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Abstract

In wideband systems that decorrelate in time and frequency,
capacity can be reached in the limit of infinite bandwidth
by using impulsive frequency-shift keying with vanishingly
small duty cycle. The richness of the codewords is then cre-
ated through the large bandwidth. We show that frequency-
shift keying with small duty cycle, using traditional random
coding arguments, can achieve rates close to capacity in
ultrawideband systems with limits on bandwidth and peak
power.

1. Introduction

Wideband wireless applications have recently put trans-
mission techniques for wideband multipath fading channel
in the spotlight.

It’s theoretically known that the capacity of the infinite-
bandwidth general multipath-fading channel is non-zero
and is equal to the capacity of the infinite-bandwidth addi-
tive white Gaussian noise (AWGN) channel with the same
average received power constraint. This result has been
shown by Kennedy[4], Gallager[2,§8.6] and Telatar and
Tse[5].

To utilize this theoretical result in practice, one ques-
tion naturally arises: given our theoretical insights, can we
find actual transmission schemes with performance near the
theoretical bounds? One possible way to answer this ques-
tion is by directly applying a particular coding scheme and
calculating its performance under general conditions.

The argument in [4] and [5] have shown that the capac-
ity of multipath fading channel can be directly achieved by
using frequency-shift keying (FSK) and non-coherent de-
tection in a system that transmits at a low duty cycle. In
contrast to wideband spread-spectrum schemes which cre-
ate signals that mimic white Gaussian noise (WGN), their
capacity-achieving transmission scheme is ”peaky” both in
frequency and time. It uses FSK with very low duty cycle.
This signaling scheme yields a capacity for the Rayleigh
fading channel which is the same as that for the AWGN
channel in the limit of large bandwidth and large signal-to-
noise ratio (SNR).

[4] and [5] only provide a capacity-achieving method
for vanishingly small duty cycle and infinite bandwidth and
the capacity limit for a Rayleigh fading channel. The results
do not show how and how fast a system can approach this
limit.

In this paper, we give a model of the system, study the
performance of the FSK scheme in Rayleigh fading chan-
nels and compare it with the capacity-achieving scheme.
The interplay amongst the capacity, bandwidth, SNR, and
”peakiness” of the scheme is studied numerically. We show
that a FSK scheme with limited bandwidth and ”peakiness”
can achieve performance that is of the order of that of the
scheme with infinitely large bandwidth and small duty cy-
cle.

2. The system model

The transmission scheme we examine is an impulsive
FSK with small duty cycle and large bandwidth. The sys-
tem is studied in Rayleigh fading channel conditions which
are common in wireless communication scenarios. We send
single-frequency signals which are selected from a large set
of frequencies and transmitted using a low duty cycle. Be-
cause we use a large set of frequencies in a wide bandwidth,
the frequency difference between two successive symbols
is usually greater than the coherence frequency. Moreover,
the low duty cycle means successive symbols are generally
separated in time by more than a coherence time. Hence,
the probability of sending two successive signals within a
coherence band in the same coherence time is negligible.
We can assume different symbols experience independent
fading.

Assume the FSK system hasM frequencies. In each
symbol time, a signal may be or be not transmitted accord-
ing to a probabilityθ (0 < θ ≤ 1). θ is the duty cycle. In
the interval in which some signal is transmitted, one of the
M frequencies is sent. The transmitted signal can expressed
as

x (t) =
{

exp (2πifmt) , 0 ≤ t ≤ Ts;
0, otherwise.

(1)

wherefm(1 ≤ m ≤ M) is the frequency of FSK signal and



Ts is the length of symbol interval. The received signal is

y (t) = α (t)
√
P exp {2πifmt} + n (t) (2)

whereα (t) =
∑K

j=1βj (t) exp {2πifm [−τj (t)]} is a cir-
cularly symmetric complex Gaussian process,K is the
number of paths,{βj (t)} are the gains of paths,P is the
power of the signals,{τj (t)} are delays of paths, andn (t)
is circularly symmetric complex Gaussian process with
double-sided power densityN0

2 per dimension.
The coherence timeTc is the duration of time over

which the channel remains essentially time-invariant. The
delay spreadTd represents the uncertainty in the delay of
the paths. In this paper, we focus on the case where the
symbol time,Ts, is much less than coherence time of the
channel and the delay spread is less than the symbol time.
During the interval[Td, Ts], we can assumeα (t) = A is
constant, then the expression of received signal is

y (t) = A
√
P exp {2πifmt} + n (t) (3)

whereA is circularly symmetric Gaussian variable. Without
loss of generality,A can be assumed as a complex Gaussian
variable with variance12 per dimension.

