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An information theoretic view of network
management

Tracey Ho, Muriel Médard and Ralf Koetter

Abstract— We present an information theoretic frame-
work for network management for non-ergodic link fail-
ures. Building on recent work in the field of network coding,
we describe the input-output relations of network nodes as
codes and quantify network management by the logarithm
of the number of different codes needed for different fail-
ure scenarios. We give bounds on network management
requirements for various network connection problems in
terms of basic parameters such as the number of source
processes and the number of links in a minimum source-
receiver cut. This is the first paper to our knowledge that
looks at network managementfor general connections.

I. INTRODUCTION

The problem of failing links in a network is well known.
Various schemes to recover from link failures have been
devised, among them live end-to-end path protection,
loopback, and generalized loopback, which are used in
different situations and have different advantages. What
they have in common is a need for detecting failures, and
directing network nodes to respond appropriately.

While failure detection is itself an important issue, it
is the latter component of management overhead, that of
directing recovery behavior, that we seek here to under-
stand and quantify in a fundamental way. Reducing man-
agement overhead by minimizing the number of network
states and affected nodes is desirable, other things being
equal.

This work is an attempt to start developing a theory of
network management for non-ergodic failures. Our aim
is to examine network management in a way that is ab-
stracted from specific implementations, while fully rec-
ognizing that implementation issues are interesting, nu-
merous and difficult. The framework which we consider
is also independent of the specifics of circuit switched or
packet switched networks.

Our approach has its roots in recent work on network
coding [1], [2], [3], [4]. Ahlswede et al [2] showed that the
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traditional approach of transmitting information by rout-
ing or replication is not always sufficient to achieve max-
imum capacity for multicast, and that it may be necessary
for to code together signals from different incoming links.
Médard [3], [4] introduced a powerful algebraic frame-
work for analyzing network coding. It is not yet clear how
widely coding is needed to achieve capacity, but it is use-
ful for robust recovery. In particular, [4] showed that with
coding, a multicast network has a linearreceiver-based (a
term defined shortly) solution for all recoverable failures,
i.e, a solution in which only the receiver nodes need to
be informed of the failure pattern, while the other interior
nodes need not change their behavior.

This leads to a very general concept of network behav-
ior as a code, and provides a fundamental way to quan-
tify essential management information as that needed to
switch among different codes (behaviors) for different
failure scenarios.
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Fig. 1. An example of a receiver-based recovery scheme. Each dia-
gram gives a code that is valid for failure of any of the links represented
by dashed lines.
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Fig. 2. An example of a network-wide code. Each diagram gives a
code which is valid for failure of any of the links represented by dashed
lines.

In this paper we analyze acentralized formulation for
quantifying network management, in which the manage-
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ment requirement is taken as the logarithm of the number
of codes that the network switches among.

As an illustration of some key concepts, consider the
simple example network in Figure 1, in which the source
node� simultaneously sends processes�� and�� to two
receiver nodes�� and��. These connections can be re-
covered under failure of any one link in the network.

A receiver-based scheme is shown in Figure 1. Recov-
ery schemes which involve any combination of receiver
or interior nodes are callednetwork-wide schemes. One
possible set of codes for a network-wide recovery scheme
is given in Figure 2. Note that routing and replication
are sufficient for network-wide recovery, while coding is
needed for receiver-based recovery. Herelinear coding is
used, i.e. outputs from a node are linear combinations of
the inputs to that node.

It so happens that here the minimum centralized man-
agement requirement is log(3) in both cases, but we shall
see that the number of codes for receiver-based and net-
work wide recovery can differ in some cases.

This is the first work to our knowledge to consider
general connections. This paper builds on work first be-
gun in [5] and [6]. Reference [5] considered the multi-
transmitter single-receiver case, and [6] considered the
multi-transmitter multicast case, and presented results for
failures of links adjacent to the receiver nodes.

Our main results provide, for network management in-
formation bits necessary to achieve link failure recovery
over general networks, a lower bound for arbitrary con-
nections and an upper bound for multi-transmitter multi-
cast connections.

We present our model in Section II, state our main re-
sults in Section III and give the mathematical develop-
ment, proofs and ancillary results in the remaining sec-
tions.

II. M ODEL

As in [3], we represent a network by a directed graph
� with vertices representing nodes and directed edges
representing links. In this paper we consider delay-
free acyclic networks. Discrete independent random pro-
cesses���� ��� � � � ����� ��� are observable at one or
more source nodes�, and processes originating at differ-
ent source nodes are independent. There are one or more
receiver nodes, comprising a set�. The general network
connection problem is to transmit a given subset�� of
the source processes to each receiver node� � �. The
multicast connection problem is to transmit all the source
processes to each of the receiver nodes.

Edge � is an incident outgoing link of node� if � �

tail���, and anincident incoming link of � if � � head���.

We call an incident incoming link of a receiver node a
terminal link, and other linksinterior links. Edges�� and
�� are incident if head(��) = tail(��) or head(��) = tail(��).
Edge� carries the random process	 ���. Output processes
at a receiver node� are denoted
��� ��.

We choose the time unit such that the capacity of each
link is one bit per unit time, and the random processes
���� �� have a constant entropy rate of one bit per unit
time. Edges with larger capacities are modelled as parallel
edges, and sources of larger entropy rate are modelled as
multiple sources at the same node.

The processes���� ��, 	 ���, 
��� �� generate binary
sequences. We assume that information is transmitted as
vectors of bits which are of equal length�, represented as
elements in the finite field��� . The length of the vectors
is equal in all transmissions and all links are assumed to
be synchronized with respect to the symbol timing.

