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Abstract— Flash signalling (with vanishing duty cycle) Fre-
guency Shift Keying (FSK) is known to be a capacity-achieving
modulation for multi-path fading channels in the limit of infinite
bandwidth. However, since capacity-achieving schemes using
flash FSK build the richness of their codebooks in frequency,
the data rates of such schemes increase slowly with bandwidth.
We seek to establish schemes that exhibit better performance
than flash FSK for large but finite bandwidth. We consider
Multi-tone FSK, which we have shown in our previous work
that can also achieve the infinite-bandwidth capacity limit for
multi-path fading channels, but is more general than FSK. Given
its increased generality vis-a-vis FSK, and its optimality from
a capacity point of view, Multi-tone FSK is a good candidate
for transmission over very wide bandwidth. In this paper, we
discuss upper and lower bounds of error probabilities for the
family of Multi-tone FSK in Rayleigh fading channels. We find
that these two bounds coincide in the infinite bandwidth limit
and are therefore asymptotically tight. We compare the error
probabilities of FSK and Multi-tone FSK in different situations
and conclude that FSK is the preferable scheme when average
power is the biting constraint, and Multi-tone FSK may be
preferable when peak power is a limiting factor. We also explore
the relationship among capacity and parameters related to time
efficiency and spectrum efficiency.

I. INTRODUCTION

Spread-spectrum schemes which are adopted in the third
generation of mobile communication systems are known to be
not optimal in wideband applications, because their capacity
decreases to zero as the bandwidth of system goes to infinity (
[1]). Results by Kennedy ( [2]), Gallager ( [3, §8.6]), Telatar,
and Tse ( [4]) have shown that, with infinite bandwidth
and fixed average received power, the capacity of a multi-
path fading channel is equal to that of an AWGN (additive
white Gaussian noise) channel. The capacity-achieving scheme
is a special FSK signalling which transmits in a flash (or
impulsive) manner, i.e., symbols are sent in a small fraction of
all symbol slots (low duty cycle) with a high peak power. In
contrast to using signals that mimic white noise as in spread-
spectrum scheme, this scheme is “peaky” both in time and
frequency (a symbol occupies a small interval of bandwidth).
Because these kinds of signalling have high peak power in a
short time like flash, they are often called “flash signalling”
in the literature.
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We have studied the capacity of FSK signalling in [5] for
finite bandwidth and have shown that it can achieve perfor-
mance of the order of infinite-bandwidth capacity in multi-path
fading channels. However, even if the capacity grows linearly
with power in the low SNR (signal-to-noise ratio) region, it
will eventually be limited by bandwidth because it has low
spectrum efficiency. Thus, we introduce a whole family of
schemes which could give higher spectrum efficiency with
the same capacity limit in infinite bandwidth. We call these
schemes as Multi-tone FSK.

In Multi-tone FSK, we send several frequencies (tones) at
a time while FSK sends only one tone. The signals are also
transmitted in a small fraction of symbol slots. For transmitted
symbols, each tone has equal transmission power. With the
same number of total frequencies, the size of the symbol set
for Multi-tone FSK is larger than that of FSK, which allows
higher spectrum efficiency. We have shown that the infinite
bandwidth capacity limit can be achieved by using Multi-tone
FSK for an arbitrary number of tones. This result enriches
the family of capacity achieving schemes. In particular, we
have shown in [6] that two-tone FSK can outperform FSK in
bandwidth-limited regions.

These results show that Multi-tone FSK is a promising mod-
ulation scheme and stimulate our further efforts. We seek to
solve following questions: 1) what’s the relationship between
spectrum efficiency (related to the number of used tones) and
system performance, 2) how do the parameters (symbol time,
duty cycle, etc.) effect performance, and consequently 3) how
should we select schemes for given power and bandwidth
constraints?

To answer these questions, we study the error exponents of
Multi-tone FSK in this paper. We derive an upper bound and
a lower bound of error probability for Multi-tone FSK which
are found to be coincident at the infinite bandwidth limit. So
we can use these bounds to study the interplay amongst the
error probability, bandwidth, data rate, and “peakiness” of the
scheme. We use simulation to compare the performance of the
schemes.

