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An information theoretic view of network
management

Tracey Ho, Muriel Médard and Ralf Koetter

Abstract— We present an information theoretic frame- traditional approach of transmitting information by rout-
work for network management for non-ergodic link fail- ing or replication is not always sufficient to achieve max-
ures. Building onrecentwork in the field of network coding,  jmum capacity for multicast, and that it may be necessary
we describe the input-output relations of network nodes as for to code together signals from different incoming links.

codes and quantify network management by the logarithm | . . .
of the number of different codes needed for different fail- Medard [3], [4] introduced a powerful algebraic frame-

ure scenarios. We give bounds on network rn(,:lmjgememwork for analyzing network coding. Itis not yet clear how
requirements for various network connection problems in  Widely coding is needed to achieve capacity, but it is use-
terms of basic parameters such as the number of source ful for robust recovery. In particular, [4] showed that with
processes and the number of links in a minimum source- coding, a multicast network has a lingaceiver-based (a
receiver cut. This is the first paper to our knowledge that term defined shortly) solution for all recoverable failures,
looks at network managementor general connections. i.e, a solution in which only the receiver nodes need to

be informed of the failure pattern, while the other interior

I. INTRODUCTION nodes need not change their behavior.

The problem of failing links in a network is well known.. This leads to a very ggneral concept of network behav-
ior as a code, and provides a fundamental way to quan-

Various schemes to recover from link failures have been

devised, among them live end-to-end path protectiotrlwf?/ essential management information as that needed to

loopback, and generalized loopback, which are usedsl\r’1VItCh among different codes (behaviors) for different

different situations and have different advantages. thg{lure scenarios.
they have in common is a need for detecting failures, and £
directing network nodes to respond appropriately.

While failure detection is itself an important issue, it
is the latter component of management overhead, that
directing recovery behavior, that we seek here to under
stand and quantify in a fundamental way. Reducing ma
agement overhead by minimizing the number of network

states and affected nodes is desirable, other things befitg 1. An example of a receiver-based recovery scheme. Each dia-
equal. gram gives a code that is valid for failure of any of the links represented

This work is an attempt to start developing a theory (t))iy dashed lines.

network management for non-ergodic failures. Our aim
is to examine network management in a way that is ab- g
stracted from specific implementations, while fully rec-
ognizing that implementation issues are interesting, nu
merous and difficult. The framework which we consider
is also independent of the specifics of circuit switched or
packet switched networks. 3
Our approach has its roots in recent work on network

coding [1], [2], [3], [4]. Ahlswede et al [2] showed that theFig. 2. An example of a network-wide code. Each diagram gives a
code which is valid for failure of any of the links represented by dashed
lines.
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ment requirement is taken as the logarithm of the numbBbéfe call an incident incoming link of a receiver node a
of codes that the network switches among. terminal link, and other linksnterior links. Edges/; and

As an illustration of some key concepts, consider thig areincident if head{;) = tail(/2) or headly) = tail(/;).
simple example network in Figure 1, in which the sourdédgel carries the random proce¥g/). Output processes
nodea simultaneously sends processésand X, to two at a receiver nodg are denoted (3, 1).
receiver nodeg) andf,. These connections can be re- We choose the time unit such that the capacity of each
covered under failure of any one link in the network.  link is one bit per unit time, and the random processes

A receiver-based scheme is shown in Figure 1. Reca¥{«, ) have a constant entropy rate of one bit per unit
ery schemes which involve any combination of receivéime. Edges with larger capacities are modelled as parallel
or interior nodes are callenetwork-wide schemes. One edges, and sources of larger entropy rate are modelled as
possible set of codes for a network-wide recovery schemmiltiple sources at the same node.
is given in Figure 2. Note that routing and replication The processeX («,1), Y (I), Z(f,i) generate binary
are sufficient for network-wide recovery, while coding isequences. We assume that information is transmitted as
needed for receiver-based recovery. Hamear codingis vectors of bits which are of equal lengihrepresented as
used, i.e. outputs from a node are linear combinations @ements in the finite field,. . The length of the vectors
the inputs to that node. is equal in all transmissions and all links are assumed to

It so happens that here the minimum centralized malpe synchronized with respect to the symbol timing.
agement requirement is log(3) in both cases, but we shalWe first consider linear coding, which has been shown
see that the number of codes for receiver-based and rptLi and Yeung [1] to be sufficient for multicast. In a lin-
work wide recovery can differ in some cases. ear code, the sign&f () on an outgoing linkj of a node

This is the first work to our knowledge to consider = tail(j) is a linear combination of process&qv, n)
general connections. This paper builds on work first bgenerated at node, and signalg”(¢) on incident incom-
gun in [5] and [6]. Reference [5] considered the multing links: (ref Figure 3):
transmitter single-receiver case, and [6] considered the .
mylti-transr_nitter multicast case, an(_JI presented results for(;) = Z A, )X (v,3) + Z F(i,§)Y (i)
failures of links adjacent to the receiver nodes. i1

Our main results provide, for network management in-
formation bits necessary to achieve link failure recovefyn OUtput processZ(f, 1) at receiver nodes is a linear
over general networks, a lower bound for arbitrary coff@mbination of signals on its terminal links:
nections and an upper bound for multi-transmitter multi- . . .
cast connections. P 2(8,1) = , Z B30, )Y (5)

