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Abstract—To help understand distributed processing in the con-
text of channel coding, we study distributed processing in a single
input multi output (SIMO) channel with memory. Distributed pro-
cessing in the context of source coding has been studied. One prob-
lem which arises in the context of source coding is the CEO problem
[2], [9], [8], [4]. A parallel between our study and [4] is that dis-
tributed processing is successively structured. Rather than consider
distortion metrics, we consider transmission capacity. We develop
a one dimensional (1D) Kalman filter for a SIMO channel with no
intersymbol interference (ISI). By one dimensional, we mean that
estimation by Kalman filtering proceed from the first receiver to the
next and successively to the last receiver at every time step. We
show that the capacity of the channel with centralized processing is
the same as that of the channel with distributed processing by 1D
Kalman filtering. We extend the channel model to a channel with
ISI. ISI entails the problem of infinite memory and delay at each
receiver if distributed processing is done by means of 1D Kalman
filtering, rendering successive estimation by 1D Kalman filter to be
impractical. To mitigate the problem of infinite memory and delay,
we develop a two dimensional (2D) Kalman filter. By two dimen-
sional, we mean that estimation by Kalman filtering proceeds from
the first receiver to the next and successively to the last receiver at
every time step. Within the same time step, however, the last receiver
feedback its estimate to the first receiver, allowing the estimate of
the next time step to be based on the present time step. Finally we
find the expression for the capacity of the channel with centralized
processing and show that it is the same as that of the channel with
distributed processing.

I. I NTRODUCTION

The objective of this paper is to help understand distributed
processing of information in the context of channel cod-
ing. We assume a multi output channel subject to both ad-
ditive white Gaussian noise (AWGN) and intersymbol inter-
ference (ISI). We also assume that both the transmitter and
the receiver have complete knowledge of the channel. In
essence we address two primary problems, namely, whether
distributed processing of several output streams in a multi
output channel yields the same capacity as that of centralized
processing and how distributed processing can be done effi-
ciently at each receiver in the case of channel with ISI.

In general, the distributed processing problem in this pa-
per falls into the class of problems involving the observ-
ing of events in space-time and making estimates or predic-
tions based on the phenomena observed. Often the sensor-
estimator system is distributed in the sense that data are col-
lected at several spatially separated sites and have to be trans-
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mitted to a central estimator/decision maker over communi-
cation channels of limited capacity. A problem which be-
longs to this class and has been studied in the context of
source coding is theCEOproblem. [2] introduced and stud-
ied the problem for discrete memoryless source. A contrast
based on rate-distortion or distortion-rate function is made
between the case when the estimators can convene for the
purpose of smoothing the corrupted observation and the case
when the estimators can not. [9], [8] extended the study to
the special case of continuous Gaussian source and obser-
vation. More recently, [4] developed successive encoding
strategies for the CEO problem based on generalized Wyner-
Ziv encoding. By successive encoding we mean estimators
(or ’agents’) are ordered and communicate−one to the next-
− over rate-constrained links, the final agent in the chain be-
ing termed as the CEO. Two of the differences between dis-
tributed processing in this paper and the successively struc-
tured encoding for the CEO problem in [4] are as follows.
Distributed processing is performed successively in the con-
text of channel coding with channel capacity being the met-
ric to contrast the case when several receivers process their
observed output in a successive and distributed manner with
the case when the receivers process their observed output in
a centralized manner. Moreover, in the case of single input
and multi output (SIMO) channel that we consider through-
out, distributed processing is performed in between coding
and encoding processes, implying one transmitter (’agent’)
encodes and only one receiver (’CEO’) decodes.

One scenario in which distributed processing applies is the
processing of wireless signals to preserve wireline network
[7]. The problem addressed by [7] is an architectural prob-
lem with respect to the transmission of information between
the wireless and wireline domain, namely, the communica-
tion architecture that meets the optimal tradeoff between at-
taining wireless rate gain (in a wireless system with multiple
receivers) and minimizing wireline processing thus wireline
bandwidth for the desired wireless rate gain.

