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Capacity of a Multi Output Channel with
Distributed Processing

Natanael Peranginangin Murielédard Robert G. Gallager

mitted to a central estimator/decision maker over communi-
Abstract—To help understand distributed processing in the corgation channels of limited capacity. A problem which be-

text of channel coding, we study distributed processing in a Si”QGngs to this class and has been studied in the context of
input multi output (SIMO) channel with memory. Distributed pro-

cessing in the context of source coding has been studied. One prﬁByrce coding is thé‘,EO problem. [2] introduced and stud-
lem which arises in the context of source coding is the CEO probld®f the problem for discrete memoryless source. A contrast
[2], [9], [8], [4]. A parallel between our study and [4] is that dis- based on rate-distortion or distortion-rate function is made

tributed processing is successively structured. Rather than considgstween the case when the estimators can convene for the
distortion metrics, we consider transmission capacity. We develgpjrpose of smoothing the corrupted observation and the case

a one dimensional (1D) Kalman filter for a SIMO channel with n -
intersymbol interference (ISI). By one dimensional, we mean th“‘é{pen the estimators can not. [9], [8] extended the study to

estimation by Kalman filtering proceed from the first receiver to thﬂ“e_ special case of continuous Gaussian source and ok_)ser-
next and successively to the last receiver at every time step. Vadion. More recently, [4] developed successive encoding

show that the capacity of the channel with centralized processingggrategies for the CEO problem based on generalized Wyner-

the same as that of the channel with distributed processing by %R, encoding. By successive encoding we mean estimators
Kalman filtering. We extend the channel model to a channel wi '

ith , ) .
ISI. I1SI entails the problem of infinite memory and delay at ea&?r agents’) are Ord.ered 'and communlcatene'to the ne)'(t-
receiver if distributed processing is done by means of 1D Kalman OVer rate-constrained links, the final agent in the chain be-
filtering, rendering successive estimation by 1D Kalman filter to bag termed as the CEO. Two of the differences between dis-

impractical. To mitigate the problem of infinite memory and delayyibuted processing in this paper and the successively struc-
we develop a two dimensional (2D) Kalman filter. By two dimeRy; qq encoding for the CEO problem in [4] are as follows.

sional, we mean that estimation by Kalman filtering proceeds froQ. tributed processing is performed successively in the con-
the first receiver to the next and successively to the last receiver g P gisp y

every time step. Within the same time step, however, the last recef@ft 0f channel coding with channel capacity being the met-
feedback its estimate to the first receiver, allowing the estimate 1é€ to contrast the case when several receivers process their
the next time step to be based on the present time step. Finally gi$served output in a successive and distributed manner with
find the .expression for the.cqpacity of the channel with centralizgﬂ]e case when the receivers process their observed output in
processing and show that it is the same as that of the channel wit . . ) .

a centralized manner. Moreover, in the case of single input
and multi output (SIMO) channel that we consider through-
out, distributed processing is performed in between coding

The objective of this paper is to help understand distributeshd encoding processes, implying one transmitter ('agent’)
processing of information in the context of channel codencodes and only one receiver (CEQ’) decodes.
ing. We assume a multi output channel subject to both ad-One scenario in which distributed processing applies is the
ditive white Gaussian noise (AWGN) and intersymbol intefprocessing of wireless signals to preserve wireline network
ference (ISI). We also assume that both the transmitter aff§. The problem addressed by [7] is an architectural prob-
the receiver have complete knowledge of the channel. lem with respect to the transmission of information between
essence we address two primary problems, namely, whettief wireless and wireline domain, namely, the communica-
distributed processing of several output streams in a muion architecture that meets the optimal tradeoff between at-
output channel yields the same capacity as that of centralizeghing wireless rate gain (in a wireless system with multiple
processing and how distributed processing can be done afieeivers) and minimizing wireline processing thus wireline
ciently at each receiver in the case of channel with ISI.  bandwidth for the desired wireless rate gain.

