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Abstract— I n this paper, we consider the task of design-
ing a physical network topology that meets a high level of
reliability using unreliable network elements. We are mo-
tivated by the use of networks, and in particular optical
networks, for high-reliability applicationswhich involve un-
usual and catastrophic stresses. Our network model is one
in which nodesareinvulnerableand linksare subject tofail-
ure, and we consider both the case of statistically indepen-
dent and statistically dependent link failures. Our reliabil-
ity metricsarethecommon all-terminal connectedness mea-
sure and and the less commonly considered two-terminal
connectedness measure. We compare in the low and high
stress regimes, via analytical approximations and simula-
tions, common commercial architectures designed for all-
terminal reliability when links are very reliable with alter-
native architectures which consider both of our reliability
metrics. Furthermore, we show that for independent link
failures network design should be optimized with respect
to high stressreliability, as low stress reliability is less sen-
sitive to graph structure; and that under high stress, very
high node degrees are required to achieve moderate relia-
bility performance.

Index Terms—system design, graph theory.

I. INTRODUCTION AND MOTIVATION

stress, however, where a large portion of a network has
failed, a high degree of connectedness in a network is re-
quired to maintain communication, since many links are
needed to backup primary communication paths.

We consider networks which are highly connected. The
cost of rich connectedness is a secondary issue in local-
area networks (LANS) in contrast to wide-area networks
(WANS), where connectedness is hampered by the high
cost of fiber runs.

The network reliability synthesis problem considered
here is the design of a network which achieves a pre-
scribed level of reliability (in a sense to be defined later)
under stress situations, while minimizing the number of
components used. Most reliability studies to date have
focused on the analysis and design of networks, with em-
phasis on all-terminal reliability, when links are very re-
liable. This is appropriate when modelling benign com-
ponent failures due to low stress, such as normal wear of
components. However, the design of networks when links
are unreliable, owing to high stress, which is addressed
in this paper, is interesting for several reasons. In situa-
tions where the probability that a network is connected is
quite small, some degree of connectedness in the network
could still allow for important functions to be carried out,

Network reliability has become an especially important, ., a5 rejaying emergency signals in times of distress.

'fSSL:f’ ss cl)'pttl)(':lal netvvlgrk§ are cFurrentIy bellng T}on&der'ggr example, in an aircraft application, even a small prob-
or high-reliability app |cat|o_ns. or €xample, when usegbility of connectedness could allow for adequate time for
for the transport of control signals of !et engines a“c?' COthe aircraft to fail gracefully should it come under catas-
trol surfaces, networks need to provide virtually unmteﬁophic stress. This work is thus a step towards bridging

rupted communication. the gap between theory and practice by providing design

When netw.o.rk components fail in a benign fashion Witn]sights which are of immediate value in the planning of
small probability, sparsely connected networks, such ﬁi@h—reliability networks

those used in most commercial networks today, can pro—F h the ind d tion in th
vide adequate levels of reliability. This is because in such’ Ut efMmore, the independence assumption n the ma-

scenarios, only single failures typically need to be dedf’y of previous work is inappropriate for situations

with at any given time. In the event of a catastrophi\é/ ere, for exa_mple, LANS fpund In automobiles and air-
crafts are subjected to environmental stresses that cause
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Local Area Networks”, MDA972-02-1-0021; and National Sciencghus explores reliability models which permit statistical

Foundation ITR/SY, “High Speed Wavelength-Agile Optical Netdepe_ndency among component f‘?ill_”es- While the results
works”, 008963-001. obtained for such models are preliminary, they do develop



intuition for the critical factors in reliable network design, Some necessary background is provided in Section II.

and represent a first step towards the formulation of a geection 1l discusses network design when statistically in-

eral design methodology for networks. dependent link failures are assumed. In this section, we
The model we will be using in this paper, where nodggopose and justify a design methodology, and carry out

are invulnerable and links are vulnerable is relevant to op-series of simulations to gain design insights. In Section

tical networks, and in particular, all-optical networks. 1V, we consider network design with statistically depen-

such networks, the highly-reliable passive optics in nedent link failures. We introduce a simple Markov model,

work nodes are modelled as graph nodes, and fiber lirkad then carry out approximate reliability analyses of spe-

and transmitter/receivers, which are significantly mowial network topologies.

prone to failures, are modelled as graph edges. In opti-

cal networks, lightpath diversity [1] can be used in placél. RELIABILITY METRICS AND RELIABLE NETWORK

of alternate routing to guarantee critical message delivery TOPOLOGIES

deadlines. In this scheme, a power-limited optical trans-|, this work, networks will be modelled as undirected

mitter splits its transmitted data along multiple disjoinéraphs_ Two distinct nodes in such a graphenected
optical paths. The signals from multiple paths are thefinere exists a path between the nodes. An undirected
recombined at the receiver and decoded. An additior&hph isconnected if there exists a path between every
benefit of highly connected optical network topologies 5air of distinct nodes. A (minimal) set of edges in a
that these networks substantially reduce hop counts gjd o whose removal disconnects the graph (grame)
thus save on expensive optical switching equipment, SU&ﬁbe cutset. A (minimal) set of nodes which has the same
as OX(_: S. _ _ property is &prime) node cutset. The minimum cardinal-

In this work, we consider both the case of low and hlqlﬂ, of an edge cutset is therlge connectivity or cohesion
stress. In low stress situations, we assume that link faj\I(G). The minimum cardinality of a node cutset is the
ures occur with probability 0.2 or below and can be st@apde connectivity or connectivity y(G). Analogous two-
tistically dependent. In high stress situations, link failur@grminal metrics are the edge-connectivity;(G) and
occur with probability 0.8 or above and can again be stggde-connectivity,4(G) with respect to a pair of nodes
tistically dependent_. It_shou_ld be noted_t_hat in this lafndd. The two-terminal edge (respectively, node) connec-
ter assumption of high link failure probability, we are NGfivity of a graph is the minimum number of edges (respec-

assuming that networks normally operate in this modgely, nodes) whose removal disconnects the node pair.
Rather, high link failure probabilities are assumed given

that a catastrophic stress has occurred. A Deterministic metrics

While network reliability metrics such as throughput . L . N
Two rudimentary, deterministic, all-terminal reliability

or delay may be relevant to some network applications., . : .
L criteria are the cohesion and connectivity of the graph un-

[2], connectedness measures are useful in situations whgrq . .