We present our model in Section II, state our main re- i :headj)=4
sults in Section Ill and give the mathematical develofexpressing these equations in matrix form, we have:
ment, proofs and ancillary results in the remaining sec-

i : headi) = v

Y (1)

tions. : rOALL) ... AL p)
: = [ X(a1,1)- X(an,rn) | :
: L A(r,1) ... A(r,p)
Il. MODEL Y () '
As in [3], we represent a network by a directed graph LD P Y
G with vertices representing nodes and directed edges n
representing links. In this paper we consider delay- : ; ;
F(p,1) ... F(p,p) 4L Y

free acyclic networks. Discrete independent random pro-
cessesX (a, 1),...,X(«a,r,) are observable at one or Y 171 By .- B
more source nodes, and processes originating at differ- 2ty 2y 1= | : :
ent source nodes are independent. There are one or more o : ; :
receiver nodes, comprising a €8t The general network Y () BGu1) o BGw)
connection problem is to transmit a given subdgtof Matrices A, F and B have coefficients iff,., and their
the source processes to each receiver ndde D. The structure is constrained by the network. A triple, F, B)
multicast connection problem is to transmit all the sourcspecifies the behavior of the network, and represehts a
processes to each of the receiver nodes. ear network code.

Edge! is anincident outgoing link of nodewv if v = We assume a constant zero signal is observed on failed
tail(7), and anincident incoming link of v if v = headl). links, but discuss in Section IV-A the effect on network
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Y1) Y2 Theorem 2—General lower bound for linear recovery:
For the general case, tight lower bounds on the number of
linear codes for the no-failure scenario and all single link
failures are:
Y(3) = 4(1,3)X(v,1) + F(1,3)Y (1) receiver-baseq m
+F(2,3)Y(2) m-r
m+1 H m+1 H
+1 if | integer
Fig. 3. lllustration of linear coding at a node. network.wide m—r+l andg;rgl g
_m”jjf}rl_ otherwise

management of not being able to make this assumptiéa.

For the linear coding matrices described above, failure of ~ Theorem 3—Upper bounds for linear recovery:

link h corresponds to setting to zero th& column of a) For thesingle-receivercase, tight upper bounds on

matricesA, B andF, and theh!" row of F'. the number of linear codes needed for the no-failure
A recovery code 4, F', B) is said tocover (failure of) case anall single link failures are:

link k if all receiver nodes are able to reconstruct the same

output processes in the same order as before the failure.

2 forr=1
I1l. M AIN RESULTS network-wide T forr=2,3,m-1
r—1 ford<r<m-2

We call a linkh integral if it satisfies the property that
there exists some subgraph of the network containhing
on which the set of source-receiver connections is feasible

if and only if h has not failed.
Theorem 1—Need for network management: Consider

any network connection problem with at least one integral
link whose failure is recoverable. Then there is no single
linear code i, F, B) that can cover the no-failure ()

scenario and all recoverable failures for this problem.

This result shows that recovery using linear codes from

receiver-based {

r+1
r

forr=1orm-1
for2<r<m-2

b)

For themulticast case with two receivers an up-

per bound on the number of linear codes for the no-

c)

failure scenario andll single link failures is 2 +1.
For themulticast case withd > 3 receivers an

upper bound on the number of linear codes for the

(r+ 1)

no-failure scenario andll single link failures is

For thegeneral casean upper bound on the number

of linear codes for the no-failure scenario and all

all recoverable failures always requires network manage-

ment.

The following theorems give bounds on the number of

B:tg<r

codes needed in different situations, in terms of the fol-

lowing parameters:

« r, the number of source processes transmitted in tﬁeT

network;

« m, the number of links in a minimum cut betwee

the source nodes and receiver nodes;

) rmi i i :
« d = |D|, the number of receiver nodes; and teminal link fa"}’Jv‘iirare upper
« tg, the number of terminal links of a receivér bound bound

e tmin = mingtg, the minimum number of terminal

links among all receivers.

single terminal link failures is given by

d.otet Y

r—1

B:tg>r+1

where the sum is taken over receiver nodes

n

heorem 4—Nonlinear receiver-based recovery:
For the multicast case, tight bounds on the number of

nonlinear receiver-based codes for the no-failure scenario

L

forl <r =tmin —
forr=1orr < tpnpn — 2

1

r

These bounds translate directly into bounds on the cén-

tralized network management requirement, by taking the
logarithm of the number of codes. By tight bounds w
mean that for any values of the parameters in terms

This result shows that if nonlinear processing is al-
@wed, in some cases a single code suffices, i.e. network

rganagement is not required for recovery.

which the bounds are given, there are examples in which

these bounds are met with equality.

A solution with staticA and F' matrices always exists for any re-

IV. M ATHEMATICAL MODEL

A linear network code is specified by a triple of ma-

coverable set of failures in a multicast scenario [3], but the receiviices A, F' and B, defined in Section II. The product
A(I — F)"'BT = AGBT defines a transfer matrix from

code B must change.
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the source processes to the output processéds [3]. A may change.

can be viewed as a transfer matrix from the source pro-

cesses to signals on source nodes’ outgoing links,/anda  coges for multiple failure scenarios

as a transfer matrix from signals on terminal links to the

output processed’ specifies how signals are transmitted

between incident links, and = I + F + F? + ... sums L

the gains along all paths between each pair of links, af

equals(I — F)~!, since matrixF is nilpotent.
We use the following notation in this paper:

¢; is columnj of AG.

We first characterize codes which can be used for mul-
ple single link failures, developing concepts and tools
aed in later sections.

A path is a sequence of distinct nodes that are connected
by links. If there is a directed path from a link or node to
another, the former is said to bhpstream of the latter, and
) i the latterdownstream of the former.
bjiscolumnjof B. _ Lemma 1: Let 77" C T be the set of terminal links of
T is the set of terminal links of a receiver each receives that are downstream of link.

