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Abstract [4] and [5] only provide a capacity-achieving method
for vanishingly small duty cycle and infinite bandwidth and
In wideband systems that decorrelate in time and frequency the capacity limit for a Rayleigh fading channel. The results
capacity can be reached in the limit of infinite bandwidth g5 not show how and how fast a system can approach this
by using impulsive frequency-shift keying with vanishingly  |imit.
small duty cycle. The richness of the codewords isthen cre- | this paper, we give a model of the system, study the
ated through the large bandwidth. We show that frequency-performance of the FSK scheme in Rayleigh fading chan-
shift keying with small duty cycle, using traditional random els and compare it with the capacity-achieving scheme.

coding arguments, can achieve rates close to capacity inthe interplay amongst the capacity, bandwidth, SNR, and
ultrawideband systems with limits on bandwidth and peak »peakiness” of the scheme is studied numerically. We show

power. that a FSK scheme with limited bandwidth and "peakiness”
can achieve performance that is of the order of that of the

1. Introduction scheme with infinitely large bandwidth and small duty cy-
cle.

Wideband wireless applications have recently put trans-
mission techniques for wideband multipath fading channel
in the spotlight.

It's theoretically known that the capacity of the infinite-
bandwidth general multipath-fading channel is non-zero

e_md 'S _equal to the cap_acny of the infinite ban.dW'dth addi tem is studied in Rayleigh fading channel conditions which
tive white Gaussian noise (AWGN) channel with the same L o .

: . . are common in wireless communication scenarios. We send
average received power constraint. This result has been

single-frequency signals which are selected from a large set
'sl'rs]ce)\f\g]] by Kennedy[4], Gallager[28.6] and Telatar and of frequencies and transmitted using a low duty cycle. Be-

To utilize this theoretical result in practice. one ques- cause we use a large set of frequencies in a wide bandwidth,
. ) . practice, q the frequency difference between two successive symbols
tion naturally arises: given our theoretical insights, can we

: T . is usually greater than the coherence frequency. Moreover,
find actual transmission schemes with performance near th y9 q y

! . : She low duty cycle means successive symbols are generall
theoretical bounds? One possible way to answer this ques- y oy y 9 Y

tion is by directly apolving a particular coding scheme and separated in time by more than a coherence time. Hence,
y directly applying a p g sci the probability of sending two successive signals within a
calculating its performance under general conditions.

. coherence band in the same coherence time is negligible.
. The argument n [4] and [5] have shqwn that th_e €apac- \ye can assume different symbols experience independent
ity of multipath fading channel can be directly achieved by

. . : fading.

using frgquency shift keying (F.SK) and non-coherent de Assume the FSK system hadd frequencies. In each
tection in a system that transmits at a low duty cycle. In . . :

; . symbol time, a signal may be or be not transmitted accord-
contrast to wideband spread-spectrum schemes which cre- " .

. - . . . . “ing to a probabilityd (0 < 6§ < 1). 6 is the duty cycle. In
ate signals that mimic white Gaussian noise (WGN), their . . . - . )
2 L S o . . the interval in which some signal is transmitted, one of the
capacity-achieving transmission scheme is "peaky” both in S . .
. . M frequencies is sent. The transmitted signal can expressed

frequency and time. It uses FSK with very low duty cycle.

This signaling scheme yields a capacity for the Rayleigh
v =

2. The system model

The transmission scheme we examine is an impulsive
FSK with small duty cycle and large bandwidth. The sys-

exp (2mifmt), 0<t<T;
0, otherwise.

fading channel which is the same as that for the AWGN (1)
channel in the limit of large bandwidth and large signal-to-

noise ratio (SNR). wheref,,(1 < m < M) is the frequency of FSK signal and



T, is the length of symbol interval. The received signal is

y (t) = o (t) VP exp {2mifnt} + n (1) @)

wherea (t) = 21 B; () exp {2mify, [—7; ()]} s a cir-
cularly symmetric complex Gaussian procegs, is the
number of paths{j; (t)} are the gains of paths? is the
power of the signals{r; (¢)} are delays of paths, and(t)

Pir, 2 (r) = exp [—7] (r>0). (8)
Keeping the system'’s average power a constant, chang-
ing the duty cycle paramet@rwill affect the signal power
P.
To decide which signal was transmitted, we use the
maximum-a-posteriori (MAP) rule based on the observation
of |R,|* at the receiver. The probability system transmits

is circularly symmetric complex Gaussian process With nothing in a symbol slot ig — 6. Assume thel/ signals

double-sided power densiﬁg& per dimension.