. . . erlying a network. Am-node e-edge graph having max-
network performance is considered satisfactory as long.as o S

. imum cohesion is anax-A graph. Similarly, am-node,

the network remains connected, or when the network’s q raoh having maximum connectivity i
ability to provide a minimal level of service is of interest® ©¢9€ grapn having maximum CoRnectivity 1smax-x
In addition, connectedness is the relevant metric in ma
high-reliability applications, where capacities of networ
components are over-designed, such that connectedness of 1
nodes ensures acceptable network performance. We will X<A<SOLZ - E di = 2e/n. 1)

thus be principally concerned with connectedness mea- i=1
sures of a.network. _ _ Harary has shown [4] that the bounds in (1) can be
The main contributions of this work are: achieved, through the construction bfarary graphs.
«» Establishing general graph-theoretic principles favlore refined deterministic criteria for network reliability
the design of networks under stress for high all- ar@hn also be defined, such as the number of edge or node

raph. The following bounds relate connectivity and co-
gsion to the basic parameters of a graph [3]:

two-terminal reliability connectedness criteria. cutsets of ordek or y in amax-A or max-y graph, respec-
« Comparing analytically the graph-theoretic desigtively. A graph issuper-) if it is max-A and every edge
criteria for low stress and high stress regimes. disconnecting set of orderisolates a point of degree

« Studying and comparing numerically common com- An alternative measure of a graph’s ability to remain
mercial network designs with designs optimized fazonnected is the number of spanning trees it possesses.
high stress and low stress regimes. The characterization of graphs with a maximum number



of trees has been solved for sparse graphs when the num-
ber of edges is at most+ 3, and for dense graphs when
the number of edges is at mast2 less than that of the
complete grapltk,, [5-7], then node graph which has all

of its nodes adjacent.

B. Probabilistic metrics

Deterministic reliability metrics sometimes do not pro-
vide adequate measure of the susceptibility of networks
to disconnection because these metrics do not accountdigt 1. TheH (8,4) Harary graph.
the reliability of network components. Probabilistic relia- . . :
optimally reliable graph has a maximum number of span-

bility criteria, on the other hand, require knowledge of de-,
ning trees.

terministic network properties, in addition to the reliabil- . N I .
prop The two-terminal reliability of a probabilistic graph is

ity of network components, and thus yield a more meap- . . .
ingful measure of network reliability. For this reason, thi{she probability that a given pair of nodesandd, have an

work will primarily be concerned with probabilistic relia—Operatlng path connecting them:

bility criteria. e o
Probabilistic reliability metrics require the concept of a P:(G,p) = Z A (1 — p)ipe 4)

probabilistic graph. Aorobabilistic graphis an undirected i=Wsq

graph where each node has an associated probability of o ed i o

being in an operational state and likewise for each edge. = 1= Z G P (1 —p) ©)

In probabilistic reliability analyses, networks under stress =Asa

are modelled as probabilistic graphs. whereuw,, is the shortest path length between noglaad

Almost all approaches to probabilistic reliability analyy Afd is the number of subgraphs wittedges that con-
sis have focused on the probability that a subset of nodgsct nodes andd, Ay, is the minimum number of edge
in a network are connected when links are very reliablgyjjyres required to disconnect nodeandd, andcfd is
Thus, the all-terminal reliability of a probabilistic graphne number of cutsets with respect to nodeand d of
can be defined as the probability that any two nodes in thgrdinalityi. If we wish to maximize migg [Pcsd(ap)]
graph have an operating path connecting them. If linkghenp ~ 0, then it is apparent from (5) that the prop-
fail in a statistically independent fashion with probabilit)érty of supera is a necessary condition. This is because
p, then the all-terminal reliability”.(G, p) is given by \ — min, 4 [A,4], and for supen graphsC3¢ attains the

. minimum bound of two. )
P.(Gp) = >, A(l-p)p’ @)
i=n—1 C. Harary graphs and circulants
- i i As previously mentioned, Harary graphs, first pre-

= 1= Zcip (1=p) ) sented in [4], achieve the bounds in (1). This result im-
= plies that Harary graphs also achieve the maximum value
where A; denotes the number of connected subgrapbb min, 4 [\;q] and min 4 [x.q| over all graphs withn
with i edges, and”; denotes the number of edge cutnodes and edges. In & (n, A) Harary graph wheré\
sets of cardinalityi. For values ofp sufficiently close is even, each node0 < i < n — 1, is adjacent to nodes
to zero, P.(G,p) can be accurately approximated by+1,:+2,...,i+|A/2](modn); and if A is odd, then
1 — C\p*(1 — p)*=*. In this case, an optimally reliableeach nodé = 1,..., |(n —1)/2] is also adjacent to node
graph — one that achieves the maximéiG, p) overall i+ |n/2]. See Figure 1 for an example of a Harary graph.
graphs with the same number of nodes and edges — has a
minimum number of cutsets of size= |2¢/n|. There- Harary graphs belong to a more general family of
fore, in this regime ofp, optimally reliable graphs aregraphs known ascirculants.  The circulant graph
superA graphs. For values of sufficiently close to unity, C),{(a1,as,...,ap), or more compactlyC,(a;), where
P.(G,p) can be accurately approximated by the firsttertih < a; < as < ... < ap < (n + 1)/2, has
in (2), Ap_1(1 — p)"1pe="*l where A, 1 = t(G). i+ay,i+as,...,i+a,(modn) adjacent to each node
Therefore, for values op sufficiently close to unity, an . Owing to a theorem by Mader [8], which proves that



every connected node-symmetrigraph has\ = A, all
connected circulants are max- Furthermore, the only
circulants which are not superare the cycles and the
graphsCy,,(2,4,...,m — 1,m) with m > 3, andm an
odd integer [9].

