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Abstract— In this paper, we consider the task of designing a
physical network topology that meets a high level of reliability
with unreliable network elements. Our simple network model
is one in which nodes are invulnerable and links are subject
to failure in a statistically independent fashion. Our reliability
metrics are all- and two-terminal reliability. In our treatment of
the problem, we bring together previous contributions in the field
and introduce additional insights that allow us to design networks
which meet prescribed reliability levels. We address both the case
when links are very reliable, and the often neglected case, where
links are very unreliable. We focus on Harary graphs as candidate
topologies, as they have been shown to possess many attractive
reliability properties, and develop new results for this family of
graphs.

Index Terms— network reliability, network design, Harary
graphs

I. I NTRODUCTION AND MOTIVATION

Network reliability — the notion of connectedness of
network nodes in the face of component failures — is an
important consideration in network design for obvious reasons.
The network reliability synthesis problem considered herein
is the design of a network which achieves a prescribed level
of “reliability”, while minimizing the number of components
used.

A large portion of previous contributions to the research
area of network reliability are of theoretical nature with little
immediate applicability to the design of real communication
networks. In addition, existing results in the field are generally
fragmented and a cohesive methodology for planning a net-
work, based on different reliability metrics, has yet to emerge.
This work is a step towards bridging the gap between theory
and practice by providing design tools which are of immediate
value in the planning of networks.

In addition, most reliability studies to date have focused
on the analysis and design of networks when links are
very reliable. However, the design of networks when links
are unreliable, which is addressed in this paper, should not
be overlooked for several reasons. In situations where the
probability that a network is connected is quite small, some
degree of connectedness in the network could still allow
for important functions to be carried out, such as relaying
emergency signals in times of distress. Another reason is
that even small probabilities of connectedness could allow for
acceptable expected times to failure for emergency functions
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or procedures to be carried out should a network come under
stress.

The ideas presented in this work are applicable to the design
of local-area networks (LANs) and metropolitan-area networks
(MANs), where communication link costs are inexpensive
enough to permit an artificial topology to be imposed on
a set of network nodes. In addition, the model we will be
using in this paper, where links are vulnerable and nodes are
invulnerable, is particularly relevant to optical networks where
the electronics in nodes are significantly more reliable than the
optics in communication links.

Recently, network reliability metrics have been broadened to
include some measure of performance, such as throughput or
delay, since for many networks a more meaningful measure
than connectedness is the degree to which network perfor-
mance is degraded [1]. Connectedness measures, however,
remain useful in situations where network performance is con-
sidered satisfactory as long as the network remains connected,
or when the network’s ability to provide a minimal level of
service is of interest. In addition, connectedness is the relevant
metric in many military applications, where capacities of net-
work components are over-designed, such that connectedness
of nodes ensures acceptable network performance.

Most of the necessary background, including definitions,
notation and relevant work completed in the field, are cov-
ered in the following section. Additional background will be
provided throughout the work when necessary. Section III
outlines the modelling assumptions employed in this work. In
section IV, we present bounding techniques which are valuable
in the design of reliable networks. Section V specializes the
techniques in section IV to Harary graphs, and introduces new
results for this family of graphs. Finally, section VI concludes
this work.

II. GRAPH THEORY BACKGROUND

Graph theory is generally used as a framework for modelling
and analysis in network reliability studies. By exploiting the
richness of graph theory, researchers have identified a myriad
of metrics to define and assess the reliability of networks.
These criteria can be broadly categorized as either determin-
istic or probabilistic reliability metrics. LetK ⊆ N be the
set of nodes in the graph underlying a network among which
communication is of interest. Then, ak-terminal reliability
metric reflects the difficulty in disrupting communication
among any two nodess, d ∈ K. When |K| = n, this is
called anall-terminal metric, and when|K| = 2, it is called a
two-terminal metric. Before delving into a discussion of these



different metrics, we present some necessary graph theoretic
background and notation.

A. Definitions and notation

In this work, networks will be modelled as undirected
graphs. Anundirected graph G is an ordered pair of sets
(N,E), where the elements ofN are nodes and the elements
of E are edges. Edges in a graph will correspond to links in a
network, and nodes in a graph will correspond to nodes in a
network. Anedge is an unordered pair of distinct nodes. The
sizes of setsN andE are denoted byn and e, respectively.
Two nodes areadjacent if they are elements of an edge. An
edge isincident at its end nodes. Theincidence matrix A of
an undirected graph is then×e matrix (each row corresponds
to a node and each column to an edge) with the(i, j)th entry
defined as follows:

aij =
{

1, if edge j is incident at nodei,
0, otherwise.

The size of the set of edges incident at nodei is its degree
and is denoted bydi. The smallest degree of all nodes in a
graph is denoted byδ, and the largest degree is denoted by∆.
If ∆ = δ then the graph isregular of degree∆. If a graph is
not regular butδ = �2e/n�, then the graph isalmost-regular.
The n-node graph which has all of its nodes adjacent is the
complete graph Kn. GraphG′ = (N ′, E′) is a subgraph of
G = (N,E) if N ′ ⊆ N andE′ ⊆ E and if the endpoints of
all edges inE′ lie in N ′.

A path is a sequence of distinct nodes such that consecutive
nodes share an edge. Any two paths areedge-disjoint if they
have no edges in common andnode-disjoint if they have no
nodes in common apart from the end nodes. The maximum
length of any shortest path between any two nodes in a graph
G is the diameter k(G) of the graph. If we modify the
definition of a path such that the first and last nodes in the
sequence are identical, then we have the definition of acycle.