In section2 we develop a one dimensional (1D) Kalman
filter as means of successively estimating the input sequence
of a single input multiple output (SIMO) and AWGN chan-
nel with no ISI. One dimensional recursive estimation from
one receiver to the next by the Kalman filter yields the same
final estimates in contrast with centralized estimation (pro-
cessing) when the complete set of observed output sequences
are fused and processed in a centralized fashion by either a
linear least square (LLS) or maximum likelihood (ML) or



Bayes’ Least Square (BLS) estimator. We find the expres-
sion for the capacity of the channel with centralized process-
ing and show that it is the same as that of the channel with
distributed processing, i.e., 1D Kalman filtering. In section
3 we extend the channel model of section2 to a SIMO and
AWGN channel with ISI. ISI entails the problem of infinite
memory and delay at each receiver if distributed processing
is done by means of the 1D Kalman filtering. To mitigate the
problem of infinite memory and delay, the channel with dis-
tributed processing performs two dimensional (2D) Kalman
filtering. By two dimensional, we mean that estimation by
Kalman filtering proceeds from the first receiver to the next
and successively to the last receiver at every time step. Within
the same time step, however, the last receiver feedback its es-
timate to the first receiver, allowing the estimate of the next
time step to be based on the present time step. The final es-
timates attained by the 2D Kalman filter is the same as either
the estimates computed by the impractical 1D Kalman filter
or the much more impractical centralized estimator observing
the complete set of output sequences and producing an esti-
mates based on linear least square (LLS) or maximum likeli-
hood (ML) or Bayes’ least square (BLS) estimation. Finally
we find the expression for the capacity of the channel with
centralized processing and show that it is the same as that of
the channel with distributed processing.

Aiming at preliminary insights to the question of whether
distributed processing yields the capacity equal to that of cen-
tralized processing in the case of channel with intersymbol
interference (ISI), we begin with a model of the channel, i.e.,
AWGN channel with single input multiple output (SIMO), no
intersymbol interference, and both transmitter and receiver
have perfect knowledge of the channel.

II. CHANNEL MODEL: AWGN, SIMO, NO ISI, AND

PERFECTKNOWLEDGE OFCHANNEL AT TRANSMITTER

AND RECEIVER

A user transmits a symbolX with average energy con-
straintE[X2] ≤ E. There aren receivers, and the channel
between the single user and receiveri, denoted as channel
i, is corrupted by AWGN noiseNi with average energyσ2

i .
The relation between input symbolX and the output symbol
at receiveri, Yi, is given by

Yi = X + Ni x = 1, . . . , n (1)

where
X a random variable with zero mean and varianceE;
Yi a random variable with zero mean and variance(E +

σ2
i );

Ni ∼ Normal (0, σ2
i ) for i = 1, . . . , n andNi is indepen-

dent ofX andNj , for j ∈ (1, 2, . . . , n) \ i.
Considering the far smaller order of magnitude in the error

rate for current optical links with respect to that of wireless
links, we assume the wireline network to be noiseless. In
such a noiseless wireline environment, two options arise as
to how to process theYi’s, with each option having a differ-
ent bearing on bandwidth usage in the wireline domain. In
what follows we describe each option.
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Option 1: Centralized Processing
As Figure 1 illustrates, at each time step (since we take a
discrete time approach), access porti, i = 1, . . . , n, simul-
taneously sends its received signal,Yi, i = 1, . . . , n, to the
central processing node through the wireline network.
Option 2: Distributed Processing

As Figure 2 illustrates, this option allows estimation to be
done stage by stage at each access port. In particular, access
port 1 receivesY1, then produces a linear least square (LLS)
estimate ofX, Ŷ1, and sends the estimate to access port2.
Access port2 then processeŝY1 along with Y2, producing
yet another LLS estimatêY2, and send the corresponding es-
timate to the subsequent access port, i.e., access port3. In
the same fashion, LLS estimation process carries on until the
central node receives an estimate,Ŷn, from access portn.
A. One Dimensional (1D) Kalman Filtering Algorithm

Since at any time unit it is possible to have a record of
the measurements{Yi}n

i=1, distributed processing can be
rephrased to be the on-line estimation of the state variable
of portn, i.e.,Un = X, from the measurements{Yi}n

i=1

One such algorithm that yields an on-line unbiased linear
least square estimate of the stateUn is the 1D-Kalman filter
[1] [10]. The estimate is unbiased in the sense that

E[Un − Ûn] = 0

whereE[•] denotes expectation, and̂Un = X̂ is the estimate
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of Un = X from {Yi}n
i=1, i.e., available measurements. The

minimum error variance characteristic simply means that the
quantity E[(Un − Ûn)2]

can be minimized from the requirement that the estimate be
the result of a linear operation on the available measurements
[1] [10].