The coherence tim€. is the duration of time over

have equal probabilities to be transmitted, then the prob-
ability of transmitting themth (m = 1,2, ..., M) signal is

which the channel remains essentially time-invariant. The ¢

delay spread’; represents the uncertainty in the delay of
the paths. In this paper, we focus on the case where the
symbol time, T, is much less than coherence time of the

A7
When there is no signal being transmitted in a slot, the
joint probability density ol(|R1 ”, IR .., |RM|2) in the

channel and the delay spread is less than the symbol timeSIOtis

During the interval[Ty, Ts], we can assume (t) = A is
constant, then the expression of received signal is

y(t) = AVPexp {2mift} +n(t) (3)

whereA is circularly symmetric Gaussian variable. Without
loss of generalityA can be assumed as a complex Gaussian

variable with varianc% per dimension.

At the receiver, we use a bank of matched band-

pass filters with central frequenciég,, } to detect signals.

n (1 <n < M) is the index of frequencies. In a certain

symbol sloti, the output of thexth matched filter is

(i—1)T, <t <iT,.
(4)

Let the frequency difference between two adjacgss be
F, = T+Td and f,, be integer multiple off;. The whole

bandwidth of the FSK system 8 = #'=-. When themth
symbol is sent, the outputs of theh filter at time (7 —

Ty) + T are
Un = Onm AVP(Ts — Ty) + 7, (5)

wheret,, is a complex Gaussian variable. Thgs are mu-
tually independent an@ov[v,,] = (Ts — Tq) No. The nor-
malized output of thesth matched filter is

1

No (Ts — Ty)

t
)= [y
(i—1)Ts

where Z, is a complex Gaussian variable with variange

per dimension. Let = Z%-T2 Whenn = m, S, is a

complex Gaussian variable with variangeper dimension,
otherwises,, is 0.

When themth signal in theM frequencies is transmit-
ted, the receive{jl—2m|2 has the probability density given by
), otherwisean|2 (n # m) has the density given by (8).

R ()= pyeow || >0 @

p\Rl\z\Rz\z,--,lRMIQ (7"1, T2y .euy ’I’M) = Hf\il exp(—ri).( )
9
Otherwise, if one signat is sent, the joint probability den-
sity in the slot should be

1 - M
p(ri,ray ) = ﬁexp [ m} [1iz1 iz exp(=73).

1+¢
(10)

The threshold used for MAP rule is
Z:C—zln<(1+ow>. (11)

If no |R,|? is greater thar, the receiver will decide that
no signal was transmitted. Otherwise, theorresponding
to the larges{|R,,|’} is decided being transmitted.

We can determine the probability of error in this detec-
tion scheme. LetP; denote the probability of missing a
signal, i.e. the receiver decides that nothing has been trans-
mitted when a signal was transmitted. is

P = (1 — exp {HZCD (1—exp(—2)M 1. (12

Let P, denote the error probability of error detecting,
i.e. the receiver decides one signal has been transmitted
when actually another signal was transmittdd. is given

by
/Z T (1 e )™ (—XT [f} ) e

+ (1 — exp LJrZCD [1 — (1 —exp [fZ])M_l}(B)

P,

Another kind of error occurs when the receiver decides
a signal has been transmitted when nothing was transmitted.
The probability of error is denoted ky;:

Py=1-—(1—exp(—2)™. (14)



The additive noise is stationary and white. The complex where F' is the bandwidth of the system, P is the average
gain of the channeld4, decorrelates in any two symbol slots signal power, N is single-sided power density per dimen-

because the symbols experience independent fading. Wesion for additive noise. The factor
compute the capacity of this system using a discrete mem-because the effective time of transmission is [Ta, T
oryless channel(DMC) model. All prior arguments justify F' goes to infinity, the bound approaches (1 — Td)

the memoryless assumption.