In [10], Wang and Yang derive a useful result for the
number of spanning trees in circulant graphs. In [9],
Boesch and Wang examine the diameter properties of cir-
culants and derive lower diameter bounds for the family
of graphs. In [11], the same authors determined that even
degree Harary graphs possess the fewest number of edge
cutsets of cutset cardinality when\ < ¢ < 2A — 3.
Each cutset in the above range of cardinalities was shown
to isolate a single node in the Harary graph.

D. Cagesand Moore graphs

We now discuss regular graphs which, for a given num-
ber of nodes and edges, achieve maximum girth. The
problem of finding such graphs is equivalent to the well-
studiedcage problem — finding regular graphs of de-
gree A and girthg with the minimum number of nodes
n(A,g). The search for cages with degrees exceeding. 2. Two representations of the= 5, A = 3 Moore graph, also
three and girths exceeding five has proven to be very difiown as the Petersen graph. The upper diagram (a) is the full tree
ficult with few results obtained. representation using nodg 1 as the root node. For.any Mgore graph, a

Any graph which achieves theoore bound, a lower full-tree representation using any node as the root is possible.
bound forn (A, g), is known as aMoore graph. Moore configurations. The family of circulant graphs is an ideal
graphs are, by definition, cages. A well-known properiyandidate for such a reliability methodology for a num-
of Moore graphs is that they have minimum diaméter ber of reasons. The circulant family of graphs is rich —
which grows as the logarithm ef, over all regular graphs a circulant graph can be defined for most combinations of
of the same degree having the same number of nodes. Bember of nodes and degree. In addition, circulants inher-
Figure 2 for a diagram of the Moore graph with= 5 and ently possess good reliability properties. For example, in

A = 3, also known as the Petersen graph. our discussion of circulants in Section 1I-C, we indicated
that nearly all circulants are supg&r-In addition, in a re-
I11. NETWORK DESIGN WITH STATISTICALLY cent work by Sawionek, WOjCieChOWSki and Arabas [12],
INDEPENDENT LINK FAILURES the family of circulant graphs were shown rtst prob-

%bly contain a uniformly optimally reliable graph when

In this section, we model networks as probabilisti ) )
P such a graph exists, except for whert n + 3. Figure 3

raphs with the following properties: . .
grap g prop summarizes our design results.

» Nodes are invulnerable; 1) Designing for all-terminal refiability when p islow:
» Edges fail in a statistically independent fashion W'tQNhenp is low and we would like to design a network for

. Erdogb;?;[:;é%ities are assumed to be sufficiently Iara grescribed level of_all-terminal r_eIiabiIi'Fy, then we know
to carry any possible network flow: fat the class of 'o.ptlmal g'raphs is restricted to those that
« Once an edge fails it cannot be rebaired are _sqpep\. Intuitively, this is b_ecaus_e supergr_aphs
' minimize the number of most likely disconnection sce-
_ _ narios. In [13], Bauer et al. derive an explicit bound on
A. Design of reliable networks p for which superi graphs are optimal. In [13], Bauer
Ideally, a network design methodology should appeal & al. also derive somewhat complicated conditions which
a single, simple family of graphs for all possible networknsure thaf.(G, p) > (1 + e)Pc(@,p).
Two nodesu andwv in a graph aresimilar if there is an automor- Within the class of supek-graphs, even degree Harary

phism which maps ontov. A graph in which all nodes are similar is g_raphs were Shown to be especially good whes low, _
node-symmetric. since they achieve the fewest number of cutsets of cardi-



All-terminal Two-terminal Wang and Yang's result in [10].

reliability reliability We note that there seems to exist a relationship between
Supera Supera a graph’s diameter and its number of spanning trees, al-
low p though the precise relationship is unclear. In most in-
Harary graphs, . .
Harary graphs, Moore aranhs stances, regular graphs with small diameters have a large
other super-\ other S?J 85_/\’ number of spanning trees. However, in general, a smaller
graphs grapEs diameter does not imply a larger number of spanning

Max. number of rees Min. diameter trees, or vice versa. The intuition behind this trend is
highp that for the same number of nodes and edges, the nodes

_ Moore graphs, of a symmetric graph with a larger diameter are generally
Max. treecirculants | min. d'f‘mfter more distant from one another. The result is that there
circulants

are fewer combinations of edges of the graph that could
Fig. 3. Summary of design results. The top line in each quadranf@M SPanning trees since there are more constraints on
a necessary condition for optimality with respect to the corresponditige edges in order that more distant nodes be connected.
vulnerability region and reliability metric. The lines below are th¢4ence, the number of spanning trees generally decreases
types of graphs suggested by our methodology. with diameter when the number of nodes and edges is held
constant. Therefore, if we wish to design a network with

a large number of spanning trees, it is reasonable to alter-

regime, then we should design networks as Harary gra Hgtively design a network with a small diameter (which
gime, g yg pIS the figure of merit when designing for two-terminal re-