A particularly convenient form for the 1D-Kalman estima-
tion algorithm can be developed in a recursive manner [1]
[10], with a state-space model defined by state and output
equations Ui+1 = Ui (2)

Yi+1 = Ui+1 + Ni+1 (3)

Note that the output equation (3) follows from (1) and (2).
Let us define

Û [i|k] linear least-square estimate ofUi, based on observations
from port1 to portk(k ≤ i);

Ki port varying Kalman gain (a scalar);
λe[i|k] error covariance matrix, based on observations from

port1 to portk(k ≤ i), i.e.,E
[
(Ui − Û [i|k])2

]
;

σ2
i measurement noise variance at porti, i.e.,E[(Ni)2];

The on-line 1D Kalman filtering algorithm is as follows.
1) Initialize the prediction and its associated error vari-

ance according to Û [1|0] = 0
λe[1|0] = E

and leti = 1.
2) If i ≤ n go to the next step, ifi > n then send̂Yn to

central processing node and end process.
3) Porti computes the Kalman gain matrix

Ki = λe[i|i− 1]
1

(λe[i|i− 1] + σ2
i )

and generate the filtered estimate and its associated er-
ror covariance from the corresponding prediction quan-
tities according to

Û [i|i] = Û [i|i− 1] + Ki

(
Yi − Û [i|i− 1]

)

λe[i|i] = λe[i|i− 1]−Kiλe[i|i− 1]

4) Port i generates the next prediction and its associated
error covariance from the corresponding filtered quan-
tities according to

Û [i + 1|i] = Û [i|i]
λe[i + 1|i] = λe[i|i]

5) SendÛ [i + 1|i] andΛe[i + 1|i] to porti + 1.
6) Incrementi and go to step2.

The following theorem follows immediately.
Theorem II.1:Let X̂ be the linear least square estimate of

X based on observing{Yi}n
i=1 andŶn be an estimate attained

by portn under the distributed processing scheme. Then
X̂ = Ŷn

B. Capacity of the Channel with Distributed Vs. Centralized
Processing

Consider the channel withcentralizedprocessing, i.e, a
channel whose inputX, noiseN̄ = {Ni}n

i=1, and output

Ȳ = {Yi}n
i=1 are related by (1), with symbol energy con-

straint E[X2] ≤ E. Moreover, let us define a new chan-
nel which is a twist from thecentralizedchannel. Instead of
having a discrete time channel with input,X, and outputȲ ,
i.e., a channel whose input-output relation is that of the chan-
nel withcentralizedprocessing defined by (1), we reduce the

channel to one which has input,̄X, and output,ˆ̄X, whereX̂
is the Linear Least Square (LLS) estimate ofX, that is,

ˆ̄X = AȲ (4)
whereA is a matrix with the appropriate dimension such

thatE
[
(X − X̂)2

]
is minimized. Let us name the chan-

nel with input and output relation in (4) as the channel
withdistributedprocessing.

Lemma II.2:

sup
X̄:E[X2]≤E

I(Ȳ ; X) =
1
2

log


1 +

E
Πn

k=1σ2
kPn

i=1 Πk∈(1,2,...,n)\iσ
2
k




Proof. Constrained by the number of pages, we exclude the
proof. ¤

Lemma II.3: Let Cc be the capacity of the channel under
centralized processing (in bits per channel input symbol when
logarithm is taken to the base 2), then

Cc =
1
2

log


1 +

E
Πn

k=1σ2
kPn

i=1 Πk∈(1,2,...,n)\iσ
2
k




Proof. Taking into account the difference between the SISO
AWGN and the SIMO AWGN (centralizedchannel), i.e., the
output of the SIMO channel is a vector, the proof is similar to
the standard proof for SISO AWGN channel, [3, pages 244–
245]. ¤

Lemma II.4:

sup
X:E[X2]≤E

I(X; Ȳ ) = sup
X:E[X2]≤E

I(X; X̂)

Proof. Constrained by the number of pages, we exclude the
proof. ¤

Theorem II.5:Let Cd be the capacity of the channel under
distributed processing (in bits per channel input symbol when
logarithm is taken to the base 2), then