Li—Ta jsintroduced in

} When

Ts
the purpose of convenience, we will cal this bound |nf|n|te

In each symbol slot, we choose to transmit nothing or bandwidth bound.

one of M signals. Hence, the discrete model has an input

alphabet with sizé/ + 1, denoted asg, a1, as, -..,an;. ag

means no signal is transmitted, and(1 < j < M) means
the jth FSK signal is transmitted. The output is decided by

the vector{|R,|*, |Ra|*, | Rs|?, ..., | Rar|*}-

input output

L PP P

Figure 1. The discrete model

The transmission probabilitieswill determine the capac-
ity of a DMC channel. We have aready obtained these
probabilities and can map them into the DMC model. It's
known that the mutual information of a DMC channel is
a concave function of the probability of input. The inputs
ai, as, ..., ap; are symmetric. Our prior assumption gives
P(ag) =1-0,P(ar) = P(az) = ... = P(am) = Z,
which makes the mutual information achieve capacity. The
capacity of the DMC channel is

C = (5) - H (ba). (15)

Then the capacity of the FSK system |s . In following
section, we use numerical methods to calculate this capac-

ity.

3. Bound the capacity

Before we discuss the capacity of the system, we will
first look into the bound on capacity. From [5], we know
that the capacity of the Rayleigh fading channdl isthe same
as that of the AWGN channel in the limit of large band-
width. So atight bound of the capacity is

L —Tapy, (1+L) (16)
T

¢= INF

Another bound on capacity is deduced from the discrete
model of the system. Owing to the limitation for the capac-
ity of adiscrete channel, we get

In(M +1)
— 7 (17)

This bound will be effective when SNR is very large as we
will see in following discussion. We denote this bound as
limited bandwidth bound.

C<

4, Numerical results

We assume T; = 1us, T is between 10us and 10ms,
Fisbetween 1M Hz and 10T H .

A high peak signal power makes transmission reliable.
When the bandwidth is very large, which means there is a
large number of transmission symbols, we need to improve
the peak power of the signal to get reliable transmission.
However, when the average received signal power is con-
stant, we should lower the signal duty cycle in order to im-
prove the peak signal power, which will put alimitation on
the data rate. Hence, we need to adjust the duty cycle pa-
rameter 0 to optimize the system capacity. In our smula
tion, all results are optimized with respect to 6.
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Figure 2: Capacity vs System Bandwidth

In Figure 2, we fix the SNR and let the symbol time T,
be 10us, and find as expected that the capacity increases
with the bandwidth of system. However, it grows very
slowly, and roughly has a gap of 3dB with the infinite band-
width bound when the system bandwidth isbetween 1M H =
and 10T Hz. Note that with moderate bandwidth we can



achieve a capacity very close to that with very large band-
width.
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Figure 3: Capacity vs Signal-to-Noise Ratio

Figure 3 shows the capacity vs SNR performance un-
der different bandwidth constraints and explores how the
bounds effect. Only for very large SNR, the limited band-
width bound will obviously effect on the capacity.

The symbol time T, is also an important parameter for
the FSK system. On the one hand, the greater 7', the greater
¢, which will reduce the error probability, and thus improve
capacity. On the other hand, increasing 7 will lower the
symbol rate. If the average power and bandwidth are fixed,
we can adjust 7, to maximize the capacity. With two dif-
ferent bandwidths, we show how symbol time T, affectson
the capacity in Figure 4, where SNR is 2500.
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Figure 4: Capacity vs Symbol Time

The simulation shows that when SNR is reduced, the
peaks of the curves move to the right, which means that a
greater symbol time improves system capacity when aver-
age signal power is lower. Another observation is that the
duty cycle for optimizing capacity isanon-decreasing func-
tion of SNR.

For high SNR, the limited bandwidth bound begins to
take effect, high 6 and small T, are needed to achieve the
maximum capacity. For lower SNR, 6 decreases and T, in-
creases. When the SNR is very small, we need vanishingly
alow duty cycle and very long T’ to reach the maximum.

5. Conclusions

When the received signal power is very large, the lim-
ited bandwidth bound will mainly constrain the capacity of
the FSK system in a Rayleigh Fading Channel. Otherwise,
the capacity grows slowly with bandwidth, and is nearly 3
dB lower than the infinite bandwidth bound for bandwidths
commensurate with general mobile communication condi-
tions. Using amoderate bandwidth, we can approach the ca-
pacity achieved by using very large bandwidth. To achieve
the best performance in such a FSK system, we need to se-
lect optimal symbol time and duty cycle. Large 6 and small
T, are needed for high SNR, small 6 and long T, are needed
for low SNR.
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