We first consider linear coding, which has been shown
by Li and Yeung [1] to be sufficient for multicast. In a lin-
ear code, the signal	 �� on an outgoing link of a node
� � tail�� is a linear combination of processes���� ��
generated at node�, and signals	 ��� on incident incom-
ing links � (ref Figure 3):

	 �� �

���
���

���� ����� �� �
�

� � head��� � �

� ��� �	 ���

An output process
��� �� at receiver node� is a linear
combination of signals on its terminal links:


��� �� �
�

� � head�����

����� �	 ��

Expressing these equations in matrix form, we have:
�
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Matrices��� and� have coefficients in��� , and their
structure is constrained by the network. A triple�������
specifies the behavior of the network, and represents alin-
ear network code.

We assume a constant zero signal is observed on failed
links, but discuss in Section IV-A the effect on network
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Fig. 3. Illustration of linear coding at a node.

management of not being able to make this assumption.
For the linear coding matrices described above, failure of
link � corresponds to setting to zero the��� column of
matrices�,� and� , and the��� row of � .

A recovery code (������ is said tocover (failure of)
link � if all receiver nodes are able to reconstruct the same
output processes in the same order as before the failure.

III. M AIN RESULTS

We call a link� integral if it satisfies the property that
there exists some subgraph of the network containing�,
on which the set of source-receiver connections is feasible
if and only if � has not failed.

Theorem 1—Need for network management: Consider
any network connection problem with at least one integral
link whose failure is recoverable. Then there is no single
linear code (�, � , �) that can cover the no-failure
scenario and all recoverable failures for this problem.1

�

This result shows that recovery using linear codes from
all recoverable failures always requires network manage-
ment.

The following theorems give bounds on the number of
codes needed in different situations, in terms of the fol-
lowing parameters:

� �, the number of source processes transmitted in the
network;

� �, the number of links in a minimum cut between
the source nodes and receiver nodes;

� � � ���, the number of receiver nodes;
� ��, the number of terminal links of a receiver�;
� ���	 � ���� ��, the minimum number of terminal

links among all receivers.

These bounds translate directly into bounds on the cen-
tralized network management requirement, by taking the
logarithm of the number of codes. By tight bounds we
mean that for any values of the parameters in terms of
which the bounds are given, there are examples in which
these bounds are met with equality.

�A solution with static� and� matrices always exists for any re-
coverable set of failures in a multicast scenario [3], but the receiver
code� must change.

Theorem 2—General lower bound for linear recovery:
For the general case, tight lower bounds on the number of
linear codes for the no-failure scenario and all single link
failures are:

receiver-based
�

�

���

�

network-wide

����
���

�
���

�����

�
� � if

�
���

�����

�
integer

and	 � ��
���

�����

�
otherwise

�

Theorem 3—Upper bounds for linear recovery:
a) For thesingle-receivercase, tight upper bounds on

the number of linear codes needed for the no-failure
case andall single link failures are:

receiver-based

�

 � � for 
 � � or �� �

 for � � 
 � �� �

network-wide

��
�

� for 
 � �

 for 
 � �� ���� �

 � � for � � 
 � �� �

b) For themulticast case with two receivers, an up-
per bound on the number of linear codes for the no-
failure scenario andall single link failures is ����.

c) For themulticast case with� � 	 receivers, an
upper bound on the number of linear codes for the
no-failure scenario andall single link failures is
�� � ���.

d) For thegeneral case, an upper bound on the number
of linear codes for the no-failure scenario and all
single terminal link failures is given by

�
� � ����

�� �
�

� � ����
�

� � �

where the sum is taken over receiver nodes�.
�

Theorem 4—Nonlinear receiver-based recovery:
For the multicast case, tight bounds on the number of
nonlinear receiver-based codes for the no-failure scenario
and terminal link failures are:

lower upper
bound bound�


 for � � 
 � ��� � �
� for 
 � � or 
 � ��� � �




�

This result shows that if nonlinear processing is al-
lowed, in some cases a single code suffices, i.e. network
management is not required for recovery.

IV. M ATHEMATICAL MODEL

A linear network code is specified by a triple of ma-
trices�, � and�, defined in Section II. The product
��� � � ����	 � ���	 defines a transfer matrix from
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the source processes� to the output processes
 [3]. �
can be viewed as a transfer matrix from the source pro-
cesses to signals on source nodes’ outgoing links, and�
as a transfer matrix from signals on terminal links to the
output processes.� specifies how signals are transmitted
between incident links, and� � � � � � � � � � � � sums
the gains along all paths between each pair of links, and
equals�� � � ���, since matrix� is nilpotent.

We use the following notation in this paper:

� �� is column of ��.
� �� is column of �.
� �� is the set of terminal links of a receiver�.
� �� is the submatrix of� consisting of columns that

correspond to links in a set	.
� �� is the submatrix of� consisting of columns that

correspond to links in a set	.
� �� is the submatrix consisting of columns�

�
of �

such that is a terminal link of�.
� �� is the submatrix of� consisting of columns��

such that is a terminal link of�.
� ��, ��

� and��� are the altered values of�, �� and
�� , respectively, resulting from failure of link�.

� ��,��� and��� are the altered values of�,�� and
�� , respectively, under the combined failure of links
in set
.

An example illustrating the structure of the transfer matri-
ces is given in Figure 4.