Cd = Cc =
1
2

log


1 +

E
Πn

k=1σ2
kPn

i=1 Πk∈(1,2,...,n)\iσ
2
k




Proof. (⇒) Recall Theorem II.1, Lemma II.2, Lemma II.4.
Taking into account the difference between the channel un-
der centralized processing and the channel under distributed
processing, i.e., the output of the channel under distributed
processing is a LLS estimate of{Yi}n

i=1, the proof is similar
to the forward proof of Lemma II.3.
(⇐) Constrained by the number of pages, we exclude the
proof of the converse.¤

III. C HANNEL MODEL: AWGN, SIMO, ISI, AND

PERFECTKNOWLEDGE OFCHANNEL AT TRANSMITTER

AND RECEIVER

We now consider the single input multiple output (SIMO)
case when there is inter symbol interference (ISI) at each
channeli. A user sends a sequence of symbols,X̄ =
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{Xj}∞j=1. The input process is corrupted by a white Gaussian
noise process which are independent for then receivers. The
relation between the input and output process of the channel
is
Yij =

Mi∑

k=0

hik
Xj−k + Nij i = 1, . . . , n j = 1, . . . ,∞

(5)where
Ȳ be the column vector of output process{{Yij

}∞j=1}n
i=1.

X̄ be the column vector of the zero mean input process
{Xj}∞j=1 satisfying average symbol energy constraint

E[Xi
2] ≤ E, i = 1, . . . ,∞;

{hik
}Mi

k=0 the finite impulse response (FIR) (with memory
Mi) of the filter corresponding to access porti;

{Nij
}∞j=1 a white Gaussian noise process with mean zero and

average energyE[Nij

2] = σ2 for all i, j.
We shall refer to the channel whose input-output relationship
is described by (5) as the channel withcentralizedprocess-
ing.

Moreover, let us define a new channel which is a twist from
the channel withcentralizedprocessing. Instead of having a
discrete time channel with input,̄X, and outputȲ , i.e., a
channel whose input-output relation is that of the channel
with centralizedprocessing defined by (5), we reduce the

channel to one which has input,̄X, and output, ˆ̄X, where
ˆ̄X is the Linear Least Square (LLS) estimates ofX̄, that is,

ˆ̄X = AȲ (6)
whereA is a matrix with the appropriate dimension such

thatE
[
(X̄ − ˆ̄X)T (X̄ − ˆ̄X)

]
is minimized. Let us name the

channel with input and output relation in (6) as the channel
with distributedprocessing .
A. Distributed Processing with 2D-Kalman Filter

As figure 2 shows, a central problem with the channel un-
der distributed processing is as follows. For each access port
to compute distributed and bottom-up linear least square es-
timates of the input process{Xj}∞j=1, the receiver at access
port i (i = 1, . . . , n) is forced to store an infinite sequence
of the observed output process{Yij}∞j=1. With an infinite
sequence of observed output process being stored at each ac-
cess port, one dimensional port-by-port Kalman filtering is
then performed from the bottom port to the top one, thus at-
taining the final estimates, i.e.,{X̂j}∞j=1. The implications
are twofolds, i.e., infinite memory and delay. Each port has to
have infinite memory for storing the infinite output sequence
it receives. Moreover, there is an infinite delay before the es-
timates of{Xj}∞j=1, i.e., {X̂j}∞j=1 can finally be computed
at the central processing node.

To alleviate the problem of infinite memory and delay, the
channel under distributed processing performs two dimen-
sional Kalman filtering as a mean for computing linear least
square estimates of the input process. Instead of storing an
infinite sequence of the output process at each access port,
access port1 performs discrete time Kalman filtering, thus al-
lowing recursive estimation of the input process at every time
unit. With some finite memory at each access port, Kalman

filtering is again performed port-by-port from the bottom port
to the top one, i.e., port1 to portn respectively, yielding the
final estimates of the input process, i.e.,{X̂j}∞j=1. Hence the
channel under distributed processing performs a combining
of time-wise and port-by-port Kalman filtering, i.e., a two di-
mensional filtering operation.