G is the submatrix ofr consisting of columns that y ¢ code (4, 7, B) covers the no-failure scenario and

correspond to links in a s&t. failure of link h, thene,, 3>, G(h, ))BF =0 V § €
By is the submatrix ofB consisting of columns thatD ’ ~h Z]ETBh (h5)b; p

corrgspond o Imk; na Sﬁ 2. If code(A, G, B) covers failures of link$ andk, then
G is the submatrix consisting of columis of G :
<) V B € D, either

such that; is a terminal link ofg.

Bg is the submatrix of5 consisting of columnsg;  (g) ch Y jern G(h,j)bf =0
¢ p o

and ¢, Zj%k G(k,j)bj =0

such that; is a terminal link ofg.

G, GI- andg? are the altered values ¢f, Gx and

c;, respectively, resulting from failure of link. or

G, G} andg}* are the altered values 6f, Gx and (b)

a8 respectively, under the combined failure of links and

in setH.

An example illustrating the structure of the transfer matri-

ces is given in Figure 4. Proof outline: The results follow from writing

In the general case, each receiyerequires a subset AG%-BT in the formy_; - c"bT and noting thatAc =

X} of the set of source processes. A cdde G, B) is ¢; — g;-‘ =G(h,j)cy,- [ |

validif AGBj = [e;,]...|e;,], whereiy,... i arethe  These expressions simplify considerably for terminal

elements oft; in some specified ord&rande; is the unit  links as follows:

column vector whose only nonzero entry is in teposi- Corollary 1: 1. If code (4,G, B) covers the no-

tion. In the single-receiver and multicast cases, we chodgéure scenario and failure of terminal lirik thenc,, b} =

the same ordering for input and output processes, so tis

condition becomesAGBg I V B. Aninterior code 2. If (A, G, B) covers failures of two terminal links and

(A, G) is calledvalid for the network connection problemk, then either

if there exists somé for which (A4, G, B) is a valid code

for the problem. @)
or
(b)

it Sjers G )bl = ey Gk, b] # 0

Cp =Yl 70
wherey, ,, € Fpu is a constant for giveh, k

th_)%j =0 and kag =0

The overall transfer matrix after failure of link is

AIMGh(BIMT, whereI" = I — 6, is the identity ma- h andk are terminal links of the same receivér

trix with a zero in the(h, h)*" position, F* = I"FI",
andGh =" + Fh 4 (Fhy2 ... =T" (I - FI") ™' =

kbl =bE #0 and ¢, = yhpc, £ O
wherey;, ;, € Fy is a constant for giveh, &
These results lead to the notion of active and non-active

-1
(I —1"F)"" I". Note thatAI"G"(BI")" = AG"B" recovery codes. A recovery code whichastive in a
since I"I" = I". If failure of link h is recoverable, fajled link / is one in whichAG" BT is affected by the
there exists someA’, G', B) such that for all3 € D, value on linkh, i.e. ¢, 3.7 G(h,j)bT # 0 for some
AIG'hB’T_ h X = {4 . ! Zh ]ETB ) Y5
= leii| - les, ] whereds = {is, ... JiR}: receiverB. Otherwise, the code ison-active in /. Active

In receiver-based recovery, onfy changes, while in ¢qqes cannot be used if signals on failed links are unde-
network-wide recovery, any combination df £ and B termined.

2each receiver is required to correctly identify the processes and out-IN @ code which is non-active in a failed link, the value
put them in a consistent order on that link is set to zero (by upstream links ceasing to
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tg
{_ O -0 BEE Ao ... 0]
r : : . .
a 0 0 : :
0 .- 0 0 e 0
7:@2{ . : I:l )
ran{_O 0 | ,
BE t
B
J
B __0 0_
A G BT

Fig. 4. Anexample illustrating the structure of transfer matrices.

transmit on the link), cancelled out, or disregarded by the We define transfer matrices for the ggétof links up-
receivers. Part 1 of Lemma 1 states that a code whistieam of and including links in\l. Let (Q,J) be a
covers the no-failure scenario as well as one or more spartial interior code defining the behavior of links jh
gle link failures must be non-active in those links. Pawhere

2 of Lemma 1 states that a code which covers failures of1) , x |7| matrix @ specifies how the source pro-
two or more single links is either non-active in all of them cessesX;, i = 1,...,r are represented on the

(case a) or active in all of them (case b). In the latter case,  source nodes’ incident outgoing lifksThe signal
those links carry signals that are multiples of each other.  on source link; is Y (j) = Y%, A(i,§)X;, where

We term a codective if it is active in those links whose X; are processes generated atjaiand transmitted
failures it covers, andon-active otherwise. onj.
2) |J| x |J| matrix D specifies how signals are trans-
V. NEED FOR NETWORK MANAGEMENT mitted between incident links 7. D(i,j) is
Proof of Theorem 1:  Consider an integral link nonzero only if headf = tail(j). If head{) = tail(y)
whose failure is recoverable, and a subgrgplon which forlinksi = 1,...,n and linkj, the signal on link

the set of source-receiver connections is feasible if and  7iSY(j) = 32 D(4, 7)Y (i).

only if h has not failed. ' does not include all links, 3) |J|x |J| matrix.J = I + H + H” + ... sums the
otherwise failure of, would not be recoverable. Thenthe  gains along all paths between each pair of links, and
set of links not ing’, together withk, forms a se®{ of two equals( — H)~' since matrixH is nilpotent.

or more links whose individual failures are recoverabl/e define the following:

but whose combined failures are not. By Lemma 1, acode, .J,, is the submatrix off consisting of columns that
which covers the no-failure scenario and failure of a link  correspond to links ioM.

