symbols (trained
system), whereby only the identities and the transmitted powers
of active users are to be estimated. In approximating Bayesian
recursions, a bootstrap filter is used with N = 1000 particles
and threshold Ny, = Z\/f\ /4. Define the Discrete Set Error Proba-
bility (DSEP) as P(r(X) # m(X)). Since this macro-param-
eter only measures the system ability to identify the active users,
a further performance measure is needed to assess the quality of
the power estimates. To this end, we use the standard root-mean
square error (RMSE)

N = 1
RMSE =T~ TS . o O
= |7r( ) Nw(Xy)l
1/2
2
X Z ay ) agk)‘ (1)
kew(f(f)ﬂﬂ(xt)

which makes sense as long as w(j\(t) Nm(Xy) # 0.

Fig. 2 shows the DSEP versus the signal-to-noise ratio (SNR)
for the GMAP-I, GMAP-II, and GMAP-III estimators. As a
baseline for performance comparisons, we also report the DSEP
corresponding to complete channel-state information (labeled
CCSI), i.e., perfect knowledge of the channel parameters (in this
case, the power). Fig. 3 shows the distance (41) for the GMAP-I,
GMAP-II, and GMAP-III estimators.

Notice from Fig. 2 that GMAP-I and GMAP-III perform
equivalently in terms of DSEP, both being slightly better than
GMAP-II. This behavior can be justified by noticing that
both GMAP-I and GMAP-III rely upon a marginalization of
the conditional belief density with respect to the continuous
parameters of the random sets. Moreover, since GMAP-I
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K=3, L=7, T=10, u=0.8, a=0.2
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Fig. 2. DSEP for various receivers (trained CDMA).

K=3, L=7, T=10, p=0.8, a=0.2

2 == GMAP-
D5 —e— GMAP-II
| —8— GMmAP-II

107
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SNR [dB]

Fig. 3. RMSE for various receivers (trained CDMA).

estimates only the cardinality of the set of active users, while
GMAP-III also estimates their identities, and since an error on
|7 (X )| necessarily implies an error on 7(X;) (but not vice
versa), we argue that the most critical aspect of active-users
identification is the estimate of the cardinality of their set. This
statement is consistent with observations in [6], where it has
been shown that erroneous set estimation typically occurs due
to errors in set cardinality. As far as estimation of continuous
parameters is concerned, the advantage of GMAP-III over
GMAP-I and GMAP-II is apparent from Fig. 3, which shows
the RMSE for the three estimators examined here. This result
is also consistent with standard estimation theory. In fact, the
Expected A Posteriori (EAP) estimator, i.e., the second step
of the GMAP-III estimator, is the optimal estimator as far as
mean-squared error (MSE) is the performance measure.

B. Untrained CDMA

Here the system parameters are the same as in Section V-A,
and binary antipodal transmission is assumed (M = {£1}).
DSEP is now defined as the probability that the estimated set
containing the identities and the data of active users differs from
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Fig. 4. DSEP for various receivers (untrained CDMA).
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Fig. 5. RMSE error for various receivers (untrained CDMA).

the true set in either its cardinality, or its elements, or both. Fig. 4
shows such a DSEP for GMAP-I, GMAP-II, GMAP-III, and
CCSIreceivers, while Fig. 5 shows the set distance for GMAP-I,
GMAP-II, and GMAP-IIL

From Fig. 4, we observe that trained and untrained CDMA
perform very similarly as far as DSEP is concerned, and that,
as in trained CDMA, GMAP-I and GMAP-III are practically
equivalent. This is again consistent with observations in [6],
where it was noticed how errors in joint user identification and
data detection are mainly caused by erroneous estimation of the
cardinality of the set of active users. Fig. 5 confirms the superi-
ority of GMAP-III in the estimation of the continuous parame-
ters of the active users.

VI. CONCLUSION

We have extended the theory presented in [6] to encompass
the study of multiuser detection in an environment where not
only the number and the identities of active users, but also their
continuous parameters, are unknown and must be estimated.
This problem is solved by applying the theory of random finite
sets constructed on hybrid spaces. In particular, we have derived
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Bayesian recursions describing the evolution with time of a pos-
teriori densities of the unknown parameters and data. Unlike in
[6], where the optimal estimator can be expressed in a closed
form yielding the limiting performance of multiuser detection
with an unknown and time-varying number of users, here, since
we deal with joint multiuser detection and continuous-param-
eter estimation, Bayesian recursions cannot be solved exactly.
Among the various approximation techniques, numerical ap-
proximations based on SMC methods (“particle filtering”) were
used, yielding asymptotically optimum set estimators and en-
abling numerical evaluation of the limiting performances.

APPENDIX
COMPUTING BELIEF DENSITIES

In this Appendix we show how belief densities can be com-
puted in the context of the problem described in this paper.
For simplicity, we consider a static environment, and the set of
random variables modeling the continuous unknown parameters
of the K potential users, assumed to be independent and equally
distributed. We denote by P(-) the probability measure of each
set, and by p(-) the corresponding pdf. Moreover, « denote the
probability that a user is active.