In the general case, each receiver� requires a subset
�� of the set of source processes. A code������� is
valid if ���	

� �
�
��� � � � � ����

�
, where��� � � � � �
 are the

elements of�� in some specified order2, and�� is the unit
column vector whose only nonzero entry is in the��� posi-
tion. In the single-receiver and multicast cases, we choose
the same ordering for input and output processes, so this
condition becomes���	

� � � � �. An interior code
����� is calledvalid for the network connection problem
if there exists some� for which ������� is a valid code
for the problem.

The overall transfer matrix after failure of link� is
����������	 , where�� � � � Æ�� is the identity ma-
trix with a zero in the��� ���� position,� � � �����,

and�� � �� � � � � �� ��� � � � � � ��
�
� � ���

���
��

� � ���
���

��. Note that����������	 � ����	

since ���� � ��. If failure of link � is recoverable,
there exists some���� ��� ��� such that for all� � �,
���

���
�	
� �

�
��� � � � � ����

�
where�� � ���� � � � � �
.

In receiver-based recovery, only� changes, while in
network-wide recovery, any combination of�, � and�

�each receiver is required to correctly identify the processes and out-
put them in a consistent order

may change.

A. Codes for multiple failure scenarios

We first characterize codes which can be used for mul-
tiple single link failures, developing concepts and tools
used in later sections.

A path is a sequence of distinct nodes that are connected
by links. If there is a directed path from a link or node to
another, the former is said to beupstream of the latter, and
the latterdownstream of the former.

Lemma 1: Let � �
� � � be the set of terminal links of

each receiver� that are downstream of link�.
1. If code ������� covers the no-failure scenario and
failure of link �, then��

�
��	 �

�
���� ��	� � � � � �

�.
2. If code������� covers failures of links� and�, then
� � � �, either

(a) ��
�

��	 �
�
���� ��	� � �

and ��
�

��	 �
�
���� ��	� � �

or
(b) ����

�
��	 �

�
���� ��	� �

�
��	 �

�
���� ��	� �� �

and �� � ������ �� �

where���� � ��� is a constant for given�� �

Proof outline: The results follow from writing
���

	 �
	
	 in the form

�
��	 �

�
� �

	
� and noting that
��� �

�� � �
�
� � ���� ���.

These expressions simplify considerably for terminal
links as follows:

Corollary 1: 1. If code ������� covers the no-
failure scenario and failure of terminal link�, then���

	
� �

�.
2. If ������� covers failures of two terminal links� and
�, then either

(a) ���
	
� � � and ���

	
� � �

or
(b) � and� are terminal links of the same receiver�,

�����
	
� � �	� �� � and �� � ������ �� �

where���� � ��� is a constant for given�� �
These results lead to the notion of active and non-active

recovery codes. A recovery code which isactive in a
failed link � is one in which����	 is affected by the
value on link�, i.e. ��

�
��	 �

�
���� ��	� �� � for some

receiver�. Otherwise, the code isnon-active in �. Active
codes cannot be used if signals on failed links are unde-
termined.

In a code which is non-active in a failed link, the value
on that link is set to zero (by upstream links ceasing to
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Fig. 4. An example illustrating the structure of transfer matrices.

transmit on the link), cancelled out, or disregarded by the
receivers. Part 1 of Lemma 1 states that a code which
covers the no-failure scenario as well as one or more sin-
gle link failures must be non-active in those links. Part
2 of Lemma 1 states that a code which covers failures of
two or more single links is either non-active in all of them
(case a) or active in all of them (case b). In the latter case,
those links carry signals that are multiples of each other.
We term a codeactive if it is active in those links whose
failures it covers, andnon-active otherwise.

V. NEED FOR NETWORK MANAGEMENT

Proof of Theorem 1: Consider an integral link�
whose failure is recoverable, and a subgraph�� on which
the set of source-receiver connections is feasible if and
only if � has not failed. �� does not include all links,
otherwise failure of� would not be recoverable. Then the
set of links not in��, together with�, forms a set
 of two
or more links whose individual failures are recoverable
but whose combined failures are not. By Lemma 1, a code
which covers the no-failure scenario and failure of a link
� is non-active in�. However, a code which is non-active
in all the links in
 is not valid.

VI. B OUNDS ON LINEAR NETWORK MANAGEMENT

REQUIREMENT

A. Single receiver analysis

Let � be a set of links on a minimum capacity cut
between the sources and the receiver3, where��� � �.
�a partition of the network nodes into a set containing the sources,

and another set containing the receiver, such that the minimum number
of links cross from one set to the other

We define transfer matrices for the set� of links up-
stream of and including links in�. Let ��� �� be a
partial interior code defining the behavior of links in� ,
where

1) � � �� � matrix � specifies how the source pro-
cesses��, � � �� � � � � � are represented on the
source nodes’ incident outgoing links4. The signal
on source link is 	 �� �

�
������� ���, where

�� are processes generated at tail() and transmitted
on .

2) �� � � �� � matrix specifies how signals are trans-
mitted between incident links in� .  ��� � is
nonzero only if head(�) = tail(). If head(�) = tail()
for links � � �� � � � � � and link , the signal on link
 is 	 �� �

��
��� ��� �	 ���.

3) �� � � �� � matrix� � � �! �!� � � � � sums the
gains along all paths between each pair of links, and
equals�� �!��� since matrix! is nilpotent.

We define the following:

� �
 is the submatrix of� consisting of columns that
correspond to links in�.

� �� is the submatrix of� consisting of columns that
correspond to links in� .