In general, the distributed processing problem in this pa- |n section2 we develop a one dimensional (1D) Kalman
per falls into the class of problems involving the obsentilter as means of successively estimating the input sequence
ing of events in space-time and making estimates or predisf-a single input multiple output (SIMO) and AWGN chan-
tions based on the phenomena observed. Often the sengel-with no I1SI. One dimensional recursive estimation from
estimator system is distributed in the sense that data are gsie receiver to the next by the Kalman filter yields the same
lected at several spatially separated sites and have to be tr@ifgl estimates in contrast with centralized estimation (pro-

, , . cessing) when the complete set of observed output sequences
The authors are with the Laboratory for Information and Decision Sys: e fused and processed in a centralized fashion by either a

tems, Massachusetts Institute of Technology, Cambridge, MA 02139 Uﬂ . o
(e-mail: {nael,medard,gallaggf@mit.edu linear least square (LLS) or maximum likelihood (ML) or

distributed processing.
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Bayes’ Least Square (BLS) estimator. We find the expres- Hireless Network Wirlne Network
sion for the capacity of the channel with centralized process- . ‘ e
ing and show that it is the same as that of the channel with )
distributed processing, i.e., 1D Kalman filtering. In section e ‘
3 we extend the channel model of sectdmo a SIMO and mwesponz v,
AWGN channel with ISI. ISI entails the problem of infinite -~
memory and delay at each receiver if distributed processing
is done by means of the 1D Kalman filtering. To mitigate the . Lo
problem of infinite memory and delay, the channel with dis-
tributed processing performs two dimensional (2D) Kalman
filtering. By two dimensional, we mean that estimation by
Kalman filtering proceeds from the first receiver to the next ‘
and successively to the last receiver at every time step. Withig. 1. Channel with centralized processing
the same time step, however, the last receiver feedback its es-
timate to the first receiver, allowing the estimate of the next
time step to be based on the present time step. The final es- e, j iy
timates attained by the 2D Kalman filter is the same as either wsipott
the estimates computed by the impractical 1D Kalman filter 0—
or the much more impractical centralized estimator observing ‘
the complete set of output sequences and producing an esti- wespr? y,
mates based on linear least square (LLS) or maximum likeli-
hood (ML) or Bayes’ least square (BLS) estimation. Finally
we find the expression for the capacity of the channel with
centralized processing and show that it is the same as that of
the channel with distributed processing. sty |
Aiming at preliminary insights to the question of whether O— i
distributed processing yields the capacity equal to that of cen- 1
tralized processing in the case of channel with intersymbb. 2. Channel with distributed processing.
interference (ISI), we begin with a model of the channel, i.e.,
AWGN channel with single input multiple output (SIMO), no
intersymbol interference, and both transmitter and receiv@ption 1: Centralized Processing

access port 1 v,

f———— tonlw

pou Buissaaoid [enus

accessportn vy,
0

e

have perfect knowledge of the channel. As Figure 1 illustrates, at each time step (since we take a
I[I. CHANNEL MODEL: AWGN, SIMO, No ISI, AND discrete time approach), access port = 1,...,n, simul-
PERFECTKNOWLEDGE OFCHANNEL AT TRANSMITTER  taneously sends its received signgl, : = 1,...,n, to the
AND RECEIVER central processing node through the wireline network.

Option 2: Distributed Processing
IAs Figure 2 illustrates, this option allows estimation to be
done stage by stage at each access port. In particular, access
port1 receivesy, then produces a linear least square (LLS)
estimate ofX, Y7, and sends the estimate to access port
Access port2 then processe¥; along with Y3, producing

yet another LLS estimat®,, and send the corresponding es-
timate to the subsequent access port, i.e., access3 pont
Where the same fashion, LLS estimation process carries on until the
X arandom variable with zero mean and variafge central node receives an estimatg, from access port.

Y; arandom variable with zero mean and variafge+ A. One Dimensional (1D) Kalman Filtering Algorithm

A user transmits a symboX with average energy con-
straint E[X?] < E. There aren receivers, and the channe
between the single user and receivedenoted as channel
i, is corrupted by AWGN nois&V; with average energy?.
The relation between input symbal and the output symbol
at receivern, Y;, is given by

Y, =X+ N, z=1,...,n 1)

a?); ) . o Since at any time unit it is possible to have a record of
Ni ~Normal (,07)fori =1,...,nandN; isindepen- the measurement§y;}_,, distributed processing can be
dentofX andNj, forj € (1,2,...,n) \ . rephrased to be the on-line estimation of the state variable