At the receiver, we use a bank of matched band-
pass filters with central frequencies{fn} to detect signals.
n (1 ≤ n ≤ M) is the index of frequencies. In a certain
symbol sloti, the output of thenth matched filter is

ỹn(t) =
∫ t

(i−1)Ts

y(τ)e2πjfn(t−τ)dτ (i− 1)Ts ≤ t ≤ iTs.

(4)
Let the frequency difference between two adjacentfn’s be
Fs = 1

Ts−Td
andfn be integer multiple ofFs. The whole

bandwidth of the FSK system isF = M−1
Ts−Td

. When themth
symbol is sent, the outputs of thenth filter at time(Ts −
Td) + iTs are

ŷn = δn,mA
√
P (Ts − Td) + v̂n (5)

wherev̂n is a complex Gaussian variable. Thev̂n’s are mu-
tually independent andCov[v̂n] = (Ts − Td)N0. The nor-
malized output of thenth matched filter is

Rn =
1√

N0 (Ts − Td)
ŷn = Sn + Zn (6)

whereZn is a complex Gaussian variable with variance1
2

per dimension. Letζ = P (Ts−Td)
N0

. Whenn = m, Sn is a

complex Gaussian variable with varianceζ
2 per dimension,

otherwiseSn is 0.
When themth signal in theM frequencies is transmit-

ted, the received|Rm|2 has the probability density given by
(7), otherwise,|Rn|2 (n �= m) has the density given by (8).

P|Rn|2 (r) =
1

1 + ζ
exp

[ −r

1 + ζ

]
(r > 0) (7)

p|Rn|2 (r) = exp [−r] (r > 0) . (8)

Keeping the system’s average power a constant, chang-
ing the duty cycle parameterθ will affect the signal power
P .

To decide which signal was transmitted, we use the
maximum-a-posteriori (MAP) rule based on the observation
of |Rn|2 at the receiver. The probability system transmits
nothing in a symbol slot is1 − θ. Assume theM signals
have equal probabilities to be transmitted, then the prob-
ability of transmitting themth (m = 1, 2, ...,M) signal is
θ
M .

When there is no signal being transmitted in a slot, the

joint probability density of
(
|R1|2 , |R2|2 , .., |RM |2

)
in the

slot is

p|R1|2|R2|2,..,|RM |2 (r1, r2, ..., rM ) =
∏M

i=1 exp(−ri).
(9)

Otherwise, if one signalm is sent, the joint probability den-
sity in the slot should be

p (r1, r2, ..., rM ) =
1

1 + ζ
exp

[ −rm

1 + ζ

]∏M
i=1,i �=m exp(−ri).

(10)
The threshold used for MAP rule is

Z =
ζ + 1
ζ

ln
(

(1 + ζ)
(1 − θ)M

θ

)
. (11)

If no |Rn|2 is greater thanZ, the receiver will decide that
no signal was transmitted. Otherwise, then corresponding
to the largest{|Rn|2} is decided being transmitted.

We can determine the probability of error in this detec-
tion scheme. LetP1 denote the probability of missing a
signal, i.e. the receiver decides that nothing has been trans-
mitted when a signal was transmitted.P1 is

P1 =
(

1 − exp
[ −Z

1 + ζ

])
(1 − exp (−Z))M−1

. (12)

Let P2 denote the error probability of error detecting,
i.e. the receiver decides one signal has been transmitted
when actually another signal was transmitted.P2 is given
by

P2 =
∫ ∞

Z

(
1 − (1 − exp (−x))M−1

)
exp

[
−x
1+ζ

]
1 + ζ


 dx

+
(

1 − exp
[ −Z

1 + ζ

]) [
1 − (1 − exp [−Z])M−1

]
.(13)

Another kind of error occurs when the receiver decides
a signal has been transmitted when nothing was transmitted.
The probability of error is denoted byP3:

P3 = 1 − (1 − exp (−Z))M
. (14)



The additive noise is stationary and white. The complex
gain of the channel,A, decorrelates in any two symbol slots
because the symbols experience independent fading. We
compute the capacity of this system using a discrete mem-
oryless channel(DMC) model. All prior arguments justify
the memoryless assumption.

In each symbol slot, we choose to transmit nothing or
one ofM signals. Hence, the discrete model has an input
alphabet with sizeM + 1, denoted asa0, a1, a2, ...,aM . a0

means no signal is transmitted, andaj (1 ≤ j ≤ M) means
thejth FSK signal is transmitted. The output is decided by
the vector{|R1|2 , |R2|2 , |R3|2 , ..., |RM |2}.

input output

a
1

a
2

a
3

a
M

b
1

b
2

b
3

b
M

a
0

b
0

.

.

.

.

.

.