� ���� is the�� � � �� � submatrix of� consisting of
rows and columns corresponding to links in set� .

� �� is a related network connection problem in which
all nodes upstream of�, and the links between
them, are the same as the original problem, but each
link � in� is replaced by a link�� such that tail(��)
= tail(�), and head(��) = ��, a new receiver node that

	all of which are in� , since� is a cut between the source nodes
and the receiver
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is the head of all links��.
Note that�, and� are defined analogously to�, � and
� respectively, except that they are limited to specifying
the behavior of links in� . �� is a value for� that corre-
sponds to�, and���� is a value for� that corresponds
to�.

The following two lemmas allow us to relate codes for
terminal link failures in problem�� to codes for failures
of links in�.

Lemma 2: Let ��� �� be a partial interior code in which
no link in� feeds into another. If there exists an� ��
matrix" such that���
"

	 � � for � � �� ��, then
there exists a code������� covering failure of links in
�� such that�� � � and���� � � . Conversely,
if ������� is a code in which no link in� feeds into
another, and������� covers links in�� � �, then
there exists some� �� matrix" such that� � �� and
� � ���� satisfy���
"

	 � � for � ���.
Proof outline: There exists a set of link-disjoint paths

�#� � � � � where#� connects link� to the receiver.
��� �� can beextended to a valid interior code�����,
where�� � � and���� � � , by having each link
� � � transmit without coding along the path#� to the
receiver. For the converse, we can construct a matrix"
which satisfies the required property as follows:

"	 �

�
���
�

��	 ����� � �
	
�

...�
��	 ����� � �

	
�

�
���

where��� � � � � �� are the links of� in the order they ap-
pear in�
.

Lemma 3: If failure of some link in� is recoverable,
recovery can be achieved with a code in which no link in
� feeds into another.

Proof outline: Having one link in� feed into an-
other only adds a multiple of one column of��
 to an-
other, which does not increase its rank. By Lemma 2, a
valid partial interior code��� �� in which no link in�
feeds into another can be extended to a valid code�����.

Lemma 4: For a single receiver with� terminal links,
an upper bound on the number of receiver-based codes re-
quired for the no failure scenario and terminal link failures
is

��

��
�

�� �

�
� �

�
�

�
� � � for � � � or �� �

� for � � � � �� �

Proof outline: For� � �,
�

�
���

�
� �. Just two codes

are needed as only one of the links needs to be active in

each code. For� � � � �,
�

�
���

�
� �. We can cover each

of the � � � terminal links by a separate code, so� � �

codes suffice. For� � � � ���, consider any valid static
code (���). Let ��� � � � � �� be � columns of��	 that
form a basis, and$�� � � � � $��� the remaining columns.
We can find two pairs���� $��� and��� � $��� such that$��

can replace�� in the basis, and$�� can replace�� in the
basis. Then the links corresponding to�� and$�� can be
covered by one code, the links corresponding to��, $��

and�$� � � � �� � � � � � � �� � �� ��� � by another code,
and the links corresponding to����� � �� � � � � �� � �� �� 
by a separate code each.

Lemma 5: For any set of� � � codes with a common
����� covering failures from a set�� � � of terminal
links, there exists a set of� or fewer non-active codes that
cover failures in set��.

Proof: A set of two or more terminal links covered
by a single active code carry signal maps which are multi-
ples of each other. One of the links can be arbitrarily des-
ignated as the primary for the set. If all� codes are active
codes which cover two or more terminal link failures, then
only � � � non-active codes are required, one non-active
in the primary links and the other non-active in the rest.
Otherwise, there is some non-active code in the set, or
some active code covering only one terminal link failure
which can be replaced by a corresponding non-active code
covering that link. The primary link of each active code
can be covered together with some non-active code, and
its secondary links can be covered by a new non-active
code. This forms a set of� non-active codes covering the
same terminal link failures as the original set.

Corollary 2: For receiver-based recovery, the mini-
mum number of codes for terminal link failures can be
achieved with non-active codes.

Lemma 6: Bounds on the number of receiver-based
codes needed to cover the no-failure scenario and failures
of links in �, assuming they are recoverable, are given
in the following table. These bounds are the same in the
case where only non-active codes are used.

lower bound upper bound

�
�

���

� 	
�
��

�

���

�
� 

	

�

�

 � � for 
 � � or �� �

 for � � 
 � �� �

Proof outline: It follows from Lemma 3 that if fail-
ure of some link in� is recoverable, it is recoverable for
the related problem��. Any code���� � �� covering fail-
ure of terminal links� � �� in problem�� can be ex-
tended to obtain a code������� covering links� ���

in the original problem (Lemma 2). The upper bound from
Lemma 4 thus applies, with� in place of�.

For the lower bound, from Lemma 1, a single code in
a valid receiver-based scheme can cover at most� � �
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of the links in�. By Corollary 2, restricting consider-
ation to non-active codes does not increase the receiver-
based lower bound for the related terminal link problem

��, which is also
�

�
���

�
, and so does not increase the

receiver-based lower bound here.
Lemma 7: A lower bound on the number of network-

wide codes needed to cover the no-failure scenario and
failures of links in�, assuming they are recoverable, is

given by
�

�
�
���
�

�
.

Proof outline: It follows from Lemma 1 that a single
non-active code covers the no-failure scenario and at most
��� single link failures among links in�, while a single
active code covers at most� � � � � links in �. Each
code therefore covers at most� � � � � out of� � �

scenarios of no failures and failures of links in�.
Lemma 8: For a single receiver, there exists a valid

static interior code����� such that no link feeds into
more than one link in�.