k is non-active ink. However, a code which is non-active . A ; is the submatrix ofd consisting of columns that

in all the links in# is not valid. | correspond to links iry/.
e Gyy7isthe|J| x |J|submatrix ofG consisting of
VI. BOUNDS ON LINEAR NETWORK MANAGEMENT rows and columns corresponding to links in get
REQUIREMENT « II' is arelated network connection problem in which
A. Single receiver analysis all nodes upstream oMM, and the links between

them, are the same as the original problem, but each
link h in M is replaced by a link’ such that tailf’)
= tail(h), and head{’) = ', a new receiver node that

Let M be a set of links on a minimum capacity cut
between the sources and the recéiyaere| M| = m.
3a partition of the netwdr nodes into a set coaining the sources,

and another set containing the receiver, such that the minimum numbérll of which are in.7, sinceM is a cut between the source nodes
of links cross from one set to the other and the receiver



IEEE INFOCOM 2003 6

is the head of all linkg'. of ther + 1 terminal links by a separate code, s&- 1
Note that(), D and.J are defined analogously t, F and codes suffice. Fat < r <t —2, consider any valid static
G respectively, except that they are limited to specifyingode @,G). Letwv,,...,v, ber columns of AG7 that
the behavior of links in7. A 7 is a value forQ that corre- form a basis, andv,,...,w,_, the remaining columns.
sponds tad, andG 7« 7 is a value forQ that corresponds We can find two pairgv;, w;) and(v;, w,/) such thatw,
to G. can replacey; in the basis, an@j, can replace_)j in the

The following two lemmas allow us to relate codes fapasis. Then the links correspondingutoandw,, can be
terminal link failures in problenil’ to codes for failures covered by one code, the links corresponding fow,
of links in M. and{w |k =1,...,t —r, k #i,j'} by another code,

Lemma 2: Let(Q, J) be a partial interior code in which and the links corresponding fe, |k = 1,...,r k #i,5}
no link in M feeds into another. If there exists arx m by a separate code each. |
matrix L such tha).J% LT = I for h € M; C M, then Lemma5: For any set of: > 2 codes with a common
there exists a cod@4, G, B) covering failure of links in (A, G) covering failures from a sef; C 7 of terminal
M such thatdA; = Q andG 7.7 = J. Conversely, links, there exists a set afor fewer non-active codes that
if (A, G, B) is a code in which no link inM feeds into cover failures in sef;.

another, and 4, G, B) covers links inM; C M, then Proof: A set of two or more terminal links covered
there exists some x m matrix L such that) = A, and by a single active code carry signal maps which are multi-
J = Ggyg satisfyQJly L" =Iforh € M. ples of each other. One of the links can be arbitrarily des-

Proof outline: There exists a set of link-disjoint pathdgnated as the primary for the set. If alicodes are active
{Py | k € M} whereP, connects linkk to the receiver. codes which cover two or more terminal link failures, then
(Q,J) can beextended to a valid interior codg A, G), only 2 < n non-active codes are required, one non-active
whereA; = Q andGs«s = J, by having each link in the primary links and the other non-active in the rest.
k € M transmit without coding along the path, to the Otherwise, there is some non-active code in the set, or
receiver. For the converse, we can construct a mdtrixsome active code covering only one terminal link failure

which satisfies the required property as follows: which can be replaced by a corresponding non-active code
T covering that link. The primary link of each active code
Zje’r G(l1,9) by can be covered together with some non-active code, and
LT = : its secondary links can be covered by a new non-active
S Gl )BT code. This.form_s a sgt of non-active codes covering the
jer S\m: 1) 2 same terminal link failures as the original set. |
wherels, ..., I, are the links ofM in the order they ap-  Corollary 2: For receiver-based recovery, the mini-
pear inJ . m mum number of codes for terminal link failures can be

Lemma 3: If failure of some link inJ is recoverable, achieved with non-active codes.
recovery can be achieved with a code in which no link in Lemma6: Bounds on the number of receiver-based
M feeds into another. codes needed to cover the no-failure scenario and failures
Proof outline: Having one link inM feed into an- of links in M, assuming they are recoverable, are given
other only adds a multiple of one column @f/, to an- in the following table. These bounds are the same in the
other, which does not increase its rank. By Lemma 2,ca&se Where only non-active codes are used.

valid partial interior codg@, J) in which no link in A4 | lower bound upper bound
feeds into another can be extended to a valid dotl&x). max ( . ,r)
| [%1 _{r+1 for r=1o0orm-—1
Lemma 4. For a single receiver with terminal links, Tl r for 2<r<m-2

an upper bound on the number of receiver-based codes re- proof outline: It follows from Lemma 3 that if fail-
quired for the no failure scenario and terminal link failureg e of some link in7 is recoverable, it is recoverable for
IS the related problerfil’. Any code(Q’,J') covering fail-

t r+1 forr=1ort—1 ure of terminal linksh € M; in problemII’ can be ex-
max ([ w ,7“) = { r for2<r<t—2 tended to obtain a codel, G, B) covering linksh € M;

t—r

Proof outline: Forr = 1, {%1 — 9. Just two codes in the original problgm (Lgmma 2). The upper bound from
r _ Lemma 4 thus applies, with: in place oft.

are needed as only one of the links needs to be active IN=or the lower bound. from Lemma 1. a single code in

_ t ] = : .
each code. For=r + 1, [ﬁ1 = t. We can cover each 5 valid receiver-based scheme can cover at most r
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of the links in M. By Corollary 2, restricting consider-then we have a modified codel’, G’) in which h feeds
ation to non-active codes does not increase the receiviato only one link in M. We then apply the same argu-
based lower bound for the related terminal link problemment once again, this time {ol’, G') andh, with & feed-