Considering the far smaller order of magnitude in the erref portn, i.e.,U,, = X, from the measuremen{; }7_,
rate for current optical links with respect to that of wireless One such algorithm that yields an on-line unbiased linear
links, we assume the wireline network to be noiseless. |gast square estimate of the stateis the 1D-Kalman filter
such a noiseless wireline environment, two options arise @$[10]. The estimate is unbiased in the sense that

to how to process th&;’s, with each option having a differ- ElU, - U,] =0
ent bearing on bandwidth usage in the wireline domain. In R X
what follows we describe each option. whereF[e] denotes expectation, abf, = X is the estimate



of U, = X from {Y;}_,, i.e., available measurements. Th& = {Y;}", are related by (1), with symbol energy con-
minimum error vanancF charaﬁtegstlc simply means that tistraint £[X?] < E. Moreover, let us define a new chan-
quantity )’] nel which is a twist from theentralizedchannel. Instead of
can be minimized from the requirement that the estimate Baving a discrete time channel with inpu, and output’,

the result of a linear operation on the available measuremeis, a channel whose input-output relation is that of the chan-
[1][10]. nel with centralizedprocessing defined by (1), we reduce the

A partlcularly convenient form for the 1D-Kalman eStlmachanne| to one which has |anX and outputX WhereX
tion algorithm can be developed in a recursive manner [Hthe Linear Least Square (LLS) estimatefthat is,

[10], with a state-space model defined by state and output X =AY (4)
equations U1 = U (2)  where A is a matrix with the appropriate dimension such
Yisr, = U1+ Nipa ) thate [(X - X)Q} is minimized. Let us name the chan-

Note that the output equation (3) follows from (1) and (2). nel with input and output relation in (4) as the channel

Let us define withdistributedprocessing.
Ulilk] linear least-square estimateléf, based on observations Lemmall.2:
from port1 to portk(k < @); B 1 5
K; portvarying Kalman gain (a scalar); Cosup I(Y;X)=log | 1+ 3
Ac[i|k] error covariance matrix, based on observations fromy:-EIX*<E 2 D;;lnk;(llg_‘__n)\igi
port1 to portk(k < i), i.e., B [(Ui — Uilk])2|; Proof. Constrained by the number of pages, we exclude the

proof. O
Lemma I1.3: Let C,. be the capacity of the channel under
The on-line 1D Kalman filtering algorithm is as follows. centralized processing (in bits per channel input symbol when
1) Initialize the prediction and its associated error variogarithm is taken to the base 2), then

o2 measurement noise variance at poite., E[(N;)?];

K2

ance accordingtor(ijo] = 0 1 >
AJ10] = E Co=glog |1+ —pF——0
i1 er(l 2,...,m)\i0
and leti = 1. Proof. Taking into account the difference between the SISO
2) If i < n go to the next step, if > n then send,, to  AWGN and the SIMO AWGN ¢entralizedchannel), i.e., the
central processing node and end process. output of the SIMO channel is a vector, the proof is similar to
3) Porti computes the Kalman gain matrix the standard proof for SISO AWGN channel, [3, pages 244—
0 1 24E |
K; =X Jili — 1 — 1.4
T dihna
and generate the filtered estimate and its associated er- X ET;EKEI(X' )= X EB[EEKEI(X' X)
ror covariance from the corresponding prediction quaibygof Constrained by the number of pages, we exclude the
tities according to proof. O
Ulili] = Ulili — 1] + K; (Yi — Ulili — 1]) Theorem I1.5: Let C,; be the capacity of the channel under
Afili] = Aelili — 1] — Kide[ili — 1] distrit_)uted_ processing (in bits per channel input symbol when
logarithm is taken to the base 2), then
4) Porti generates the next prediction and its associated 1 E
error covariance from the corresponding filtered quan- Ci=C.= *10% L+ = Hk o2
tities according to Mpe(1,2,...,n)\i0
Uli+11 = Ol Proof. (=) Recall Theorem II. 1 Lemma .2, Lemma I.4.
o Taking into account the difference between the channel un-
Aelt 1] = Ac[ild] der centralized processing and the channel under distributed
5) SendU[z + 1[7] andA.[i + 1]4] to porti + 1. processing, i.e., the output of the channel under distributed
6) Increment and goto ste@. processing is a LLS estimate ¢¥;}7_,, the proof is similar
The following theorem follows immediately. to the forward proof of Lemma I1.3.