In [14, 15], we derive several new results for the famil Lability when p is high). Thus, if a configuration for a
of Harary graphs which allow us to develop closed form y p gn). ’ g

. o . . minimum diameter circulant is readily available, an ex-
bounds for all-terminal reliability which are tight when ) ) )
is low. haustlv_e search over all candidate circulant graphs could
2) Designing for two-terminal reliability when p is be avoided.

ow Wi der the task of desiani 4) Designing for two-terminal reliability when p is
OW.~ YV& NOW consider he fask of desighing a ne jigh:  We now consider the task of designing a network
work with n nodes which meets an objective value

) d : ) _ ith a constraint on the two-terminal reliability metric
MiNs,d [PC (G’p)] whenp_ls low. AS. n the aI_I-termlnaI min, 4 [Pgd(G,p)] whenp is high. A simple lower bound
case, a necessary condition for optimality with respectilgr rﬁin . [PSd(G p)] is:
two-terminal reliability wherp ~ 0 is the supetx prop- e he A '
erty. Furthermore, for even degree Harary graphs any (not (1 - p)*@ < min, 4 [pCSd(G,p)] (6)
necessarily prime) cutset of cardinalityor for A < ¢ <
2A — 3 isolates eithes or d alone. Hence, Harary graphswvhich is just the probability that the shortest path between
are a good design choice when two-terminal reliability e most distant node pair is available.
of principal interest. The derivation of tight, closed form Using this inequality, we first determine a value for the
bounds for the two-terminal reliability of Harary graphsgliameterk. The value chosen fof should be as small
whenp is low is also derived in [14, 15]. as possible, while still sufficiently large to ensure that a
3) Designing for all-terminal reliability when p is circulant with the specified values of £ and A can be
high: As discussed in Section II-B, when we are inconstructed. The relationship amomg: andA for circu-
terested in optimizing the design of annode network lant graphs was investigated in [9] by Boesch and Wang.
with respect to all-terminal reliability in thehigh regime, In [14], we show that in the best case, the diameters of
we seek an architecture which maximizes the number@fen degree\ circulants grow as thé2)™ root of the
spanning trees. Intuitively, this is because graphs withhember of nodes:; and in the best case, the diameters
maximum number of trees maximize the number of most#f odd degreeA circulants grow as thé%)th root of
likely graph connection scenarios. In [14], we derive ame number of nodes. On the other hand, we recall from
upper bound on the number of spanning trees fonan our discussion in Section II-D that the diameters of Moore
node, e-edge graph, which can be used to obtain an egaphs grow with the logarithm of the number of nodes
timate of the required degre&. After determining an n. However, for networks of 50 nodes or less the differ-
estimate forA from this bound, we search the finite spacence in the minimum degree required when the diameter is
of n node circulants with degreé for the configuration held constant, is usually zero or one and occasionally two.
with the largest number of spanning trees. The numbeurthermore, recall that with the exception of a few con-
of spanning trees of a circulant is easily computed usiffigurations, Moore graphs are not realizable. We therefore

nality 7, when\ < ¢ < 2A — 3. Thus, if we are princi-
pally concerned with all-terminal reliability in the low
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. . . . 10 7y —— TTR, Multi-ring H
bounds in [14] are optimal or nearly optimal with respec ATR, Harary
. . . . _ TTR, Harary
to two-terminal reliability when the number of nodesiso 107 - 3 = .
the order of tens, which is the case for most networks ~ *° 0 probabilty atink failure (p) 10
interest.

Fig. 5. Probability of disconnection versp$or the 14 node Ethernet,
ring, double-ring and? (14, 4) graphs whemp < 1/2.

B. Smulation results

1) Commercial networks versus our candidate topolo- n?/4 = 49 in the ring. The same scalability explana-
gies We now conduct a comparison among Harar@p” also applies when accounting for the superior perfor-
graphs — one of our candidate topologies — and sorfitance ofH(14,4) relative to the double ring, which is
topologies employed in commercial networks — duafilso a degree four graph. With respect to all-terminal re-
homed switch graphs, rings, and multi-rings. liability, H(14,4), since it is supew, possesses = 14

The dual-homed switch architecture is illustrated iputsets of order four, whereas the double ring possesses
Figure 4. In this topology, each node is connected to a p(g) = 91 cutsets of order four. For two-terminal reliabil-
mary and a secondary switch through a dedicated link. iff: the number of cutsets of order two is twofn(14, 4),
addition, the two switches are bridged. CommunicatioMhereas it is:? /4 = 49 for the double ring.
between a node pair, although normally first attemptedIn Figure 6, the performance of the topologies is plotted
through the primary switch, can be carried out via an;yhenp > 1/2. With respect to all-terminal reliability, it is
available path. Switched Ethernet is a very common e®asy to see that Ethernet has far more spanning trees than
ample of the dual-homed switch architecture [16], and vie ring, which only has = 14, thus accounting for its
will therefore refer to the dual-homed switch architecturguperior reliability performance. Similarly/ (14, 4) has
simply as Ethernet. In am multi-ring graph, there are 1.9898 X 108 spanning trees, whereas the double ring has
m undirected edges between nodes that would otherwis®' ' = 1.1469 x 10° spanning trees. Hence, we expect
have one undirected edge in a regular ring graph. H(14,4) to perform better than the double ring, which

In our comparison, each graph supports 14 nodes dfdndeed the case. With respect to two-terminal reliabil-
the degree of the multi-ring and the Harary graph is fouty, the performance difference between Ethernet and the
We further assume that nodes, including the two switchéBg is great. This is because Ethernet has a diameter of
in the Ethernet topology, are invulnerable, and that ti&0, whereas the ring has a diameter|of2] = 7. The
Ethernet bridge reliability is identical to that of the othefwo-terminal reliability difference betweeH (14, 4) and
links in the network. the double ring is also significant, owing to the fact that