II’, which is also % , and so does not increase théng into strictly fewer links inM than before. If on the
receiver-based lower bound here. other hand case 2b applies, we proceed recursively, with

Lemma 7: A lower bound on the number of networkﬁ replaced by one of its downstream links. If we come to

wide codes needed to cover the no-failure scenario a@ink thatis incident to a link in\1, then case 1 or case 2a

failures of links inM, assuming they are recoverable, i¥/ill apply, allowing us to eliminate a nonzero number of
given by[ mt1 links in M from consideration. Thus, the procedure ter-

P fm‘t’iﬁ“l '.Itf I ¢ L 1 that a sinal minates with a valid static interior code in whiéhfeeds
roof outline: It follows from Lemma atasingle; . only one link inM. -

non-active code covers the no-failure scenario and at most
Proof of Theorem 3a:

m—r single link failures among links i, while a single _ ) o

active code covers at most — r + 1 links in M. Each hWe (t:)an f|r;]d aV?II_'dkStat'hC, '?]t?r'o(; ,Codﬂ’ G'g such that

code therefore covers at mast — r + 1 out of m + 1 t, € subgrap Sk oflinks which feed into each € M are
link disjoint with each other, and the patRs along which

scenarios of no failures and failures of links. 3 h - 150 link disioint (L )
Lemma 8: For a single receiver, there exists a Va”&transmlts to the receiver are also link disjoint (Lemmas

static interior code(4, G) such that no link feeds into @1d 8). A non-active coded, G, B) which covers failure

more than one link in\i of link k also covers failure of all links i8;, andP;.. Thus
Proof outline From Lemma 3. there exist valigthe bounds for receiver-based, or static, recovery here are

' the same as those in Lemma 6. An example of a valid

codes for failures of links in7 in problemII’. Thus, a ~allle == _
static interior coddQ’, J’) covering these failures exists?tat'c interior code achieving the lower bound with equal-

for TI' [3]. This can be extended (Lemma 2) to a statily S @n interior codg(4, &) whereAG  is of the form
interior code(A4, G) in which no link in M feeds into Shown in Figure 5.

another. For any such code(G), consider any link For the network-wide upper bound, since network-wide
which feeds into more than one link ibt. Let the set '€covery includes receiver-based recovery as a special
of these links beM" = {hy,..., hy}, and let the set of Case, the maximum number of terminal link codes needed

remaining links inM be M". in network-wide schemes is no greater than that needed in
receiver-based schemes.

Case 1: h feeds into some linkh; in M via some Forr = m — 1, by Lemma 8, there exists a valid static
path P without further coding with other Signa|s_interior code( A, G) such that no link feeds into more than
We can construct a partial codé), J) in which 4 feeds ©one link in M. Choose any link: € M and let the set
only intoh; € M", whose extension is a valid static codedf remaining links inAM be M". Consider anyi such
that AG(7, h) is nonzero, i.e. linky carries signat. Let

Case 2: Coding occurs betwekmand eachh; € M". We €; € Fou be the unit vector which has 1 in thi& position
show that there exists a proper subBett M such that as its Only nonzero entry. Since no link feeds into more
AG" has full rank and which does not include all links ithan one link inM, columnAG}, can be set te; without
M". Leth; be some link inM" N M/ L. affecting any of the other columns #iG 4. Since(A4, G)
Case 2a: There exists a g20f links forming a single path is a valid static interior code covering failure lof AG 7
from h to h;, excludingh andh;, such that none of the has full rank, se; is a linear combination of some subset
links 1 € R feeding into some other link;,i = 1,...,z, M} of columns inM". There exists some € M for
i # j has a signal map other tha®(h, h')c,. We can Which AG(i, k) is nonzero. ColummGy, can be set to
then construct a partial cod€)(, D) which is the same ¢; Without reducing the rank ofiG 4, since AGy, is a
as(A, Fry7) except that, feeds only into links inR, linear combination of the other columns.m”, together
whose extension is a valid static code. with €;- Thenh and k and their upstream links can be
Case 2b: Every path fromto /; contains some link that covered by a single active code. The remaining 1
feeds into one or more linkis; € _/\/lh besideglj’ and has links in M, and their upstream links, can be covered by
a signal map which is a linear combinationsgfand some their corresponding receiver-based codes. An example in
oth~er signal map. Consider any pdthfrom A to h; and whichr = m — 1, andr network-wide codes are needed
let i, be the furthest upstream of these links. is given in Figure 6.

We apply the entire argument described from paragraphFor4 < r < m—2, we start with a static interior code in
1 onwards with( 4, @) andh. If case 1 or case 2a applieswhich no link feeds into more than one link.int. We can
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HERRE 1 } 2]
X X
SRS } R
X X
x 0 ... 0 X
X ... 0 X
K . m—(m—r—l)[ _T—I—l

Fig. 5. An example of amG r, matrix in a receiver-based code that achieves the lower boufumﬂl codes, withm — (m —

r—1) [m”jr1 > 9.

Sez L e max(2,7) is also a tight upper bound for network-wide

recovery, which includes the former as a special case.
The example network of Figure 7 achieves the receiver-

based upper bound of, and the network-wide upper

bounds ofr codes forr = 3, andr — 1 codes for

Rev 4<r<m-2. [ |

Fig. 6. An example network in whichhk = m — 1, which Src3 srcr
achieves the linear receiver-based upper bound-pfl codes ' ‘
and the linear network-wide and nonlinear receiver-based upper
bounds of- codes.

modify the code to remove pairwise dependency among Rev

columns, except in cases where the dependent columfis7. An example network which achieves the receiver-based
are from a set o2” links in M that are downstream only upper bound of-, the network-wide upper bounds sfcodes

of the samex processes. forr = 3, andr — 1 codesfort <r <m — 2.