X based on observm@fl *_, andY,, be an estimate attalnedproof of the converse]

by portn under the dlstnbuted processing scheme. Then I1l. CHANNEL MODEL: AWGN, SIMO, ISI,AND
X = Yn PERFECTKNOWLEDGE OFCHANNEL AT TRANSMITTER

B. Capacity of the Channel with Distributed Vs. Centralized AND RECEIVER
Processing We now consider the single input multiple output (SIMO)

Consider the channel witbentralizedprocessing, i.e, a case when there is inter symbol interference (ISI) at each
channel whose inpuk, noise N = {N;},, and output channeli. A user sends a sequence of symbals, =
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{X;}52,. The input process is corrupted by a white Gaussidiftering is again performed port-by-port from the bottom port
noise process which are independent foritreceivers. The to the top one, i.e., poit to portn respectively, yielding the
relation between the input and output process of the chanfiahl estimates of the input process, i.{an 32,. Hence the
is Mi channel under distributed processing performs a combining
Yy, = z hiyXj—k +Nig i=1,...,n j=1,...,00  oftime-wise and port-by-port Kalman filtering, i.e., a two di-
k=0 ) mensional filtering operation.
where We will show that two dimensional Kalman filtering yields
Y be the column vector of output procelSg;, }72, }i_1.  the same linear least square estimates of the input process
X be the column vector of the zero mean input process that which is resulted from the one dimensional Kalman
{X;}32, satisfying average symbol energy constraint filtering when an infinite sequence of observed output process
EX;’)<E,i=1,...,00; is in store at each access port.
B. A Base Model for Estimation
{hi, }1l, the finite impulse response (FIR) (with memory As (5) suggests, the base model chosen to represent the
M;) of the filter corresponding to access pgrt  relation between input and observed output of the channel
{NVi,}32, awhite Gaussian noise process with mean zero aodrresponding to acce;s poiti =1,...,n)is
average energZ[N;, ] = o2 for all i, 5.
We shall refer to the channel whose input-output relationship Yy =D ha X+ Ny (")
. . . . k=0
is described by (5) as the channel witbntralizedprocess-
ing.

Moreover, let us define a new channel whichis a twist from "~ Lo . ,
the channel wittcentralizedprocessing. Instead of having Xilia aw hite wide sense stationary (W_SS) Input process
discrete time channel with inpuf{, and outputY, i.e., a M W|th_2t_aro_mean and unit variance; )
channel whose input-output relation is that of the chanHk Jx—o the finiteimpulse response (FIR), with mema,
with centralizedprocessing defined by (5), we reduce the of the filter corresponding to access port
channel to one which has inpuk, and output,X, where 2/ bemaz M;;

X is the Linear Least Square (LLS) estimatesfthatis, {NVi,}52; awhite Gaussian noise process with mean zero and
X =AY (6) average energg[N; %] = o2 for all i, ;.

where A is a matrix with the appropriate dimension suclMoreover it is assumed thaf_,; = ... = X, = 0.

thatt/ [(X - )?)T(X - )?)] is minimized. Let us name the DenoteU;, to be the vector of states at tinidor the chan-

channel with input and output relation in (6) as the channBf! @ssociated to access partThen (7) suggests that the

where

with distributedprocessing . dynamics of the input process can be represented by the state
A. Distributed Processing with 2D-Kalman Filter equation

As .figgre 2 shows, a.cen.tral problem with the channel un- Uim _ FUij +GXj ©)
der distributed processing is as follows. For each access port i " 9
to compute distributed and bottom-up linear least square es- (i+1); ti ©)
timates of the input procedsX; }32,, the receiver at access, e
porti (i = 1,...,n) is forced to store an infinite sequence _ T
of the observed output proce$$;, }22,. With an infinite Ujro = [ X1 X5 - Xjomi |
sequence of obsgrved putput process being stored' at gach ac- Uij _ [ X; X;o1 o Xj_um ]T
cess port, one dimensional port-by-port Kalman filtering is T
then performed from the bottom port to the top one, thus at-  Ugi+1), = [ X Xjo1 o Xjom ]

taining the final estimates, i.e{X; 521. The implications
are twofolds, i.e., infinite memory and delay. Each port has
have infinite memory for storing the infinite output sequencd’

{gll are column vectors witfM/ + 1) components)

it receives. Moreover, there is an infinite delay before the es- o - - -0 1
timates of{ X;}32,, i.e., {X;}32, can finally be computed 1 0 - -0 0
at the central processing node. F=|/0 1 0 -0 .G =

To alleviate the problem of infinite memory and delay, the e :
channel under distributed processing performs two dimen- 0 0' 10 0

sional Kalman filtering as a mean for computing linear lea . .
square estimates of the input process. Instead of storing%%latmg (7) to (8) and (9), the channel OUtPUt at tinean