Figure 5 depicts the performance of the topologidg(14,4) has a diameter of four, whereas the double ring
whenp < 1/2. Between Ethernet and the ring, whicthas a diameter ofn/2] = 7.
are the degree two topologies, Ethernet exhibits better all\Me conclude that the reliability of rings is consistently
and two-terminal reliability. Ethernet’s superior perforpoorer than that of the Ethernet topology. Of course, the
mance can be attributed to the fact that it scales weaklgice paid for this superior reliability is the cost of the
with the number of nodes in the graph. For example, fewitches. We also conclude that multi-rings have poor
all-terminal reliability, the number of cutsets of order twaeliability performance relative to super<irculants of
is n = 14 in Ethernet, whereas it |€2L) = 91 in the the same degree, such as Harary graphs. This indicates
ring. Similarly, for two-terminal reliability, the numberthat there is a significant reliability advantage in strategic
of cutsets of order two is two in Ethernet, whereas it {gositioning of link capacity rather than adding redundant
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backup links. This justifies our pursuit of alternative netect of node degree on reliability in the> 1/2 regime.
work topologies with high degrees of connectedness in @pecifically, we are interested in determining the node de-
der to achieve high levels of reliability. We next conduajrees required to achieve all- and two-terminal reliabili-
simulation comparisons among a variety of such topolties in the useful range of 0.1 to 1. For our simulations,
gies. we consider a variety of 14 node circulants. Figure 8 de-
2) Comparison among candidate topologies: In this picts the all-terminal performance of these graphs in the
section, we present simulation results for several netwgrk> 1/2 regime. As expected, the all-terminal reliability
designs. These results verify our previous insights, aitreases with node degree. Another observation is that
also shed light on the relative performance of differetite performance difference among graphs with the same
network configurations. node degree is more pronounced at lower node degrees
In our first set of simulations, we consider the Peterséfan at higher node degrees. Intuitively, this is because
graph (the Moore graph with = 5 and A = 3), and structural changes in sparser graphs can more dramati-
the Harary graphsH (10, 3) and H(10,4). Whenp is cally affect the relative reliability properties of graphs than
low, Figure 7 indicates the expected result thEtl0,4) indenser graphs. Unfortunately, these simulations also in-
possesses a lower probability of disconnection by a fadicate that to achieve all-terminal reliabilities in the range
tor of approximatelyp relative to the Petersen graph an@f 0.1 to 1 whenp > 1/2, very high node degrees are
H(10,3). Perhaps an unexpected finding is the closendgssjuired. In fact, whep exceeds roughly 0.87, even the
of the performance of the Petersen graph &hd0,3) complete graplk’, cannotachieve areliability above 0.1.
when p is low. In fact, all- and two-terminal reliabil- Furthermore, in line with our previous observation, once
ity can be well-approximated byp® and2p®, respec- We realize that a high node degree is required to achieve
tively, whenp is low. Thus, with respect to all- and two-a reliability in the range of 0.1 to 1, the graph’'s actual
terminal reliability whenp is low, the sparse family of structure is not very important.
Moore graphs offers little or no benefit over the richer Our simulation results for the two-terminal reliability
family of superA graphs. It is only when two-terminal of the same seven graphs in the> 1/2 regime are illus-
reliability in the p high regime is of interest that Mooretrated in Figure 9. The trends observed in this figure are
graphs present a significant advantage over other comggilar to those discussed above. In fact, for two terminal-
ing topologies as they possess smaller graph diametegdiability, these trends are even more apparent. For exam-
Thus, when designing a network topology we should f@le, the performance difference of graphs with the same
cus on optimizing the network structure with respect teode degree is quite significant at lower degrees, while the
high stress reliability, as low stress reliability is virtuallyperformance of the graphs is virtually indistinguishable at
unchanged provided that the underlying graph is superhigher degrees. Intuitively, this is because topological id-
which is the case for nearly all circulants. iosyncrasies (i.e. diameter) of graphs can be magnified in
In our next set of simulations, we investigate the e& graph’s two-terminal reliability figure since the connect-



10° ‘ ‘ ‘ work links fail in a statistically independent fashion is in-
- Eﬁi{fg appropriate. As we shall see, modelling link failures in a
—o H(14,7) statistically independent fashion can lead to dangerously

R optimistic conclusions regarding the reliability of a net-

—+ H(14,10)
o C<12456> || work.
K . . . .
14 In this section, we carry out simple, approximate re-

liability analyses of special network topologies based on
existing dependent link failure models as well as a new
Markov model introduced here. Unfortunately, the differ-
ent assumptions used in each of these models preclude a
detailed comparison among these topologies, except when
small correlation among link failures is present. These
models, however, may be applied in comparisons among
graphs belonging to the same family.