Case 1. There is a set of+ 2 columns inAG », which

contains a basis and such that no two columns of the set

are multiples of each other. Then the set contains thrg8€ General case lower bound

pairs of columns such that each pair can be covered by a

single code, and+2—3 = r—1 non-active codes suffice. . . "
c g o E :; , tr éol inAC L th with max(m, 2r) links each to an additional nod#. If
ase . rorany basis sebotolumns | M, (here are o consider3’ to be the sole receiver node in the aug-

no two columns among those remaining thatare not mUIernted network, the number of links in a minimum cut

ples of each other or multiples of columns in the basis SB’étween the SOLII’CGS and this receiveris and there

"/A\‘/lptilrt()f dedpendetnt columlns ]ICS fror‘:oa Setﬁlmkimk is a minimum cut ofm links among the original links.
atare downstream only of a setoprocesses. Links The number of codes needed to cover links on this mini-

In such a set can be covered by two _non-act|v_e codes. Il’r%m cutis at Ieasﬁ—’ﬁ 1 for receiver-based recovery and
p be the total number of processes involved in such sets. mer

Then links which are not part of such sets can be cover %1 for network wide recovery (Lemmas 6 and 7).

by r — p codes including- — p — 1 non-active codes. If Thus this represents a lower bound on the number of codes

r—p—12>2,thenr — p codes suffice. Iff —p—1=1, required to cover all links in the original problem.

thenr — p +1 =3 <r — 1 codes suffice. An example which achieves the receiver-based lower
For1 < r < 3, the receiver-based upper bound dbound with equality for any values af andr is given in

Proof of Theorem 2:  Consider joining all receivers
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Figure 8, where all terminal links can be covered by two Inthe multicast case, if a network satisfies the max-flow
non-active codes covering at the same time other interimin-cut condition for each receiver [2], then the connec-
links. This example also achieves the network-wide low&ons to all receivers are simultaneously feasible. Thus a

bound with equality whe m+11L1 is not an integer. For set of links intersecting 0 or 1 of these forests for each
m—r

two or more receivers, the network-wide lower bound §ECeiver can be covered together.

{ m41 1 is not achievable whe||; m+1 1 is an integer. Let d be the number of receivers. Each of the <

m—r+1 m—r+1 ; in i
This is because covering links on the minimum cut with * L forests for a receivef, may contain links that are

v [_mt1 q I N ¢ part of < r + 1 such sets for receive#,, which have to
exactly |mer+1-| coaes wou requwe{—mﬂ%ﬁ — 1ol pe covered separately. Each of the resultingr + 1)2

them to be active codes, each covering- r + 1 links,  gypsets may in turn contain links that are partof + 1
and one of them to be non-active (Lemma 7). An agych sets for receivess, and so on. Thus (r + 1)¢
stive code cannot cover terminal link failures of two Ofgges are required. m
more receivers (Corollary 1). Since at least two non- Proof of Theorem 3b:  Here we consider the two

active codes are needed to cover terminal links of apy.eiver case. The max flow min cut condition translates
receiver, ’ani;:l»l-| — 1 active codes and one non-activgnto the existence of a basis for alprocesses among the
code are insufficient to cover terminal link failures fosignals on the trunks of each receiver’s trees. If a receiver
more than one receiver. [fm’ﬁj}rJ is not an integer, let has more tham + 1 trees, then these can be grouped into

mal o < r forests which can each be covered together. If this
LWLJ (m —r+1) =m+1+y. Then the number of is the case for both receivers, then at nﬁs%:odes are
non-active active codesin Gm’ﬁﬁJ Y+ 1) > 2,and needed. If not, then at least one of the receivers,&ay
the example network of Figure 8 achieves the networRasr+1 trees, any of whose trunks carry signals forming

a basis.

u Let a link that lies on two tree§i andg} be called an
intersection, denoted (ﬁ, gg). Intersections between the
same two treesg{ and gg, that form a contiguous path
are considered part of the same intersection, and if they
do not form a contiguous path but are not separated along
bothGi andg} by intersections involving other paths, then
they are also considered part of the same intersection.

Suppose there exists an intersection of a Gealong
one of its branches: with a treeGj. The trunks of the-
trees other thag! carry signals forming a basis, and the
subtree oG} excluding branctB; can replace some tree
?f%’ in this basis. Then the intersectioB( G3) can be cov-
ered together with intersectionS{'(,gg), if any. A similar

argument holds for an intersection of a t@}f along one
of its branches with a tre@] . We thus restrict our atten-
tion to the set of intersectiong/{, GJ) that involve only

H m+1
wide lower bound o mfr+11 :

Fig. 8. An example network which achieves the general ca
lower bounds of Theorem 2 with equality, whetés the num-
ber of processes received by receiggr