Proof outline: From Lemma 3, there exist valid
codes for failures of links in� in problem��. Thus, a
static interior code���� � �� covering these failures exists
for �� [3]. This can be extended (Lemma 2) to a static
interior code����� in which no link in� feeds into
another. For any such code (���), consider any link�
which feeds into more than one link in�. Let the set
of these links be�� � ���� � � � � ��, and let the set of
remaining links in� be��.

Case 1: � feeds into some link�� in � via some
path # without further coding with other signals.
We can construct a partial code��� �� in which � feeds
only into�� ���, whose extension is a valid static code.

Case 2: Coding occurs between� and each�� ���. We
show that there exists a proper subset� � � such that
���

 has full rank and which does not include all links in
��. Let�� be some link in�� ��%�.
Case 2a: There exists a set& of links forming a single path
from � to �� , excluding� and�� , such that none of the
links�� � & feeding into some other link��, � � �� � � � � ',
� ��  has a signal map other than���� �����. We can
then construct a partial code (���  �) which is the same
as��� � ���� � except that� feeds only into links in&,
whose extension is a valid static code.
Case 2b: Every path from� to �� contains some link that
feeds into one or more links�� ��� besides��, and has
a signal map which is a linear combination of�� and some
other signal map. Consider any path&� from � to �� and
let �� be the furthest upstream of these links.

We apply the entire argument described from paragraph
1 onwards with����� and��. If case 1 or case 2a applies,

then we have a modified code���� ��� in which �� feeds
into only one link in�. We then apply the same argu-
ment once again, this time to���� ��� and�, with � feed-
ing into strictly fewer links in� than before. If on the
other hand case 2b applies, we proceed recursively, with
�� replaced by one of its downstream links. If we come to
a link that is incident to a link in�, then case 1 or case 2a
will apply, allowing us to eliminate a nonzero number of
links in � from consideration. Thus, the procedure ter-
minates with a valid static interior code in which� feeds
into only one link in�.

Proof of Theorem 3a:
We can find a valid static interior code����� such that

the subgraphs(� of links which feed into each� �� are
link disjoint with each other, and the paths#� along which
� transmits to the receiver are also link disjoint (Lemmas 2
and 8). A non-active code������� which covers failure
of link � also covers failure of all links in(� and#�. Thus
the bounds for receiver-based, or static, recovery here are
the same as those in Lemma 6. An example of a valid
static interior code achieving the lower bound with equal-
ity is an interior code����� where��
 is of the form
shown in Figure 5.

For the network-wide upper bound, since network-wide
recovery includes receiver-based recovery as a special
case, the maximum number of terminal link codes needed
in network-wide schemes is no greater than that needed in
receiver-based schemes.

For � � �� �, by Lemma 8, there exists a valid static
interior code����� such that no link feeds into more than
one link in�. Choose any link� � � and let the set
of remaining links in� be��. Consider any� such
that����� �� is nonzero, i.e. link� carries signal�. Let
�� � �

�
�� be the unit vector which has 1 in the��� position

as its only nonzero entry. Since no link feeds into more
than one link in�, column��� can be set to�� without
affecting any of the other columns in��
. Since�����
is a valid static interior code covering failure of�,��


�

has full rank, so�� is a linear combination of some subset
��

� of columns in��. There exists some� � ��
� for

which ����� �� is nonzero. Column��� can be set to
�� without reducing the rank of��
, since��� is a
linear combination of the other columns in��

� , together
with ��. Then� and � and their upstream links can be
covered by a single active code. The remaining� � �

links in �, and their upstream links, can be covered by
their corresponding receiver-based codes. An example in
which � � � � �, and� network-wide codes are needed
is given in Figure 6.

For� � � � ���, we start with a static interior code in
which no link feeds into more than one link in�. We can
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...

. . .
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���
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Fig. 5. An example of an��� matrix in a receiver-based code that achieves the lower bound of
�

�

���

�
codes, with�� ���


 � ��
�

�

���

�
� �.

Src 1
Src 2 Src r

Rcv

Fig. 6. An example network in which
 � � � �, which
achieves the linear receiver-based upper bound of
 � � codes
and the linear network-wide and nonlinear receiver-based upper
bounds of
 codes.

modify the code to remove pairwise dependency among
columns, except in cases where the dependent columns
are from a set of�� links in� that are downstream only
of the same' processes.
Case 1: There is a set of� � � columns in��
 which
contains a basis and such that no two columns of the set
are multiples of each other. Then the set contains three
pairs of columns such that each pair can be covered by a
single code, and����	 � ��� non-active codes suffice.
Case 2: For any basis set of� columns in��
, there are
no two columns among those remaining that are not multi-
ples of each other or multiples of columns in the basis set.
A pair of dependent columns is from a set of�� links in
� that are downstream only of a set of' processes. Links
in such a set can be covered by two non-active codes. Let
) be the total number of processes involved in such sets.
Then links which are not part of such sets can be covered
by � � ) codes including� � ) � � non-active codes. If
�� )� � � �, then�� ) codes suffice. If�� )� � � �,
then� � )� � � 	 � � � � codes suffice.

For � � � � 	, the receiver-based upper bound of

����� �� is also a tight upper bound for network-wide
recovery, which includes the former as a special case.

The example network of Figure 7 achieves the receiver-
based upper bound of�, and the network-wide upper
bounds of� codes for� � 	, and � � � codes for
� � � � �� �.