We will show that two dimensional Kalman filtering yields
the same linear least square estimates of the input process
as that which is resulted from the one dimensional Kalman
filtering when an infinite sequence of observed output process
is in store at each access port.
B. A Base Model for Estimation

As (5) suggests, the base model chosen to represent the
relation between input and observed output of the channel
corresponding to access porti ( i = 1, . . . , n) is

Yij
=

M∑

k=0

hik
Xj−k + Nij (7)

where
{Xj}∞j=1 a white wide sense stationary (WSS) input process

with zero mean and unit variance;
{hik

}Mi

k=0 the finite impulse response (FIR), with memoryMi,
of the filter corresponding to access porti;

M bemax
i

Mi;

{Nij}∞j=1 a white Gaussian noise process with mean zero and
average energyE[Nij

2] = σ2 for all i, j.
Moreover it is assumed thatX−M = . . . = X0 = 0.

DenoteŪij to be the vector of states at timej for the chan-
nel associated to access porti. Then (7) suggests that the
dynamics of the input process can be represented by the state
equation

Ūij+1 = FŪij + GXj+1 (8)

Ū(i+1)j
= Ūij (9)

where

Ūij+1 =
[

Xj+1 Xj · · · Xj−M+1

]T

Ūij =
[

Xj Xj−1 · · · Xj−M

]T

Ū(i+1)j
=

[
Xj Xj−1 · · · Xj−M

]T

(all are column vectors with(M + 1) components)
and

F =




0 · · · · · · · · · 0
1 0 · · · · · · 0
0 1 0 · · · 0
...

...
. ..

0 · · · 0 1 0




,G =




1
0
...
0




Relating (7) to (8) and (9), the channel output at timej can
be described in term of the state vector at timej

Yij = CiŪij + Nij (10)

where Ci is an 1 X (M + 1) matrix, i.e., Ci =[
hi0 hi1 · · · hiM

]
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The estimation problem is now stated: given the foregoing
channel model and the statistics of the input signal and the
measurement noise, it is desired to obtain an on-line estima-
tion procedure that yields a linear least square estimates of
the input sequence{Xj}j=∞

j=1 at some delayed time(j +M).
2D-Kalman Filtering Algorithm: Since at any timej it

is possible to have a record of the measurements{Yi1}n
i=1,

{Yi2}n
i=1, . . . , {Yij

}n
i=1, the preceding estimation problem

can be rephrased to be the on-line estimation of the(M + 1)
components of the state vector of portn at time j, i.e.,

Ūnj
=

[
Xj Xj−1 · · · Xj−M

]T
, from the measure-

ments{Yi1}n
i=1, {Yi2}n

i=1, . . . ,{Yij}n
i=1.

One such algorithm that yields an on-line unbiased linear
least square estimate of the complete state vectorŪnj is the
2D-Kalman filter [1] [10]. The estimate is unbiased in the
sense that

E[Ūnj − ˆ̄Unj
] = 0

where E[•] denotes expectation, and ˆ̄Unj
=[

X̂j X̂j−1 · · · X̂j−M

]T
is the estimate of

Ūnj =
[

Xj Xj−1 · · · Xj−M

]T
from {Yi1}n

i=1,
{Yi2}n

i=1, . . . ,{Yij}n
i=1, i.e., available measurements at time

j. The minimum error variance characteristic simply means
that the quantity

E[(Ūnj − ˆ̄Unj )
T (Ūnj − ˆ̄Unj )]

can be minimized from the requirement that the estimate be
the result of a linear operation on the available measurements
[1] [10].

A particularly convenient form for the 2D-Kalman estima-
tion algorithm can be developed in a recursive manner [1]
[10]. More precisely, for the estimation model defined by
(8), (9), and (10), let us define
ˆ̄Ui|t[j|k] linear least-square estimate ofŪij , based on obser-

vations from port1 to port t(t ≤ i) which spans
from time1 to timek(k ≤ j), i.e.,{{Yp q}l

p=1}k
q=1;

K̄ij
time and port varying Kalman gain (an(M + 1) X 1
vector);

Λei|t [j|k] error covariance matrix, based on observations
from port 1 to port t(t ≤ i) which spans from
time 1 to time k(k ≤ j), {{Yp q}l

p=1}k
q=1, i.e.,

E
[
(Ūij − ˆ̄Ui|t[j|k])(Ūij − ˆ̄Ui|t[j|k])T

]
;

σ2 measurement noise covariance =E[(Nij )
2] for all i,j;

I,0 the (M + 1) X (M + 1) identity matrix and the col-
umn vector with all its(M + 1) components being0,
respectively.