In Section Il, the system model is built based on the
Rayleigh fading channel assumption. In Section IlI, we give
an upper bound of error probability for the Multi-tone FSK
system. We derive a lower bound in Section IV. In Section
V, we illustrate the behavior of error probability in Multi-tone
FSK systems comparing to that in FSK systems.



Il. CAPACITY-ACHIEVING SCHEME

In a multipath fading channel, the channel output y(¢) to an
input waveform x(t) is given by

-yt

where L is the number of paths, a;(¢) and d;(t) are the gain
and delay of the [th path respectively at time ¢, and z(¢) is
bandwidth-limited white Gaussian noise with power spectral
density No/2.

Let T, and Ty be the coherence time and delay spread of the
fading channel respectively. We assume that 1) the processes
{a;(t)} and {d;(¢)} are i.i.d. and constant over time intervals
of T, (block-fading model in time), and that 2) T; < T, (an
under-spread channel). Thus, the system model is

ot — di(t)) + 2(1), @)

L
t) = Z ax(t —dp) + z(¢). )

In FSK systems, we use sinusoids with different frequen-
cies to represent symbols. Suppose that the average power
constraint is P, system bandwidth is B, and the length of
a symbol slot is Ty, which satisfies Ty < Ts < T.. In
order to keep all sinusoids orthogonal to each other on the
symbol time [Ty, Ts], the frequencies f;’s of sinusoids are
chosen to be integer multiples of 1/(7T, — Ty). Hence, we
have M = B/(Ts — T,) frequencies in our system. Let us
assume a @-tone FSK scheme in which we use () tones to
transmit a symbol. The system bandwidth is not changed with
respect to FSK, but the size of input symbols is increased.

Let 6 € (0, 1] be the duty cycle in the system, which means
we transmit data for a fraction 6 of time. By doing so, we
raise the peak power of a sinusoid to P/Q6. One codeword is
represented by @ different complex sinusoids with the same

amplitude /P/Q6. We define
a(t) = {0\/ P/Qe EigC,n eXp(jQT"fit) 0<t<Ty, 3)

otherwise;

where C,,, is a set of @ different integers in {1,2,..., M}(1 <
m < (g)). There are (g) combinations for the selection of
Q integers.

We consider the channel output over the interval [T, T%].
During this interval, the @ sinusoids have different channel
gains and delays which are constant in the interval. We denote
the gain and the delay for the [th path of the 4th tones by q; ;
and d; ; respectively. Hence by (2), when a message m is sent,
the received signal is

D=3 > a/P/QOexp(j2n fi(t — dis)) + 2(2)

iCCh 1=1
= Y GiV/P/Qbexp(j2nfit) + =(t)
iCChy

4)

where G; = ZlL:1 a; ; exp(—j2m fid; ;) is a complex-valued
random variable. We define signal power in the conventional
sense as the received signal power, and thus the channel gain
can be normalized so that E[|G;|*] = 1

At the receiver, we correlate the received signal with all M
sinusoids, in which we can get the correlator outputs

1 Ts
Ry = —— — 327 ft)y(t)dt 5
A WO_T/T exp(— 27 fit)y(t) )
for 1 < k < M, where T = T — T,. Therefore,
C
Rk _ Gk QHN + Wk k = Cm7 (6)
Wi Otherwise;

where {W;} is a set of i.i.d. circularly-symmetric complex
Gaussian random variables, which satisfy E[|W},|?] =

The message is then repeated over N disjoint time intervals
to obtain time diversity. If no diversity is needed, we can let
N=1For1<k<Mandl<n<N,we have

Rk,n _ Gk,n
Wk,n

PT!
Qg—l\fb + Wk:,n k C Cma

Otherwise;

O

where {Gy .} is a set of i.i.d. complex random variables
with E[|G.,|*] = 1 and {W},,} is a set of i.i.d. circularly-
symmetric complex Gaussian random variables of unit vari-
ance. We form the decision variables

1 N
= N Z ‘Rk,n|2 (8)
n=1

and use the threshold decision rule with a threshold for
simplicity. The threshold is

QON; ©)

where € € (0,1) may be freely chosen over its domain. If
there are exact @ of Si.’s exceed the threshold, then we decode
corresponding m; otherwise we declare an error. This decision
scheme is asymptotically optimal.