Src r

Rcv

Src 1

Src 2
Src 3

Fig. 7. An example network which achieves the receiver-based
upper bound of
, the network-wide upper bounds of
 codes
for 
 � �, and
 � � codes for� � 
 � �� �.

B. General case lower bound

Proof of Theorem 2: Consider joining all receivers
with ����� ��� links each to an additional node��. If
we consider�� to be the sole receiver node in the aug-
mented network, the number of links in a minimum cut
between the sources and this receiver is�, and there
is a minimum cut of� links among the original links.
The number of codes needed to cover links on this mini-
mum cut is at least

�
�

���

�
for receiver-based recovery and�

�
�
���
�

�
for network wide recovery (Lemmas 6 and 7).

Thus this represents a lower bound on the number of codes
required to cover all links in the original problem.

An example which achieves the receiver-based lower
bound with equality for any values of� and� is given in
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Figure 8, where all terminal links can be covered by two
non-active codes covering at the same time other interior
links. This example also achieves the network-wide lower

bound with equality when
�

�
�
���
�

�
is not an integer. For

two or more receivers, the network-wide lower bound of�
�
�

���
�

�
is not achievable when

�
�
�

���
�

�
is an integer.

This is because covering links on the minimum cut with

exactly
�

�
�
���
�

�
codes would require

�
�
�

���
�

�
� � of

them to be active codes, each covering� � � � � links,
and one of them to be non-active (Lemma 7). An ac-
stive code cannot cover terminal link failures of two or
more receivers (Corollary 1). Since at least two non-
active codes are needed to cover terminal links of any

receiver,
�

�
�
���
�

�
� � active codes and one non-active

code are insufficient to cover terminal link failures for
more than one receiver. If

�
�
�

���
�

�
is not an integer, let�

�
�
���
�

�
��� ���� � ���� *. Then the number of

non-active active codes���
��

�
�
���
�

�
� * � �

�
� �, and

the example network of Figure 8 achieves the network-

wide lower bound of
�

�
�
���
�

�
.

... m ...

...2r
1 ... ..

.2r
u
..
.

...2r2...

a

b1

b2

bu

Fig. 8. An example network which achieves the general case
lower bounds of Theorem 2 with equality, where
� is the num-
ber of processes received by receiver��.

C. Upper bounds for all link failures, multicast case

Proof of Theorem 3c: From the proof of Theorem
2b, we know that for each receiver node� individually,
there is a static solution for all single link failures in which
�� link-disjoint subgraphs feed into�� different termi-
nal links of �. Each subgraph is a tree whose links are
directed towards the root node�, with an unbranched por-
tion between the root and the branches, which we term its
trunk. These trees can be grouped into+� � � � � link-
disjoint forests such that failure of all links in any one
forest leaves a subgraph of the network that satisfies the
max-flow min-cut condition for receiver node�. We will
denote trees rooted at receiver�� by ���, � � �� �� � � �.

In the multicast case, if a network satisfies the max-flow
min-cut condition for each receiver [2], then the connec-
tions to all receivers are simultaneously feasible. Thus a
set of links intersecting 0 or 1 of these forests for each
receiver can be covered together.

Let � be the number of receivers. Each of the+�� �
� � � forests for a receiver�� may contain links that are
part of� � � � such sets for receiver��, which have to
be covered separately. Each of the resulting� �� � ���

subsets may in turn contain links that are part of� � � �

such sets for receiver��, and so on. Thus� �� � ���

codes are required.

Proof of Theorem 3b: Here we consider the two
receiver case. The max flow min cut condition translates
into the existence of a basis for all� processes among the
signals on the trunks of each receiver’s trees. If a receiver
has more than� � � trees, then these can be grouped into
� � forests which can each be covered together. If this
is the case for both receivers, then at most�� codes are
needed. If not, then at least one of the receivers, say��,
has��� trees, any� of whose trunks carry signals forming
a basis.

Let a link that lies on two trees��� and��� be called an
intersection, denoted (���, �

�
�). Intersections between the

same two trees,��� and���, that form a contiguous path
are considered part of the same intersection, and if they
do not form a contiguous path but are not separated along
both��� and��� by intersections involving other paths, then
they are also considered part of the same intersection.

Suppose there exists an intersection of a tree��� along
one of its branches��

� with a tree���. The trunks of the�
trees other than��� carry signals forming a basis, and the
subtree of��� excluding branch��

� can replace some tree
��

�

� in this basis. Then the intersection (��
�,�

�
�) can be cov-

ered together with intersections (��
�

� ,���), if any. A similar

argument holds for an intersection of a tree��
�

� along one
of its branches with a tree��

��

� . We thus restrict our atten-
tion to the set of intersections (���, �

�
�) that involve only

links on the trunks of the trees.