The algorithm is as follows.
1) Initialize the prediction and its associated error vari-

ance according toˆ̄U1|1[1|0] = 0

Λe1|1 [1|0] = I

and letj = 1.
2) Let i = 1
3) Port1 computes the Kalman gain matrix

K̄1j = Λe1|1 [j|j−1]C1
T

(
CiΛe1|1 [j|j − 1]C1

T + σ2
)−1

and generate the filtered estimate and its associated er-
ror covariance from the corresponding prediction quan-
tities according to

ˆ̄U1|1[j|j] = ˆ̄U1|1[j|j − 1] + K̄1j

(
Y1j −C1

ˆ̄U1|1[j|j − 1]
)

Λe1|1 [j|j] = Λe1|1 [j|j − 1]− K̄1j
C1Λe1|1 [j|j − 1]

4) While i ≤ n perform as follows. Ifi > n go to step
5.

a) Porti generates the next prediction and its associ-
ated error covariance from the corresponding fil-
tered quantities according to

ˆ̄Ui+1|i[j|j] = ˆ̄Ui|i[j|j]
Λei+1|i [j|j] = Λei|i [j|j]

b) Send ˆ̄Ui+1|i[j|j] andΛei+1|i [j|j] to porti + 1.
c) Incrementi.
d) Porti computes the Kalman gain matrix

K̄ij = Λei|i−1
[j|j]Ci

T
(
CiΛei|i−1

[j|j]Ci
T + σ2

)−1

and generate the filtered estimate and its associ-
ated error covariance from the corresponding pre-
diction quantities according to
ˆ̄Ui|i[j|j] = ˆ̄Ui|i−1[j|j] + K̄ij

(
Yij −Ci

ˆ̄Ui|i−1[j|j]
)

Λei|i [j|j] = Λei|i−1
[j|j − 1]− K̄ijCiΛei|i−1

[j|j − 1]
e) Go to step4.

5) Portn generates the next prediction and its associated
error covariance from the corresponding filtered quan-
tities according to

ˆ̄U1|1[j + 1|j] = F ˆ̄Un|n[j|j]
Λe1|1 [j + 1|j] = FΛei|i [j|j]FT + GGT

6) Send ˆ̄U1|1[j + 1|j] andΛe1|1 [j + 1|j] to port1.
7) Incrementj and go to step2.

The following theorem follows immediately.

Theorem III.1: Let ˆ̄X be the linear least square estimate
of X based on observing{{Yij}∞j=1}n

i=1 and ŪM+1
nj

be the
(M + 1)-th component of the state vector estimate attained
by portn at timej, i.e.,Ūnj , under the distributed processing
scheme. Then

ˆ̄X = {ŪM+1
nj

}∞j=M+1

Lemma III.2: For any colored wide sense stationary pro-
cess (WSS){Vj}∞j=1, there exists a causal filter with memory
H and impulse response{g0, g1, . . . , gH}. Moreover

Vj =
H∑

k=0

gik
Xj−k

and {Xj}∞j=1 is a white WSS process withE
[
(Xj)2

]
=

1, j = 1, . . . ,∞.
Proof. From [10] or [1], spectral factorization, i.e., Gram-
Schmidt orthogonalization, will yield a causal filter which
satisfies the statement of the theorem.¤
Recall (7). The input sequence is the white WSS process,
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{Xj}∞j=1. By lemma III.2, we can perform 2D Kalman fil-
tering on the colored WSS process{Vj}∞j=1 by replacing

{{hij
}n

i=1}M
j=0 with {{h̃ij

}n
i=1}M+H

j=0 where

h̃ij =
min{M,H}∑

k=0

gik
hij−k

, j = 0, . . . , (M + H)

and replaceM with (M + H). In the case whereH = ∞, a
truncation strategy would be required to find the most sen-
sibly finite amount of memory,H̃, to assign in the state
vector of the state-space estimation model so that the er-

ror covariance gap between the two estimates, i.e.,ˆ̄X and
{ŪM+H̃+1

nj
}∞

j=M+H̃+1
(the sequence of the(M + H̃ + 1)-th

component of the state vector estimate) is reasonably small.
This problem is not elaborated in this paper and is a subject
for further study.
C. Capacity of Distributed Vs. Centralized Processing

We now show that capacity of channel under distributed
processing,Cd, is the same as that of centralized processing,
Cc.