The scheme transmits In ( )
the data rate R is given by

0 M
R=——1n ( )
NT, Q
I11. UPPER BOUND ON THE ERROR PROBABILITY

From the above detection scheme, an error occurs if .S, <
A for m C C,, or if S; > A for some | ¢ C,,. Using the
union bound, the symbol error probability can be bounded as

Pe < Pr{ U Sy > A} + PT{ U S < A} (11)

ngCm mCCp,
< (M —Q)Pr{S; > A} + QPr{S,, < A}.
We apply the Chernoff bound to obtain an upper bound for
PI‘{Sl > A}

Pr{S; > A} < exp(~NE(4))

A=1+(1—-¢)

nats in NT/6 seconds, so

(10)

(12)



where
E(A) = sup[sA — In(Efexp(s|W1,1*)])]
= sup[s4 + In(1 — s)] (13)
=A—-1-—1In(A).
. M 1/Q
Hence, noting that M — Q < @ 0 , We can bound the
first term of right hand side in equation (11) as:

(M- QPr(s; > Ay < Q(Y) " Prisi = 4)

< Qexp (_% In (Jg) {(1 — E)Plg\]; Ty/Ts)
e

é pe,lu(M7 R7976)~ (14)

All above results are based on general multipath fad-
ing assumption. To upper bound the second term of right
hand side in (11), we assume that the fading is Rayleigh
for simplicity. Under Rayleigh fading channel assumption,
G, are i.i.d. circularly-symmetric complex Gaussian random
variables. It follows that |G,,\/PT./(QONy) + Wy ,,|* are
i.i.d. exponentially distributed random variables with mean
PT!/(QO0Ny) + 1. Applying the Chernoff bound and using
(10) yields

QPr{S,, < A} = QPr{NS,, < NA}

< Quxp (N sup(sA ~ n(Eexp(s|Z; + Wi, ) )

= Qexp (—Nsup{sA —In(1—[1+ ey ]s)}>

s<0 QGNO
M
_ Qe 7““(@) —ePT!
TP RT, |QON,+ PT!

ePT!

—h (1 Q9N0+PT;)]>

épe,Qu(M; R7076)'
(15)

Using (11), (14), and (15), we can bound the symbol error
probability

Pe S H(l(i)nl>{pe,1u(M7 R707€) +pe,2u(Ma R707€)}- (16)

ec (0,

Now by choosing the parameter ¢, we can optimize per-
formance. Noting that p. 1, is strictly increasing with e
while p. o, Iis strictly decreasing, we choose e so that
Deiu(M, R, 0,€) = pe 2u (M, R,0,¢). It is satisfied when

(= e 5 QINo + PT, {1 _ RT,N,
PT} PT} an
_Q0No (1 . L )} .
PT QONo
For € in (0,1), the data rate R must be in the range
PT! Q6 PT!
0<R<N0Ts_fln<1+Q0N0>’ (18)

Substituting ¢q in (17) for € in (16), we can upper bound
(16) by

Pe S 2pe,1u(M7 Rv 9, 60)

19
:2Qexp(—ln(]g>Er(R,9)) (19)
where
E(R,0) =
0 (RI,N, QON, PT!
RTS{ pri TP M <1+Q9N0) ! 20)
L (RTNo  QONo (. PT!
“\"pr TP QON. ) ) |-

Expression (19) gives us a strict upper bound for symbol error
probabilities in Multi-tone FSK. M increases proportionally
with bandwidth. As bandwidth grows to infinity, M becomes
infinite, the upper bound of error probability can be arbitrarily
small if E.(R,0) > 0. From the definition of E.(R,0),
we know that, as long as R is in the range given by (18),
E.(R,0) > 0 is satisfied.