Suppose an intersection (���, �
�
�) is the furthest up-

stream intersection in� of some tree���. Then there ex-
ists a set of� paths satisfying the max flow min cut con-
dition between the sources and receiver��, that excludes
the portion of the trunk of��� upstream of (���, �

�
�) and

the trunk of one other tree of��. To see this, note that the
trunks of the� trees other than��� carry signals forming a
basis. If��� does not have any intersections upstream of
(���, �

�
�) with branches of other trees��

�

� , then joining the
portion of��� downstream of (���, �

�
�) with the portion of

��� upstream of (���, �
�
�) gives a tree which can replace one
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of the trees in the basis set. If��� does have one or more
intersections upstream of (���, �

�
�) with branches of other

trees��
�

� , let its furthest downstream of these intersections
be with a branch���� of tree����. Consider the path formed
by joining the portion of���� upstream of this intersection
with the portion of��� between this intersection and (���,
���), and the portion of��� downstream of (���, �

�
�). This

path can replace one of the trees in the original basis set.
Let��� be the tree that is replaced in the basis set, i.e. its

trunk is not part of the set of subgraphs satisfying the max
flow min cut condition between the sources and receiver
��. Then any intersection (���, �

��

� ) upstream of (���, �
�
�)

on��� can be covered together with intersections (�
�
�, �

��

� )
in � , if any. Thus, we need only consider intersections
along��� that are downstream of (���, �

�
�) inclusive.

Let � be the set of all such intersections. Then the fur-
thest upstream intersection in� of any tree��� is with the
furthest upstream intersection in� of some tree���, and�
contains intersections involving at most� � � trees���.

Suppose more than�� � � codes are needed.
Case 1: Each of the trees��� has� � intersections in�.

Then we can define an alternative set of disjoint trees�
��
�

such that one of the trees��� has 0 or 1 intersection in� �,
where� � is defined similarly to�, but with the alternative
trees�

��
� in place of the original trees���. This puts us in

case 2.
To show this, we consider the set,� of furthest up-

stream intersections of trees��� in �, and the set,� of
second furthest upstream intersections of trees��� in �.
Each intersection in,� is with a different tree���, but
there may be more than one intersection in,� with the
same tree���.

If there exists a subset of trees���, � � ( such that their
intersections in,� are with the same set of trees��� as

their intersections in,�, then we can define�
��
� ,  � ( to

match the portion of the paths��� between their first and
second intersections in�, as shown in Figure 9.

� � � �

� � � �

� � � �
���� ���� ��	� ����

��
		

� �

�

�

�
�
�
�
�
�

�
�
�
���

�
�

�

���

�
�

�

���

�
�
�
�
�
�
�
��

�
�
�
�
�
�
���

�
���

�
���

���

�
���

���� ���� ����

����

����
���� ���� ��	� ����

� � �

� � �

�
���

�
���

���

�
���

�
���
� �

���
� �

���
�

Fig. 9. Illustration of algorithm for defining trees�
��
� .

The new set of trees�
��
� can be obtained with the fol-

lowing algorithm. Each�
��
� is initialized to be the same

as ���. We start with an intersection (���� , �
���
� ) that is

the furthest upstream in� for ���� and �
���
� . Let the

adjacent downstream intersection for���� be (���� , �
���
� ),

let the furthest upstream intersection in� for �
���
� be

(���� , �
���
� ), and let the adjacent downstream intersection

for ���� be (���� , �
���
� ). If �

���
� = �

���
� , then the subset

����� ��
��
�  has intersections in,� and,� involving the

same trees�
���
� and�

���
� . We can redefine the portion of

�
���
� downstream of (���� , �

���
� ) to match the portion of

the paths���� and���� between their first and second in-
tersections. This collapses the four intersections into two.
If not, we continue in a similar fashion, letting the fur-
thest upstream intersection in� for �

���
� be (���� , �

���
� ),

and letting the adjacent downstream intersection for����
be (���� , �

�����

� ), until �
�����

� � �
���
� for some- . �� �.

Then the subset����� � � � ��
��
�  has intersections in,� and

,� involving the same trees��
���
� � � � � �

��
�  and we can

define�
���
� � � � � ��

���
� to match the portion of the paths

�
��
� � � � � ��

��
� between their first and second intersections,

collapsing��� � - � �� intersections to� � -� � inter-
sections. We repeat the process, redefining paths�

��
� until

no further redefinition is possible. As long as each path
��� has at least two intersections, carrying out this process

always results in redefinition of paths�
��
� to reduce the

number of intersections. When no further redefinition is
possible, there will be some path��� that has 0 or 1 inter-
section in�.
Case 2: Some tree��� has 0 or 1 intersection in�. Then
� � � trees��� are involved in intersections in�, and each
of them has� � intersections in�. By similar reasoning
as in Case 1, we can define an alternative set of disjoint
trees�

��
� such that one of the trees��� has� � intersection

in � ��, where� �� is defined similarly to�, but with the
alternative trees�

��
� in place of the original trees���.

We are not yet certain as to how tight the bounds are
for the multi-receiver all link failures case. For the two-
receiver case, an example in which����������%� codes
are needed is given in Figure 10. In this figure, there are
� � � paths leading to each receiver, which intersect each
other in a stair-like pattern: the first path to�� intersects
one path to��, the second path to�� intersects two paths
to ��, the third intersects three and so on. Each of the
�� � ���� � ��%� intersections requires a separate code.

The general case differs from the multicast case in that
processes which are needed by one node but not another
can interfere with the latter node’s ability to decode the
processes it needs. As a result, a static interior solution
does not always exist, and the network management re-
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Xr-1 XrX2X1

Rcv 1

Rcv 2

Fig. 10. An example multicast problem in which�
 � ���
 �
���� codes are needed for all link failures.

quirement for terminal link failures may exceed the cor-
responding upper bound from the multicast case. Unlike
the multicast case where the number of codes for termi-
nal link failures is bounded by� � �, in the general case,
the number of codes for terminal link failures can grow
linearly in the number of receivers.