Probability of graph connection
=
o

L A\ L L L L L
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Probability of link failure (p)

. . . A. Markov model
Fig. 8. Probability of graph connection verspsfor H(14,4), ) )
C14(2,3), H(14,7), C14(1,3,5,7), H(14,10), C14(1,2,4,5,6) and In order to illustrate our Markov model, consider

the complete grapi14, whenp > 1/2. links which are of interesty, lo, ..., ,. Now, let us as-
sume that there is a Markovian failure dependency among
thesemn links; that is, conditioned on the state of lifik 1,

link j is independent of the states of link=2, ..., 5 — 2.
Let/; denote the event that linkis operational, and ld
denote that linkj is not operational. Let us further assume
that the marginal probability distributions of the states of
each of the links is identical (i.e. B;) = p), and that
Pr(i;]1;-1) is also identical for allj. Thus, the probabil-

ity that all m links have failed is given by:

10° 4

Probability of node pair connection
=
o

— H(14,4)
_ C<23> .
o o me—
- giif)&s,b Pr(lllg . lm) =p [Pr(lj”j—l)]
—— H(14,10) . . ; -
—a- C1<1.24,56> Alternatively, if only the correlation coefficient of the
-2 Kiq ‘ \ \ states of adjacent links is available, then the probability

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 i i .
Probability of ink failur (p) that allm links fail can be shown to be:

Fig. 9. Worst-case probability of node pair connection versus Pr (7122 » _Zm) =plp(1 —p)+ p]m_l . (7)
p for H(14,4), C14(2,3), H(14,7), C14(1,3,5,7), H(14,10),
C14(1,2,4,5,6) and the complete graphi4, whenp > 1/2. Note that ifp is low andp > p, then the probability that

edness of the worst node pair is only considered; wherédlsn links have failed is approximately equaljp™ .
all-terminal reliability is a global connectedness measure.

The simulation results also indicate that two-terminal r@. Reliability of the Ethernet graph

liabilities above 0.1 can be achieved at low to moderateWe now compute the reliability of the Ethernet graph

node degrees. For example, the minimum diameter C'Yhen dependence among link failures is present. We as-

EF:.CM% 3) (g cliegrr]ee f_our, achlt_avei t;N?'terr:;]'nal(;e;'saéume that nodes, including switches, are invulnerable, and
ities above ©.1 whep IS approximately 1ess than ©. 7oy ¢ |ink failures are correlated only if the corresponding

links are incident at the same non-switch node. Using this
dependent failure model, the probability of connection of

IV. NETWORK DESIGN WITH STATISTICALLY the graph is:
DEPENDENT LINK FAILURES
As discussed in the introductory section, many situa- (G po) = [ . p) = (= p) (Prli;l; 121)] (1=ps)
tions arise for which the modelling assumption that net- + 21 =p)" =X =p) (Pr;|l;—1)]") po,



and the two-terminal probability of connection is: D. Reliability of Harary graphs when p islow

<d _ Ry N2 In this subsection, we state approximate expressions
Pe(Gopop) = 2(1 = p)" + 2(1 = p)"(1 = ) ) for the all- and two-terminal reliability of Harary graphs

A1 = p)*(1 = py) [Pr(l;|Lj-1)] — (1 — p)* [Pr(l;]1;-1)]°  when link failure dependencies are present. We use the
+2(1—p)%(1 — ) [pr(lj“j_l)]? k?asic _idea of the—model present.ed in [17] in (_:onjunc-

N _ ~ tion with the Harary graph analysis developed in [15]. In
wherep;, denotes the probability of failure of the bridgg15) we note that every graph disconnection scenario can
joining the switches. be viewed as a partitioning of the graph into two subsets
S . . of j andn — j nodesS; and.S,,_;, respectively, which
c Re“_ab'“ty of rl.ng and multi-ring graphs are disconnected; and that a partition jotonsecutive

In this subsection, we we develop closed-form expresgqes minimizes the number of edges joiniigo S,,_;.

sions for the all- and two-terminal reliability of rings andsjce the edges joining; to S,,_; are in “closest” prox-
7 n—j

multi-rings, assuming that nodes are invulnerable and trmty when the nodes ir§; are consecutive. we reason
] L)

links fail in a statistically dependent fashion in accordanggat 5 conservative estimate for the reliability of Harary
with our Markov model. , graphs can be obtained by treating each possiblas
1) Ringgraph: Assuming that nodes are invulnerable : s :
o : _ _ consecutive partition of nodes. We cannot rigorously
the_ _probablllty th_at aring remains co_nnec_ted_ is the PI%ate that such an estimate would be a lower bound for the
ability that zero links or exactly one link fails in the ring. robability of graph connection because in order to do so,

These two probabllltles can be_ computed using a Ch would need a complete probability distribution for the
rule expansion along consecutive links around the NG tes of all links in the graph

Note that the state of the final link in the expansion is Whenp; = pé ~ 0, where a link is¢ more likely to
influenced by its neighboring links on either side, rathgLi; \\hen Eone or moré of the links joining; andS,,_;
J n—j

than by just one link. This last probability term musf, e tailed, the probability of graph and node pair discon-
therefore be specified in order to complete the model. FOL ction for Harary graphs is approximatéy2 and2p2,
ann node ring, the probability of graph connection cap,g,q tively. The analogous expressions for the indepen-
thus be expressed as: dent failure model arep® and2p?, respectively. In order
P.(Gyp) = (1 — p) [Pr(l;|Lj—1)]"2 togeta feeling for the_difference in these two sets of ex-
- pressions, let us consider a 20 node, degree four Harary
[1+ (= DPr(lllj-1,541)] - graph with probability of link failurel0=2 andé — 5.
To compute the two-terminal reliability, we note that th©ur dependency model yields the val@es x 10> and
probability that a node pair remains is connected is eqiab x 10~° for the all- and two-terminal probabilities of
to the probability that all of the links on at least one of théisconnection, respectively. On the other hand, the inde-
two disjoint paths between the nodes remain operation@gndence model yields the values 10~7 and2.5 x 2%,
Hence, for a diameterically-spaced pair of nodes on arfespectively.

ring graph, the two-terminal probability of connection is; For large values of, the above asymptotic expression
are no longer good estimates of the all- and two-terminal