Theorem III.3: LetCc be the capacity of the channel under
centralized processing (in bits per channel input symbol when
logarithms are taken to the base 2). Then

Cc = (2π)−1

∫ π

0
log

[
max

(
Θ Πn

i=1|Hi(λ)|−2
Pn

k=1 Πi∈(1,2,...,n)\i|Hi(λ)|−2 , 1
)]

dλ

whereHi(λ) is the channel transfer function given by

Hi(λ) =
Mi∑

j=0

Hij exp−ljλ , l =
√−1

(periodic inλ with period2π) and where the parameterθ is
the solution of

∫ π

0(Hi(λ) 6=0 ∀i)

max
(
Θ− Πn

i=1|Hi(λ)|−2
Pn

k=1 Πi∈(1,2,...,n)\i|Hi(λ)|−2 , 0
)

dλ

= πE
σ2

Moreover, the capacity-achievingqN , the inputs{Xj}∞j=∞,
are correlated Gaussian random variables with mean zero and
covariancesrn,−∞ ≤ n ≤ ∞, given by

rn = E [Xk+nXk] = (π)−1

∫ π

0

SX(λ) cos(nλ)dλ

where the input power spectral density satisfies

SX(λ) =
{

σ2(θ −K(λ)−2), θK(λ)2 > 1 |λ| ≤ π,
0, otherwise

with K(λ) =
Πn

i=1 |Hi(λ)|−2

∑n
k=1 Πi∈(1,2,...,n)\i |Hi(λ)|−2

In particular, capacity is achieved when all inputsXj ,−∞ ≤
j ≤ ∞, have the same average energyE[X2

j ] = r0 = E.
Proof. The proof is an extension to the proof for the capac-
ity of the single input and single output (SISO) discrete-time
Gaussian channel with intersymbol interference [6]. Con-
strained by the number of pages, we exclude the rest of the
proof. ¤

Lemma III.4:

sup
X̄:E[Xi

2]≤E ,∀ i

I(X̄; Ȳ ) = sup
X̄:E[Xi

2]≤E ,∀ i

I(X̄; ˆ̄X)

Proof. Constrained by the number of pages, we exclude the
proof. ¤

Theorem III.5: The capacity of channel with distributed
processing,Cd, is equal to the capacity of channel with cen-
tralized processing,Cc.
Proof. Recall theorem III.1, theorem III.3 and lemma III.4.
The fact that LLS estimation in the time domain maps to LLS
estimation in the DFT transform domain allows the coding
theorems in theorem III.3 and theorem II.5 to apply, hence
theorem III.5 follows immediately.¤

IV. CONCLUSION

Our results points to the efficient implementation of dis-
tributed processing in channel coding, via two dimensional
(2D) Kalman filter, when we assume that the channel is ad-
ditive white Gaussian noise, single input multi output, and
has memory (intersymbol interference). We also assume
the transmitter and receiver have complete knowledge of the
channel. By efficient we mean that the capacity of the chan-
nel with distributed processing is the same as that of the chan-
nel with centralized processing, and moreover the process-
ing, that is, either maximum likelihood (ML) or Bayes least
square (BLS) or linear least square (LLS) estimation is done
successively in time-space and in a distributed manner.

When the capacity achieving input process (a wide sense
stationary stochastic process) has infinite memory, a trunca-
tion strategy would be required. The strategy is geared to-
wards finding the most sensibly finite amount of memory to
assign in the state vector of the state-space estimation model
for the 2D Kalman filtering such that the error covariance gap
between the centralized LLSE (can be ML or BLS) estimate
of the state vector and the successive estimate of state vector
by means of 2D Kalman filtering is reasonably small. This
problem is not elaborated in this paper and is a subject for
further study.

Still geared towards the question of whether distributed
processing yields achievable capacity equal to that of cen-
tralized processing, an interesting channel model to study is a
channel that is not perfectly known at the transmitter, namely,
the receiver estimates the channel with some error and makes
the estimate known to the transmitter.
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