Equation (18) gives us insights to understand the roles of @
and 6 in achieving capacity limit with infinite bandwidth. For
data rates in the range defined by (18), we can use Multi-tone
(or single-tone) FSK system to transmit data with arbitrarily
small error probability when bandwidth is large enough. The
first term PT!/NyTs in the upper limit is the capacity of
AWGN channel considering the effect of the delay spread T.
We can let the second term be very small so that the AWGN
capacity limit can be achieved in Rayleigh fading channel.
The result coincides with the capacity limit of Multi-tone FSK
proved in [6].

For a given power constraint, to make the second term
small, we can adjust T, 6, and Q. Increasing T will decrease
the second term as long as the channel assumption T < T,
is satisfied. As T, grows, T, can be increased such that R
approaches the infinite bandwidth capacity. This is consistent
with the view that when T, approaches infinity, the fading
channel is equivalent to an AWGN channel. Decreasing @ is
another method to improve the system capacity. If we increase
Q@ (using Multi-tone FSK), 6 should be decreased more than
single-tone FSK in order to achieve the same system capacity
limit. 6 is a parameter of time efficiency, while @ is related
to frequency efficiency. They are interchangeable in the sense
that Q0 together effect the second term. So when frequency
efficiency is increased, we can decrease time efficiency to
counteract the effect and vice versa.

1V. LOWER BOUND ON THE ERROR PROBABILITY

In last section, we discussed an upper bound for error
probability. In this section, we will derive a lower bound.
Substituting (7) into (8), we have

1 N PT!

Sy =<{N D n=1 ‘Gk,n Qon, T Wh.n
1 N 2
N Zn:l |Wk,n

2

k C Ch,

Otherwise.
(21)




Sk is a x? random variable with 2V degrees of freedom,
because Gy, ,, and Wy, ,, are i.i.d circularly symmetric complex
Gaussian random variables of unit variance. The cumulative
distribution function of a x? random variable with 2V degrees
of freedom can be exactly evaluated ( [9, §2.1.4]).

Define

/

N 2
£ p NA
Pe,11 {Z Gkn QQN +Wkn < }
NA — 1 Na '
:exp{_'1+ PT! }ZE<1+ PT! )
QGNO k=N QON,
I
=exp{—-NA'} Z NA ) (22)
where A’ = W Because (NA’)*/k! is positive

for all k, we have

(van®  (van®
>, k> B
k=N
Therefore, we can lower bound p. 1; by applying (23) in (22)

NN
Pe,11 Zexp{_NA’+ln[(NA) ]}

(23)

N (24)

Using Stirling’s approximation 27 NNYe(-N+ v <

N! < V2r NNNe(=N+15) | we then obtain

et > exp{—N(A"—1—1In(A") + 01(N))} (25)
where
(N) = - 1n(2rN) 4 — (26)
oL = o AT T 1oNz
goes to zero with increasing N.
Similarly, we define
N
Peot = Pr {Z |Wk;}n|2 > NA}
n=1
N—-1 k
= exp{-NA} Y~ (NA)” (27)
k=0
Because (N A)*/k! is positive for all k, we have
N— _
K T (N=-1)!
k=0
Therefore,
(NA)N—l
DPe,21 > exp {—NA + In {m ) (29)
Applying Stirling’s approximation, we then obtain
Pe,ot > exp{—N(A—1—In(A4) + 02(N))} (30)
where o2 (V) is given by
02(N) = —— In(2r N A?) + ! (31)

2N 12N?

which goes to zero with increasing N.
We now observe that

De > Z Pr(one error) —

> Qpe,t + (M — Q)pe,2t —

e Q)(zg Q-1 2 Q(Q2 D A32)
which is a lower bound for error probability. In the discussion
of the upper bound, we know that Mp. 1,, and Mp. o, are
of the same order, and decrease to zero with increasing M.
Hence, when we discuss the lower bound (32) in the infinite
bandwidth condition, we can simply omit the last three terms.
If pe,11 > pe,21, then we have Qpe, 11+ (M —Q)pe 21 > Mpe ai;
otherwise, Qpe 11+ (M — Q)pe,21 > Qpe,1:- Consequently, we
get two lower bounds for p. when N — oo, one is Qpe, 1,
the other is Mp. ;. We obtain

Z Pr(two errors)
(M - Q)Qpe,lupeQu

. —lInp,
1\}1m
o = (@pent) . —In(Mpe )
< : ,
< min( i =R )
—1 —In (M
< min( lim —In (Pe.) li M)