Pu(G,p) = (1 — p) [Pr(;|1;_1)]"/2 reliabilities. In the limit ofé = p~—! (equivalently,p = 1),
(1= p) [Pr]t-1)] [n/2]—-1 these estimates do not approagtwhich is the expected
o probability of disconnection. We attribute the diminish-
= (L =p) [Pr|l-0)I" " Pr(lllj—1,lj+1) - ing accuracy of the asymptotic expressions to the fact that

2) Multi-ring graph: We now generalize the abovethese estimates are union bounds on prime failure events.
analysis to multi-rings. As in the independent failurés ¢ increases, the probability that multiple prime fail-
model, we only need to replace the parameten the ure events simultaneously increases, thereby making the
above equations with a parameter which reflects the prétion bound loose.
ability of the m parallel links failing in anm multi-
ring. We may incorporate statistical dependence into tHfs All-terminal reliability when p is high
parameter by using our Markov model to replacdy  In this subsection, we state a simple, approximate ex-
P [Pr(l_’j|l_'j,1)]m_1. Note that the conditional probabil-pression for the all-terminal reliability of a graph when
ity in this expression for parallel links is different fromis high. Recall that whep is high, the probability that
the previous conditional probability for consecutive linka graph remains connected is approximately equal to the
in the ring. probability that the operational links in the graph form a
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spanning tree. In the independent failure model, each®f Comparison of models and topologies
the ¢(G) spanning trees of a graph has a probability of We conclude this section with a comparison of the mod-

_ynlpentl o (1 — pyn-l i g . o ) )
(1 =p)"p"" = (1 —p)" of oceurring. HOW- g5 and topologies studied in the previous subsections. As
ever, when statistical dependence among link failures,js, o) see, it is difficult to make a fair reliability com-

preser_1t, the probapilities of occurrence of the differeBtarison among the Ethernet, ring, multi-ring and Harary
spanning trees are in general not the same, as they depgaghns studied in this chapter because the underlying de-
upon the exact structure of the spanning trees. Neverthigs, jont failure model is different in some of these cases.
Iess,_ we can gpproxma_tte the aII_-terml_naI rgllqblllty by as- 1) All- and two-terminal reliability when p islow: In
suming that links remain operatl.onal in a similar mann%rigure 10, we plot the all- and two-terminal reliability per-
as assume.d. for Harary grgphs n Sectlor.1 IV'_D' .That Bsrmance of the ten node Ethernet, ring, double-ring and
the probability of anfzpannlng tree occurring 1s given b¥](10,3) graphs as a function of the correlation coeffi-
.(1 =) [Pr(tll—1)]" " Henpe, the all-terminal reliabil- cientp, whenp = 10~%. When the correlation coefficient
ity of a graph can be approximated by: pis small —that is, when link failures are almost indepen-
PG, p) ~ t(G)(1 —p) [Pr(lj|lj_1)]”’2 @) dent — the relative performance of the topologies is what
we would expect from the independent failure model.
where we recall that R¥;|/;_1) denotes the probability ~As p increases, the different assumptions in the differ-
that link j is operational given that an adjacent link- 1 ent dependent failure models manifest themselves. For
is operational. example, H(10, 3), which possesses the best reliability
As e increases to values nedr— p)~!, the all-terminal performance among all graphs when~ 0, exhibits in-
reliability estimate exceeds unity, whereas it should apreasingly poor performance relative to the other graphs
proach(1 — p). Thus, (8) is a reasonable all-terminal reas p increases to one. We attribute this to the conserva-
liability estimate for only small values ¢f. The dimin- tive model developed for Harary graphs in Section IV-
ishing accuracy of the estimate ascreases is expected,D whenp is low. In this model, we first made the pes-
since (8) is a union bound on the spanning tree everggnistic assumption that every graph disconnection sce-
As p increases, we are increasing the probability of occurario is a partitioning of the graph into two consecutive
rence of each spanning tree event, and the union bowsubsets. We then made the additional pessimistic assump-
becomes looser because the probability of occurrencetioh that the links joining these two partitions are equally
multiple spanning tree events is no longer insignificant. correlated. Thus, ag increases we expect the accuracy
of our model to diminish. In fact, in the extreme scenario
F. Two-terminal reliability when p is high wherep = 1, we require the all- and two-terminal reli-

When p is high and we are interested in the twogbllltles to reduce t@. However, as illustrated in Figure

terminal reliability of a graph, we use a variation of th%ho’ oursnjoq:ellylelds grobatéllltu;:‘? Qlfd|scondne|(;t|o?hgrz?;er
simple bound stated in Section I1I-A.4: anp. simiiarty, ourdependent failure moder for the £=th-

ernet graph in Section I1V-B becomes increasingly inaccu-
min, 4 [Pcsd(G’p)} > (1 - p)H@ rate as increases. Again, in the extreme scenario where
p = 1, we require the all- and two-terminal reliabilities to

Using our Markov model along the shortest path betweéduce top. However, owing to our assumption that cor-

the worst-case node pair, the above expression becom&gtation only exists among the two links incident at each
non-switch node, we obtain probabilities of disconnection

ming 4 [PCSd(G,p)} ~ (1-p) [Pr(ljujfl)]k(c’)*l greater tham in this extreme case. On the other hand, our
model for the ring and multi-ring graphs in Section IV-
where, again, Ri;|;—1) denotes the probability that link C yields correct asymptotic reliabilities when~ 1, as
j is operational given that link — 1 is operational. illustrated in Figure 10.