C. Upper bounds for all link failures, multicast case

Proof of Theorem 3c: From the proof of Theorem links on the trunks of the.trees. o
2b, we know that for each receiver nodendividually, ~ SUPPOSe an intersectioi(, g;) is the furthest up-
there is a static solution for all single link failures in whici$tream intersection it/ of some treeg;. Then there ex-
m link-disjoint subgraphs feed inta different termi- IStS @ set of- paths satisfying the max flow min cut con-
nal links of 3. Each subgraph is a tree whose links a@tion between the sources and receivgr that excludes
directed towards the root noge with an unbranched por- the portion of the trunk ofji upstream of §;, G3) and
tion between the root and the branches, which we term i trunk of one other tree @i To see this, note that the
trunk. These trees can be grouped intp< r + 1 link-  trunks of ther trees other thagj carry signals forming a
disjoint forests such that failure of all links in any ondasis. 1fG; does not have any intersections upstream of
forest leaves a subgraph of the network that satisfies &, G3) with branches of other tre€k , then joining the
max-flow min-cut condition for receiver noge We will ~portion of G; downstream ofg}, Gj) with the portion of
denote trees rooted at receivgrby G2, i = 1,2,.. .. G upstream of@:, GJ) gives a tree which can replace one
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of the trees in the basis set. gg' does have one or moreas GJ. We start with an intersectiorﬁ(l g;ﬁ) that is
intersections upstream oﬁ{( gf) with branches of other the furthest upstream iff for G and g Let the
treesG} , let its furthest downstream of these intersectiongjjacent downstream intersection B be G, G;),

be with a branctBt of treegZ Consider the path formed gt the furthest upstream intersection dnfor G, ]2 be
by joining the portion OB’ upstream of this intersection

with the portion ofgG} between this intersection andi(
92) and the portion ofj; downstream of:, gﬂ) This

path can replace one of the trees in the original basis set.
Let gz be the tree that is replaced in the basis set, i.e. ﬁs

trunk is not part of the set of subgraphs satisfying the m&s ' downstream of &,

flow min cut condition between the sources and receivibie pathsG)' and g,

1. Then any intersectiong(, 92 ) upstream of @}, 92)
onG! can be covered together with intersectiogs, Gé’)
in 7, if any. Thus, we need only consider intersectio
alongg! that are downstream o, 92) inclusive.

LetZ be the set of all such intersections. Then the fube Gi*, G;™*"), until G+t =

thest upstream intersection Inof any treeg; is with the
furthest upstream intersectionnof some tre@%, andZ
contains intersections involving at most- 1 treesgg.

Suppose more thart + 1 codes are needed.

Case 1: Each of the treg has> 2 intersections irt.
Then we can define an alternative set of disjoint tl@gs
such that one of the trecgg has 0 or 1 intersection i,
whereZ’ is defined similarly tdZ, but with the alternative
treesG,’ in place of the original tree§J. This puts us in
case 2.

To show this, we consider the sé&f; of furthest up-
stream intersections of tre@ in Z, and the setKy of
second furthest upstream intersections of tr@gsn 7.
Each intersection inK; is with a different treeg, but
there may be more than one intersectionkin with the
same treg;. '

If there exists a subset of treg, i € S such that their
intersections inK, are with the same set of tre€g as
their intersections ik, then we can definélj,j eSto
match the portion of the patt@ between their first and
second intersections ih, as shown in Figure 9.

g gk g gis g gk g gis
I\ p \

ngIV ng%V "g2j3

\g%'l\\ /] \

Fig. 9. lllustration of algorithm for defining tree,’s;j.

The new set of treeS2 can be obtained with the fol-

(g 92”), and let the adjacent downstream intersection
for g"’ be G2, G/*). If G* = GJ*, then the subset
g?} has intersections iy and K5 involving the

me trees} andg; J2. We can redefine the portion of
"‘) to match the portion of

2 between their first and second in-
tersections. This collapses the four intersections into two.
If not, we continue in a similar fashion, letting the fur-

Ahest upstream intersection ihfor g;'n be G, g'g"_),

and Ietting the adjacent downstream intersectiongfor
g;”’ for somep < n + 1.
Then the subsdiG”, ... G} has intersections if(; and
K, involving the same treel@g;”, ...G"} and we can
define g;fp,...,g';'" to match the portion of the paths
GP,...,G" between their first and second intersections,
collapsing2(n — p + 1) intersections ta — p + 1 inter-
sections. We repeat the process, redefining @'g’nsntil
no further redefinition is possible. As long as each path
G! has at least two intersections, carrying out this process
always results in redefinition of pat@j to reduce the
number of intersections. When no further redefinition is
possible, there will be some paflj that has 0 or 1 inter-
section inZ.
Case 2: Some tre@; has 0 or 1 intersection ifi. Then
r+1 treesgg are involved in intersections ih, and each
of them has> 2 intersections irf. By similar reasoning
as in Case 1, we can define an alternative set of disjoint
treesg,’ such that one of the tre€8 has< 1 intersection
in Z", whereZ"” is defined similarly taZ, but with the
alternative treeg’ in place of the original tree§:.
|

We are not yet certain as to how tight the bounds are
for the multi-receiver all link failures case. For the two-
receiver case, an example in whigh+ 1)(r +2) /2 codes
are needed is given in Figure 10. In this figure, there are
r + 1 paths leading to each receiver, which intersect each
other in a stair-like pattern: the first path fg intersects
one path tQ3,, the second path t6, intersects two paths
to 32, the third intersects three and so on. Each of the
(r 4+ 1)(r 4+ 2)/2 intersections requires a separate code.

The general case differs from the multicast case in that
processes which are needed by one node but not another
can interfere with the latter node’s ability to decode the
processes it needs. As a result, a static interior solution

lowing algorithm. Eactﬂj is initialized to be the same does not always exist, and the network management re-
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Assuming that zero signals are observed on failed links,
no network management is needed for single link failures
if each codeword differs from any other in at least 2 posi-
tions which are both nonzero in at least one of the code-
words.