1-P 3

P
1 1-P

1 
-P

2

P
2 

/(M-1)

P
2 

/(M-1)

P 2 /(M-1)

P 3 /M

Figure 1: The discrete model

The transmission probabilities will determine the capac-
ity of a DMC channel. We have already obtained these
probabilities and can map them into the DMC model. It’s
known that the mutual information of a DMC channel is
a concave function of the probability of input. The inputs
a1, a2, ..., aM are symmetric. Our prior assumption gives
P (a0) = 1 − θ, P (a1) = P (a2) = ... = P (aM ) = θ

M ,
which makes the mutual information achieve capacity. The
capacity of the DMC channel is

C = H
(
b
) −H

(
b|a)

. (15)

Then the capacity of the FSK system is C
Ts

. In following
section, we use numerical methods to calculate this capac-
ity.

3. Bound the capacity

Before we discuss the capacity of the system, we will
first look into the bound on capacity. From [5], we know
that the capacity of the Rayleigh fading channel is the same
as that of the AWGN channel in the limit of large band-
width. So a tight bound of the capacity is

C =
Ts − Td

Ts
F ln(1 +

P

2N0F
) (16)

where F is the bandwidth of the system, P is the average
signal power, N0 is single-sided power density per dimen-
sion for additive noise. The factor Ts−Td

Ts
is introduced in

because the effective time of transmission is [Td, Ts]. When
F goes to infinity, the bound approaches (1 − Td

Ts
) P
2N0

. For
the purpose of convenience, we will call this bound infinite
bandwidth bound.

Another bound on capacity is deduced from the discrete
model of the system. Owing to the limitation for the capac-
ity of a discrete channel, we get

C ≤ ln(M + 1)
Ts

. (17)

This bound will be effective when SNR is very large as we
will see in following discussion. We denote this bound as
limited bandwidth bound.

4. Numerical results

We assume Td = 1µs, Ts is between 10µs and 10ms,
F is between 1MHz and 10THz.

A high peak signal power makes transmission reliable.
When the bandwidth is very large, which means there is a
large number of transmission symbols, we need to improve
the peak power of the signal to get reliable transmission.
However, when the average received signal power is con-
stant, we should lower the signal duty cycle in order to im-
prove the peak signal power, which will put a limitation on
the data rate. Hence, we need to adjust the duty cycle pa-
rameter θ to optimize the system capacity. In our simula-
tion, all results are optimized with respect to θ.
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Figure 2: Capacity vs System Bandwidth

In Figure 2, we fix the SNR and let the symbol time Ts

be 10µs, and find as expected that the capacity increases
with the bandwidth of system. However, it grows very
slowly, and roughly has a gap of 3dB with the infinite band-
width bound when the system bandwidth is between 1MHz
and 10THz. Note that with moderate bandwidth we can



achieve a capacity very close to that with very large band-
width.
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Figure 3: Capacity vs Signal-to-Noise Ratio

Figure 3 shows the capacity vs SNR performance un-
der different bandwidth constraints and explores how the
bounds effect. Only for very large SNR, the limited band-
width bound will obviously effect on the capacity.

The symbol time Ts is also an important parameter for
the FSK system. On the one hand, the greater Ts, the greater
ζ, which will reduce the error probability, and thus improve
capacity. On the other hand, increasing Ts will lower the
symbol rate. If the average power and bandwidth are fixed,
we can adjust Ts to maximize the capacity. With two dif-
ferent bandwidths, we show how symbol time Ts affects on
the capacity in Figure 4, where SNR is 2500.
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Figure 4: Capacity vs Symbol Time

The simulation shows that when SNR is reduced, the
peaks of the curves move to the right, which means that a
greater symbol time improves system capacity when aver-
age signal power is lower. Another observation is that the
duty cycle for optimizing capacity is a non-decreasing func-
tion of SNR.

For high SNR, the limited bandwidth bound begins to
take effect, high θ and small Ts are needed to achieve the
maximum capacity. For lower SNR, θ decreases and Ts in-
creases. When the SNR is very small, we need vanishingly
a low duty cycle and very long Ts to reach the maximum.

5. Conclusions

When the received signal power is very large, the lim-
ited bandwidth bound will mainly constrain the capacity of
the FSK system in a Rayleigh Fading Channel. Otherwise,
the capacity grows slowly with bandwidth, and is nearly 3
dB lower than the infinite bandwidth bound for bandwidths
commensurate with general mobile communication condi-
tions. Using a moderate bandwidth, we can approach the ca-
pacity achieved by using very large bandwidth. To achieve
the best performance in such a FSK system, we need to se-
lect optimal symbol time and duty cycle. Large θ and small
Ts are needed for high SNR, small θ and long Ts are needed
for low SNR.
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