As an example, let us consider a 20 node, degree four2) All- and two-terminal reliability when p is high:
Harary graph with probability of link operatior0—2 and Figure 11 illustrates the all-terminal reliability as a func-
conditional probability P¢l;|l;_1) = 5 x 1072. Note tion of the correlation coefficient for the ten node Ether-
that for Harary graphs, the diameter grows linearly withet, ring, double-ringf (10, 3) and Petersen graphs when
the number of nodes in the graph. In this example, the= 0.9. The analysis underlying the performance of the
network diameter is five. Our dependency model yieldsFf(10, 3) and Petersen graphs is that of Section IV-E, and
lower bound 0f6.25 x 108, whereas the independencéor the ring and multi-ring topologies we follow Section
model yields a lower bound df x 1010, IV-C. Lastly, for the Ethernet graph, the model used is
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10° ‘ ‘ ‘ 10
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s Double-ring
10 - H(10,3)
10 " H
c —— Petersen
o
510 g
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210 2
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Fig. 10. Probability of disconnection versus correlation coeffigientFig. 11. Probability of graph connection versus correlation coefficient
for the ten node Ethernet, ring, double-ring &@#¢10, 3) graphs when p for the ten node Ethernet, ring, double-rig(10, 3) and Petersen
p=10"" graphs whem = 0.9.

that of Section IV-B. Whem = 0, the trends depicted in
Figure 11 are what we expect from the independent fail-
ure model. Asp increases, however, the modelling asernet, ring, double-ring/(10,3) and Petersen graphs,
sumptions underlying the different topologies take effeakhenp = 0.9. The analysis underlying the performance
The ring and multi-ring graphs’ all-terminal reliabilitiesof the (10, 3) and Petersen graphs is that of Section IV-
converge to the correct value of — p) asp approaches F, in which we conservatively only account for the prob-
unity. The all-terminal reliability of the Harary and Peability that the shortest path between the node pair exists.
tersen graphs exceeds unityaapproaches unity for the The model underlying the ring and multi-ring topologies
reasons discussed in Section IV-E. is that of Section IV-C. Lastly, for the Ethernet graph, the
The all-terminal reliability of Ethernet exhibits a pe-model used is that of Section IV-B, which implies that link
culiar downward trend ap increases. Whep =~ 0, failures along the shortest path between the node pair are
the all-terminal reliability of Ethernet is approximatelystatistically independent.
(I —-p)"[2+2"(1—-p)]. If 2 < 2"(1 — p), then the
all-terminal reliability is dominated by the probability Whenp ~ 0, the trends depicted in Figure 12 are what
of graph connection given that the bridge is operationale expect from the independent failure model. Specifi-
Conversely, if2 > 2"(1 — p), then the all-terminal re- cally, the relative performance of the topologies is largely
liability is dominated by the probability of graph congoverned by their respective diameters. Ascreases,
nection given that the bridge has failed. Whern~ 1, however, the effect of these different network diameters
the all-terminal reliability of Ethernet is dominated by theliminishes. As can be seen from Figure 12, the reliability
probability of graph connection given that the bridge hagerformances of théf (10, 3), Petersen, ring and multi-
failed, and is approximatelyl — p)", which is at least a ring graphs converge to the expected valug of- p).
factor of two worse than the all-terminal reliability wherEthernet, however, owing to the assumptions of its model,
p ~ 0. On the other hand, if all link failures in the Eth-exhibits a similar downward trend as in the case of all-
ernet topology were correlated, then the all-terminal réerminal reliability. Wherp ~ 0, the two-terminal relia-
liability would converge ta1 — p) asp approaches one. bility is approximately2(1 — p)?, which is approximately
However, since our Ethernet link failure model assumesgjual to the probability of one of the two-hop paths be-
independence among different sets of link failures, th&een the source and destination being operational. On
all-terminal probability converges to the probability thathe other hand, whep =~ 1, the two links from each
the two links incident at each non-switch node are openaen-switch node act as one link and there is effectively
tional, which is(1 — p)™. only one two-hop path between the source and destina-
Figure 12 depicts the two-terminal reliability as a fundion. In this case, the two-terminal reliability is approxi-
tion of the correlation coefficieni for the ten node Eth- mately(1 — p)?.
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correlation coefficienp for the ten node Ethernet, ring, double-ring,
H(10, 3) and Petersen graphs whgr= 0.9.

V. CONCLUSION

In this work, we first considered the design of networks
with statistically independent link failures and invulnera-°]
ble nodes. We outlined and justified a design methodol-
ogy in which circulant graphs were the principal candidates)
topologies. We found that: (i) When designing a reliable
network topology, we should focus on optimizing the netl’]
work structure with respect to high stress reliability, as
low stress reliability is virtually unchanged provided thatg)

the underlying graph is super{i.e. it achieves the min-

imum number of edge cutsets of maximum cardinality)[®]
which is the case for nearly all the circulant graphs pro-
posed by our design methodology. (ii) To obtain all- andg;
two-terminal reliabilities in the 0.1 to 1 range when links
are unreliable, very large node degrees are required and
that for such high node degree graphs, the actual gre[bH

structure is not very important.

We then broadened the scope of this work by allowt2]
ing for the possibility of statistical dependency among
link failures. We conducted approximate dependent fail-
ure analyses of several special topologies — Ethernet, riﬁ%,]
multi-ring and Harary graphs — using existing models
and our simple Markov model, and have shown the danger
In fact

[14]

in relying on an independent link failure model.
using our Markov model, the probability of failure of
links with correlation coefficienp was shown to be ap-

Worst-case probability of node pair connection versus

12

More work needs to be done with respect to dependent

component failure models. Consistent, approximate mod-
els which strike a good balance between simplicity and
applicability to a variety of topologies need to be devel-

oped. In addition, these models should possess intuitive
inputs which are readily available to the network designer.
Subsequently, optimality conditions for different regions

of component vulnerability and dependency, akin to those
developed for the independent failure model, need to be
pursued.
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