S be described in term of the state vector at tijn
infinite sequence of the output process at each access port, ~

access port performs discrete time Kalman filtering, thus al- Yi; = GiUi; + Ny, (10)
lowing recursive estimation of the input process at every tinvehere C; is an 1 X (M + 1) matrix, i.e.,, C; =

unit. With some finite memory at each access port, Kalmgnh;, h;, -+ hi, |
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The estimation problem is now stated: given the foregoing  and generate the filtered estimate and its associated er-
channel model and the statistics of the input signal and the ror covariance from the corresponding prediction quan-
measurement noise, it is desired to obtain an on-line estima- tities according to

tion procedure that yields a linear least square estimates of . S _ L

the input sequencgX;}2 =1 at some delayed timg + M). Uiplilsl = Uwplili = 1+ K, (Ylj = Culinlily - ”)
_ 2D—K.alman Filtering Algorithm: Since at any timg it Aeyylill] = Aeyulili — 1] = Ki,C1Ae,, [jlj — 1]

is possible to have a record of the measuremégkiis}? ,,

{Yi, Yiq, -0 Y5, oy, the preceding estimation problem  4) while i < n perform as follows. Ifi > n go to step

can be rephrased to be the on-line estimation of e+ 1) 5.

components of the state vector OfT portat time j, I.e., a) Porti generates the next prediction and its associ-
Un, = [ X; Xj-1 - Xj_um |, from the measure- ated error covariance from the corresponding fil-
ments{Y;, }i, {Yi, biey, - 1Y i tered quantities according to

One such algorithm that yields an on-line unbiased linear 2

least square estimate of the complete state vé¢ioris the Ui“‘i[?'?] - U”“Mjﬂ,
2D-Kalman filter [1] [10]. The estimate is unbiased in the Aeiniili] = Aeylili]
sense that B . N

ElUn, —Up,]=0 ) b) SendU;5[j1j] andAe,,, ;[7lj] to porti + 1.
where Ele] denotes expectation, andU,, = c) Increment.
[ Xj Xj—l Xj—M ]T is the estimate of d) Fiortz computes the ;(alman gain matnxT -
U, X; X o X |7 fom (Vi Ky = Aayy s H51CT (il BAICHT + 0%)
{Yi, by, - 1Y, iy, 1.e., available measurements at time

and generate the filtered estimate and its associ-
ated error covariance from the corresponding pre-
diction quantities according to

j. The minimum error variance characteristic simply means
that the quantity

B[(Un, — Up ) (U, — Uyp)] N rding tc ( . )
e nj n; T_LJ T ) Ui i = Ui i Kl }/Z — CiUi i

can be minimized from the requirement that the estimate be i717] ji-1 L]+ K, Y ji—10717]
the result of a linear operation on the available measurements Aem[j\j} = Ae 17 — 1] = Ki;Cile,,_, [7]7 — 1]
(1] [10]. e) Go to stept.

_ Aparticularly convenient form for the 2D-Kalman estima- 5y port;, generates the next prediction and its associated
tion algorithm can be developed in a recursive manner [1] * grror covariance from the corresponding filtered quan-
[10]. More precisely, for the estimation model defined by tities according to

(8), (9), and (10), let us define

Uselilk] linear Ie?st-squarf estimat(?[?zi;j, b)asertlj_ ohn obser- ﬁm[j +1]j] = F[j'n‘n[j‘j}
vations from portl to port#(¢t < i) which spans . i T T
fromtimeltotimek(k < j),i.e . {{Y, }o_,}r_; Ae,, [7+1j] = FAe,[jljJF" + GG

_ ) ) 6) SendU;;[j + 1|j] andAs, , [j + 1|] to port1.
K;, time and port varying Kalman gain (gd/ + 1) X 1 7§ Incremg;[t;’ ;—nd@o to St;ﬁ‘l i +1lj]top
vector); )

. . . . The following theorem follows immediately.
Ae”t[j\k] error covariance matrix, based on observatlons_l_h L1 Let % be the I | .
from port 1 to port #(t < i) which spans from eorem III.1: Let . e the linear least s_qj\t;arle estimate
of X based on observing{Y;; }32,}7; andU;!*" be the

time 1 to time k(k < j7), {{Y, }_i}f_4, ie, ] :
(k< 3) 10 b=t (M + 1)-th component of the state vector estimate attained

E |(Ui; — Ui lj|K)(Us; — Ui|t[j|k])T}; by portn attimej, i.e.,U,,, , under the distributed processing
o? measurement noise covarianc&¥N;,)? foralli,j; ~ scheme.Then
1,0 the (M + 1) X (M + 1) identity matrix and the col- X ={U "5
umn vector with all its(M + 1) components being, Lemma 111.2: For any colored wide sense stationary pro-
respectively. cess (WSS]V;}32,, there exists a causal filter with memory
The algorithm is as follows. H and impulse responggy, 91, - - -, gu }. Moreover
1) Initialize the'predlctlon and its associated error vari- V= Z.‘]ika—k
ance according to . k=0
Up[tlo] = 0 -
Ae, [10] = I and {X;}52, is a white WSS process with [(X;)?] =
, 1,j=1,...,00.
2) f&% Etjl =1 Proof. From [10] or [1], spectral factorization, i.e., Gram-
3) Port1 computes the Kalman gain matrix Schmidt orthogonalization, will yield a causal filter which

satisfies the statement of the theorém.