For a single receivep, recovery from single termi-
nal link failures with no network management requires
the code with generator matriGz to have minimum
weight 2 and satisfy the property that for any pair of code-
words which differ in only 2 places, one of them must
have nonzero values in both places. Now if there were a
code of weight 2, rank and lengtht = r + 1, it would be
quirement for terminal link failures may exceed the cos maximum distance separable code, which has the prop-
responding upper bound from the multicast case. Unlikaty that the codewords run through all possibituples
the multicast case where the number of codes for ternii-every set ofr coordinates. In a set of coordinates,
nal link failures is bounded by + 1, in the general case, where each entry is an elementip, consider théqg—1)r
the number of codes for terminal link failures can growodewords with exactly 1 nonzero entry in this set of co-
linearly in the number of receivers. ordinates. For a weight 2 code, thége- 1)r codewords
Proof of Theorem 3d: Let a setS of terminal links must all be nonzero in the remaining coordinate. They
of a receivers be called adecoding set for 3 in a given must also all differ from each other in the remaining co-
interior code if3 can decode the processes it needs frogfidinate if they are to satisfy the property. However, this
links in S, but not from any subset &. S is called a is not possible for > 1 as there are only — 1 possible
decoding set fo3 in a given failure scenario i is a values for that coordinate. There will be at leastiffer-
decoding set fog in some valid interior code under thisent codewords which give the same received codeword for
scenario. different failures. For = 1,t = 2, itis possible to satisfy
Consider a receive that has> r + 1 terminal links, this condition. For > r + 2, there exist codes of weight
and any interior code valid under failure of some oth& in some large enough finite field,. A simple example
receivers’ terminal links. Eithef has a decoding set ofis a network consisting afparallel links between a single
< r—1links, or it has at least two possible choices of desource of- processes and a receiver.
coding sets of links. So at most —1 of its terminal links The linear receiver-based upper bounds of Lemma 4 ap-
terminal links cannot be covered together with any valigly since linear coding is a special case. Eot r < t—2,
combination of terminal link failures of other receivel. the bound of- codes is tight, as shown in the example of
We have not yet determined whether this bound is tightigure 12. For- = 1, there are at least two terminal links
Figure 11 gives an example which comes close to thisat carry the single process, and loss of either link leaves
bound, requiringy_, ., i3 =2+ >, >, 7 — 1 codes. the receiver able to decode using an OR operation, so one
Here, each adjacent pair of receivérand: + 1 shares code suffices. Far = t — 1, suppose we need+ 1 codes
a common ancestral link; ;.; which can carry two pro- for each of ther + 1 terminal link failures. This means
cesses, each of which is needed by only one of the tat there are + 1 different combinations of source pro-
receivers. Failure of any link to the left gf, other than cesses that give the same received codeword, each under
jir, i’ < i requiresh; o to carry one of the processes onlya different failure scenario, since no two combinations of
and failure of any link to the right of;, 1, other thark;;, source processes give the same received codeword under
i’ > i+ 1, requiresh, » to carry the other process onlythe same scenario. The common codeword would then

Fig. 10. An example multicast problem in whidx + 1)(r +
2)/2 codes are needed for all link failures.

necessitating separate codes. have 0 in all- + 1 places, which implies that the weight of
the code is 1. However, this is not possible in a valid static
VII. N ONLINEAR RECEIVER-BASED RECOVERY code as loss of a single link could then render two code-

Proof of Theorem 2d: We can view the signals onWwords indistinguishable. Thus at mastlifferent code-
a receiver's terminal links as a codeword from a lineavords can be the same under different single link failures.
(tg,r) code with generator matridGg. The minimum An example in which- = ¢ — 1, andr nonlinear receiver-
number of nonlinear codes required is the maximum nuased codes are needed is given in Figure 6.
ber of codewords that can be the source of any one reNext we consider the multiple receiver case. We refer
ceived codeword under different scenarios. to the code generated by 3 as as code, and the code-
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X1,X2 Xt Xgyeon Xt X2,X3 X Xt Xy X5 X1,X3 X Xt Xy X X1,X2 % Xt Xy X, X2, X3

Rev 1 (§=3) Rev 2 (3<p<=r) Rcv 3 (3<¢<=r) Rev 4 (3<j<=r) Rcv 5 (r<t)
X1,X2 Xa, X3, Xa,....% X1, X3, Xa,..., % X1, X2, Xa,.... % Xo, X3, Xa,....%

Fig. 11. Anexample network in whicEtBQ tg—2+ th,,ﬂ r — 1 codes are needed.

words as? codewords. A5 codeword under a single link needs for network connection problems in which certain
failure of a receiver3 cannot coincide with a differen® links are known to fail simultaneously. For instance, if
codeword under no failures of terminal links 8f since we model a large link as several parallel links, the fail-
this would imply that the3 code has minimum distanceure of a single link may entail the failure of all associ-
1, which would not be the case in a valid static code. Sed links. Other directions for further work include ex-
a receiver which receives a no-failure codeword can itending our results to networks with multiple receivers,
nore management information regarding failures. Thw®n-multicast connections and cycles and delay, studying
the management information does not need to distinguite capacity required for transmission of network manage-
among terminal link failures of different receivers. Asnent signals, and considering network management for
such, a static code in a multiple receiver problem suetireless networks.

that each receiver requiress nonlinear codes requires

maxg ng codes in total. | REFERENCES
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of imperfect network management. It is thus useful to un-
derstand network management in a fundamental way. We
have proposed a framework for considering and quantify-
ing network management, seeking through our abstraction
not to replace implementation, but to guide it.

We have given a framework for quantifying network
management in terms of the number of different network
behaviors, or codes, required under different failure sce-
narios, and have provided bounds on network manage-
ment requirements for various network connection prob-
lems in terms of basic parameters including the number
of source processes, the number of links in a minimum
source-receiver cut, and the number of terminal links.

There is much scope for future work in this area. One
good area for further research is network management

VIII. CONCLUSIONS AND FURTHER WORK