Proof of Theorem 3d: Let a set� of terminal links
of a receiver� be called adecoding set for � in a given
interior code if� can decode the processes it needs from
links in �, but not from any subset of�. � is called a
decoding set for� in a given failure scenario if� is a
decoding set for� in some valid interior code under this
scenario.

Consider a receiver� that has� � � � terminal links,
and any interior code valid under failure of some other
receivers’ terminal links. Either� has a decoding set of
� �� � links, or it has at least two possible choices of de-
coding sets of� links. So at most��� of its terminal links
terminal links cannot be covered together with any valid
combination of terminal link failures of other receivers.

We have not yet determined whether this bound is tight.
Figure 11 gives an example which comes close to this
bound, requiring

�
����

�� � � �
�

����
�
� � � codes.

Here, each adjacent pair of receivers� and � � � shares
a common ancestral link����
� which can carry two pro-
cesses, each of which is needed by only one of the two
receivers. Failure of any link to the left of�, other than
�� , �� . � requires���� to carry one of the processes only,
and failure of any link to the right of��
�, other than��� ,
�� / � � �, requires���� to carry the other process only,
necessitating separate codes.

VII. N ONLINEAR RECEIVER-BASED RECOVERY

Proof of Theorem 2d: We can view the signals on
a receiver’s terminal links as a codeword from a linear
���� �� code with generator matrix���. The minimum
number of nonlinear codes required is the maximum num-
ber of codewords that can be the source of any one re-
ceived codeword under different scenarios.

Assuming that zero signals are observed on failed links,
no network management is needed for single link failures
if each codeword differs from any other in at least 2 posi-
tions which are both nonzero in at least one of the code-
words.

For a single receiver�, recovery from single termi-
nal link failures with no network management requires
the code with generator matrix��� to have minimum
weight 2 and satisfy the property that for any pair of code-
words which differ in only 2 places, one of them must
have nonzero values in both places. Now if there were a
code of weight 2, rank� and length� � ���, it would be
a maximum distance separable code, which has the prop-
erty that the codewords run through all possible�-tuples
in every set of� coordinates. In a set of� coordinates,
where each entry is an element in�� , consider the�0����
codewords with exactly 1 nonzero entry in this set of co-
ordinates. For a weight 2 code, these�0 � ��� codewords
must all be nonzero in the remaining coordinate. They
must also all differ from each other in the remaining co-
ordinate if they are to satisfy the property. However, this
is not possible for� / � as there are only0 � � possible
values for that coordinate. There will be at least� differ-
ent codewords which give the same received codeword for
different failures. For� � �� � � �, it is possible to satisfy
this condition. For� � � � �, there exist codes of weight
3 in some large enough finite field�� . A simple example
is a network consisting of� parallel links between a single
source of� processes and a receiver.

The linear receiver-based upper bounds of Lemma 4 ap-
ply since linear coding is a special case. For� � � � ���,
the bound of� codes is tight, as shown in the example of
Figure 12. For� � �, there are at least two terminal links
that carry the single process, and loss of either link leaves
the receiver able to decode using an OR operation, so one
code suffices. For� � ���, suppose we need��� codes
for each of the� � � terminal link failures. This means
that there are� � � different combinations of source pro-
cesses that give the same received codeword, each under
a different failure scenario, since no two combinations of
source processes give the same received codeword under
the same scenario. The common codeword would then
have 0 in all��� places, which implies that the weight of
the code is 1. However, this is not possible in a valid static
code as loss of a single link could then render two code-
words indistinguishable. Thus at most� different code-
words can be the same under different single link failures.
An example in which� � �� �, and� nonlinear receiver-
based codes are needed is given in Figure 6.

Next we consider the multiple receiver case. We refer
to the code generated by��� as a� code, and the code-
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Fig. 11. An example network in which
�

���	
�� � � �

�
���	�� �� � codes are needed.

words as� codewords. A� codeword under a single link
failure of a receiver� cannot coincide with a different�
codeword under no failures of terminal links of�, since
this would imply that the� code has minimum distance
1, which would not be the case in a valid static code. So
a receiver which receives a no-failure codeword can ig-
nore management information regarding failures. Thus
the management information does not need to distinguish
among terminal link failures of different receivers. As
such, a static code in a multiple receiver problem such
that each receiver requires�� nonlinear codes requires
��� �� codes in total.

Src 1
Src 2 Src n

Sink

Fig. 12. An example network in which� � 
 �  � �, which
achieves the nonlinear receiver-based upper bound of
 codes.

VIII. C ONCLUSIONS AND FURTHER WORK

As the complexity of networks increases, so do the net-
work management overhead and the catastrophic effects
of imperfect network management. It is thus useful to un-
derstand network management in a fundamental way. We
have proposed a framework for considering and quantify-
ing network management, seeking through our abstraction
not to replace implementation, but to guide it.

We have given a framework for quantifying network
management in terms of the number of different network
behaviors, or codes, required under different failure sce-
narios, and have provided bounds on network manage-
ment requirements for various network connection prob-
lems in terms of basic parameters including the number
of source processes, the number of links in a minimum
source-receiver cut, and the number of terminal links.

There is much scope for future work in this area. One
good area for further research is network management

needs for network connection problems in which certain
links are known to fail simultaneously. For instance, if
we model a large link as several parallel links, the fail-
ure of a single link may entail the failure of all associ-
ated links. Other directions for further work include ex-
tending our results to networks with multiple receivers,
non-multicast connections and cycles and delay, studying
the capacity required for transmission of network manage-
ment signals, and considering network management for
wireless networks.
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