Ky, = A, , [1]i—1]C1 " (CiAel,l[JU —1]C," + 02> Recall (7). The input sequence is the white WSS process,
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{X;}52,. By lemma I11.2, we can perform 2D Kalman fil-  Lemma lll.4:
tering on the colored WSS proce$¥’; }52, by replacing

. min{M.H} . Proof Constrained by the number of pages, we exclude the
hij - Z gikhijfk ) J :Oav(M+H) proof.l:l

k=0 Theorem 111.5: The capacity of channel with distributed
and replace\ with (M + H). In the case wheré = oo, a processing(y, is equal to the capacity of channel with cen-
truncation strategy would be required to find the most seffalized processing/.
sibly finite amount of memory/7, to assign in the state Proof. Recall theorem Ill.1, theorem IIl.3 and lemma 111.4.
vector of the state-space estimation model so that the &R€ factthatLLS estimation in the time domainmaps to LLS
estimation in the DFT transform domain allows the coding

_ . - theorems in theorem 111.3 and theorem I1.5 to apply, hence
M+H+1 Vi - ; . ’
{Un, jO'iMJrﬁJrl (the sequen(_:e of tr(_ FHAD heorem 115 follows immediately.]

component of the state vector estimate) is reasonably small.

This problem is not elaborated in this paper and is a subject

for further study. Our results points to the efficient implementation of dis-
C. Capacity of Distributed Vs. Centralized Processing  tributed processing in channel coding, via two dimensional
We now show that capacity of channel under distributd@D) Kalman filter, when we assume that the channel is ad-

processing(y, is the same as that of centralized processingitive white Gaussian noise, single input multi output, and
C.. has memory (intersymbol interference). We also assume
Theorem 111.3: Let C, be the capacity of the channel undethe transmitter and receiver have complete knowledge of the
centralized processing (in bits per channel input symbol whéhannel. By efficient we mean that the capacity of the chan-
logarithms are taken to the base 2). Then nel with distributed processing is the same as that of the chan-
C.=(2m)~ ! nel with centralized processing, and moreover the process-

T log {max (@ P Hl.'lf=1|Hi()\)\.’|;‘(k)|72 ’1)} d\ ing, that is, either' maximum likelihood (ML) or Bgyes_ least
k=1 liei,2,... ny\i | Hi square (BLS) or linear least square (LLS) estimation is done

successively in time-space and in a distributed manner.
M, When the capacity achieving input process (a wide sense
Hi(\) = Z H;, exp N 1=v—1 stationary stochastic process) has infinite memory, a trunca-
7=0

ror covariance gap between the two estimates, f(eand

IV. CONCLUSION

whereH;(\) is the channel transfer function given by

tion strategy would be required. The strategy is geared to-
wards finding the most sensibly finite amount of memory to

(periodic in A with period27) and where the parametéris  assign in the state vector of the state-space estimation model
the solution of for the 2D Kalman filtering such that the error covariance gap
L H ()] between the centralized LLSE (can be ML or BLS) estimate

max (@ - P Mo H (V]2 70) dA of the state vector and the successive estimate of state vector
rE by means of 2D Kalman filtering is reasonably small. This
problem is not elaborated in this paper and is a subject for

Moreover, the capacity-achievingy, the inputs{ X} further study.

fO(HZ(A);éO )

are correlated Gaussian random variables with mean zero antill geared towards the question of whether distributed
covariances,,, —oo < n < oo, given by processing yields achievable capacity equal to that of cen-
T tralized processing, an interesting channel model to study is a
T = B[ Xpen Xi] = (7) . Sx (A) cos(nA)dA channel that is not perfectly known at the transmitter, namely,
the receiver estimates the channel with some error and makes
where the input power spectral density satisfies the estimate known to the transmitter.
2(p —2 2
Sx(A\) = o (0 - KN, 6K = L= REFERENCES
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