1m
N ’Nﬁoo N

N—o0

1/Q
using the inequality M < (g)

NL/@
~m((5) )
lim )
N—oo N

—1In (p,.
< min(Nlim w,

using (25) and (30)

<min(A’ —1—-1In(A"),A—1—1In(A) — RTs/(Q0))
_ RGTS E.(R,6). (33)

For ¢ in its allowable range (0,1), R should satisfy (18). We
further have

. —Infp./(2Q)] . —0In[p./(2Q)]
lim ———~= lim —M——=
— 00 — 00 NRTq
eom(y) Y ‘ (34)
L —01n (p.)
= Nh_rgo 7NRTS < ET(R, 9)

This upper bound for limy oo (—In[p./(2Q)])/In QQI) is
equivalent to the lower bound of error probability when N
goes to infinity. The reverse inequality follows from (19), the
upper bound of error probability. Hence, we have

L —Inlpe/2Q))

In (g)
Therefore E,.(R, 0) represents the true exponential dependence
of the error probability on In g) for M sufficiently large.
Letting @ = 1 in (19), and (35), we can get the results
presented in [8] and [7]. So these results derived in this paper

are more general versions, which are valid both for FSK and
Multi-tone FSK systems.

E.(R,0). (35)

N—o0



V. NUMERICAL RESULTS

To illustrate in a straightforward form, we plot simulation
results in Figure 1. We let T, = 1us, Ty = 0.1us, P = 1000,
No = 1, R = 800 nats/sec and study different upper
bounds and lower bounds for @ = 1 (single-tone FSK),
Q = 2 (two-tone FSK), and @ = 4 (four-tone FSK) when we
increase the total number of available tones M, which equals
to increase the system bandwidth B because B = M/T..
We can find in (18) that Q6 determines how close the data
rate can get to the upper limit PT./NyTs. Furthermore, to
keep Q0 unchanged, we have the same peak power in these
schemes when the average power is the same. Thus, we choose
6 = 0.01, 0.005, 0.0025 for Q = 1, 2, 4 respectively so that
Q0 is a constant.
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Fig. 1. Upper and lower bounds of error probability for single-tone FSK,

two-tone FSK, and four-tone FSK when Q8 is fixed and system bandwidth
IS Increasing.

In Figure 1, error probabilities decrease with M when
we use data rates smaller than the upper limit in (18). The
difference between upper bounds and lower bounds goes to
zero, which shows these two bounds are asymptotically tight.
Under the same power and data rate condition, the error
probabilities of Multi-tone FSK are higher than single-tone
FSK. The more tones are used in transmission, the higher is
error probability. However, it does not mean that Multi-tone
FSK is worse than FSK.

In systems with peak power constraint, Multi-tone FSK
will have advantages over FSK. In figure 2, we compare
the performance for FSK, two-tone FSK, and three-tone FSK
under this assumption. By letting P = 1000, 2000, 3000 for
Q = 1, 2, 3 respectively, we keep the peak power and the
duty cycle constant. The data rates are R = 20 nats/sec.

The results show that the upper bounds of error probability
for Multi-tone FSK are lower than that for FSK. We know
these upper bounds are tight in the large bandwidth regime.
Hence Multi-tone FSK outperforms FSK in this peak power
constrained situation. Actually, Multi-tone FSK will also per-
form better than FSK in the bandwidth-limited channel. The
performance comparison can be found in [10].
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Fig. 2. Upper bounds of error probability for single-tone FSK, two-tone
FSK, and three-tone FSK when peak power and duty cycle are fixed, and
bandwidth is increasing.

V1. CONCLUSION

In this paper, we obtain upper and lower bounds for Multi-
tone FSK and derive the error exponent which represents
the true exponential dependence of the error probability on
the system bandwidth. We discuss the relationship among
capacity, frequency and time efficiency and compare the
performance of FSK and Multi-tone FSK. We conclude that
FSK is the preferable scheme when average power is the active
constraint, and Multi-tone FSK may be preferable when peak
power is a limiting factor.
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