According to RST, the belief density of the random set X,
denoted fx(+), is defined through the set derivative of the belief
function of X. Thus, we first need the belief function

Bx(S) £P(X CS) 42)
of a subset S of interferers. In general
S|
}:afl—aK'JEZIIP{t} (43)

T;(S)i=1

where T';(S) & {t1,...
S with j elements.>

Next, the belief density is obtained by computing the set
derivative of (43)at § = 0

,t;} denotes one of the (l'?‘) subsets of

65(S)

fx(2) = (44)

S=0

As illustrated for example in [13, p. 163], the value fx(Z) of
the belief density specifies the likelihood with which the random
set X takes the set Z as its specific realization.

We observe the following.

(1) The belief function of a random vector is just its ordinary

probability measure. Thus, if X = {z}, then
Bx(8)=P(XCS)=P(ze8)=P(S)

and the belief density corresponds to the ordinary pdf
f(8), with § = {8}: more precisely, we have

f ’ S =
fx(8) = {07(8) S| 75{.?}

50bserve how the belief function has the general form examined in [26, The-
orem 5.17, p. 52].
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(2) If a is a constant, then [26, p. 56]

LI
52"~

(3) The set derivative of P({81}) x P({82}) is obtained by
using the following property [26, Definition 5.22, p. 55]:

if Z # 0.

0P o _ [ 5 (D), Z 40
57T = {%(Ti z50
where ® is a set function, and Z = {81,...,8;}. We
obtain
P({s1}) x P({s2})
P({si}) x P({sa)), Z=0
p(s81) x P({s2}),  Z ={s1}
=4 P({s1}) xp(s2),  Z={s2}
p(81) X p(82), Z = {81,8>}

0, |Z| > 2.
Applying the above to the belief function (43), we obtain

Ix(Z)
(1-a)k, Z=
= O‘J( )K JHZ 117(31',2), Z:{Siw"'?sij}gs
0, |Z]> K

Here we model the effects of user’s mobility and of fading
on the power received from user k at discrete time ¢, denoted
Pt(k). The superposition of these two effects yields a model for
the dynamics of signal-amplitude variations.

We denote by mgk) the noiseless part of the signal received
from user £ at time ¢. This is a deterministic function of the
random power Pt(k), SO We can write

(k)

e®) = a(P) (45)
and hence
k k k k
p(a 12y = p((PE)) | PY). (46)

For notational simplicity, in the balance of this Appendix we
omit the superscript k associate with the user.

A. Effect of Fading

Denoting by P the reference power, and by R; the fading
amplitude at time ¢, we may write

= R?P (47)
and hence
R2
Prpy = =5 P =Py (48)
t
where ~; is the random variable defined as
RZ
A 1
"= g (49)
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B. Effect of Motion

We consider two classes of users: one includes stationary
users, the other includes users in motion. The latter class ex-
periences a power variation from time ¢ to time ¢ + 1 equal to
¢T1. Thus, we can write, for the effect of motion

Piy1 =6, (50)
where 0; is a random variable taking values
1, with probability 1 — A
by =K e, with probability A/2 (51)
e~1,  with probability \/2

where e > 1 depends on the user’s velocity, and A may be called
the mobility factor of the user.

C. Joint Effects of Fading and Motion

We have
Pip1 =76e Py = i Py (52)
where the random variable
= by (53)
models the joint effects of fading and motion. Hence
p(a(Pipa) | 2(P)) = p(z(mPr) | P2) 54

and the dynamic modeling problem is reduced to the problem
of modeling statistically the random process 7,,. Our basic as-
sumptions here are that fast fading and motion are independent,
and that the fading process is first-order Markov (see [29]).

D. Modeling n,, With Rayleigh Fading

1) R,, R,1 Independent Rayleigh: If R, and R, are
independent Rayleigh random variables, with normalized pdf

2
pr(r)=2re™, r>0 (55)
then the pdf of § £ R? is exponential

ps(s)=e™®, s>0 (56)

and hence the ratio v,+1 = R2, ,/R? has pdf

o 1

= eV dy = ——— 0. (57
p"{({r) A ye € y (1+7")27 r> ( )

Consequently, with the assumptions above we obtain the fol-
lowing pdf for the random variable 7,,:
polt) = (1 =Ny + 5=y 2T

! (I+y)? 2(e+y)? 2(c+y)
valid for y > 0.

2) R, R, +1 Correlated Rayleigh: In this case, we assume
the general expression provided in [24, eq. (121)], for the bi-
variate pdf of correlated exponentials (s1,s5) = (R?, R3) with
correlation p

5 (58)

Dsy,so (317 52)

| | 2|
= 1= p2 exp <—1_—p2(81 + 82)) I() <1 — p2\/8182>
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A=05,e=0.85
9 T T T T T T T T

P,

Fig. 6. Probability density function of the random variable 7 defined in (53).

where 51,55 > 0. The pdf of the ratio ¥ £ R3/R? is obtained
from the general formula

p,y(z):/ TPsy 5, (27, x) dx
0
N S z+1 2|plv/=
_1—,02/0 mexp( 1_p2x)10<1_p2m dx
14z
=(1—p>
RN vy e
which yields
1+y)
() = (1= A)(1 = p? (
) = (L= (1 = ) s
LA e(1-p*)(1 +ey)
2 (1 +ey)® —4p>ey)3/?
ESEAIET)
2¢ (14 £)2 — 4p24)3/2°

Fig. 6 illustrates the behavior of p,(y) for some values of its
parameters.
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