Two distinct nodes areconnected if there exists a path
between the nodes. An undirected graph isconnected if there
exists a path between every pair of distinct nodes. A (minimal)
set of edges in a graph whose removal disconnects the graph
is a (prime) edge cutset. A (minimal) set of nodes which has
the same property is a(prime) node cutset. The minimum
cardinality of an edge cutset is theedge connectivity or
cohesion λ(G). The minimum cardinality of a node cutset is
the node connectivity or connectivity χ(G). Analogous two-
terminal metrics are the edge-connectivityλsd(G) and node-
connectivityχsd(G) with respect to a pair of nodess andd.
The two-terminal edge (respectively, node) connectivity of a
graph is the minimum number of edges (respectively, nodes)
whose removal disconnects the node pair.

An undirected graphG is a tree if it is connected and has
no cycles. Another property of a tree is that it hasn−1 edges.
Given a connected, undirected graphG = (N,E), let E′ be
a subset ofE such thatT = (N,E′) is a tree.T is called a
spanning tree of G. We denote the number of spanning trees
in G by t(G). Clearly, the deletion of any edge in a tree results

in the disconnection of the tree. As a result, prime edge cutsets
of the graphG can be formed from one edge of a spanning
tree ofG and some of the edges not in this spanning tree.

B. Deterministic metrics

Two rudimentary, deterministic, all-terminal reliability crite-
ria are the cohesion and connectivity of the graph underlying a
network. Ann-node,e-edge graph having maximum cohesion
is a max-λ graph. Similarly, ann-node,e-edge graph having
maximum connectivity is amax-χ graph. The following result
relates connectivity and cohesion to the basic parameters of a
graph [2]:

Theorem 1

χ ≤ λ ≤ δ ≤ 1
n

n∑
i=1

di = 2e/n.

Harary has shown [3] that the bounds in Theorem 1 can be
achieved, through the construction ofHarary graphs. Harary
graphs are discussed below, in addition to the more general
family of circulant graphs to which they belong. Since these
bounds can be achieved, we see that any max-χ graph is
necessarily max-λ, although the converse is not true in general.

More refined deterministic criteria for network reliability
can also be defined, such as the number of edge or node cutsets
of orderλ or χ in a max-λ or max-χ graph, respectively. A
graph issuper-λ if it is max-λ and every edge disconnecting
set of orderλ isolates a point of degreeλ. Similarly, a graph
is super-χ if it is max-χ and every node disconnecting set of
orderχ isolates a point of degreeχ.

An alternative measure of a graph’s ability to remain
connected is the number of spanning trees it possesses. The
characterization of graphs with a maximum number of trees
has been solved for sparse graphs when the number of edges is
at mostn+3, and for dense graphs when the number of edges
is at mostn/2 less than that of the complete graphKn [4]–[6].
In addition, for the remaining cases where at mostn edges are
missing fromKn, Kel’mans, Petingi, Boesch, Suffel, Gilbert
and Myrvold have described graphs with a maximum number
of trees, assuming that they are almost regular [7]–[10].

C. Probabilistic metrics

Deterministic reliability metrics do not provide adequate
measure of the susceptibility of networks to disconnection
because these metrics do not account for the reliability of
network components. Probabilistic reliability criteria, on the
other hand, require knowledge of deterministic network prop-
erties, in addition to the reliability of network components, and
thus yield a more meaningful measure of network reliability.
For this reason, this work will primarily be concerned with
probabilistic reliability criteria.

Probabilistic reliability metrics require the concept of a
probabilistic graph. Aprobabilistic graph is an undirected
graphG = (N,E) where each node inN has an associated
probability of being in an operational state and likewise for



each edge inE. In probabilistic reliability analyses, networks
under stress are modelled as probabilistic graphs.

Most approaches to probabilistic reliability analysis have fo-
cused on the probability that a subset of nodes in a network are
connected. Thus, the all-terminal reliability of a probabilistic
graph can be defined as the probability that any two nodes in
the graph have an operating path connecting them. If links fail
in a statistically independent fashion with probabilityp, then
the all-terminal reliabilityPc(G, p) is given by:

Pc(G, p) =
e∑

i=n−1

Ai(1 − p)ipe−i (1)

= 1 −
e∑

i=λ

Cip
i(1 − p)e−i (2)

whereAi denotes the number of connected subgraphs withi
edges, andCi denotes the number of edge cutsets of cardi-
nality i. For values ofp sufficiently close to zero,Pc(G, p)
can be accurately approximated by1 − Cλp

λ(1 − p)e−λ. In
this case, an optimally reliable graph — one that achieves
the maximumPc(G, p) over all graphs with the same number
of nodes and edges — has a minimum number of cutsets of
size λ = �2e/n�. Therefore, in this regime ofp, optimally
reliable graphs are super-λ graphs. For values ofp sufficiently
close to unity,Pc(G, p) can be accurately approximated by
the first term in (1),An−1(1 − p)n−1pe−n+1, whereAn−1 =
t(G). Therefore, for values ofp sufficiently close to unity, an
optimally reliable graph has a maximum number of spanning
trees.

The two-terminal reliability of a probabilistic graph is the
probability that a given pair of nodes,s and d, have an
operating path connecting them:

P sd
c (G, p) =

e∑
i=wsd

Asd
i (1 − p)ipe−i (3)

= 1 −
e∑

i=λsd

Csd
i pi(1 − p)e−i (4)

wherewsd is the shortest path length between nodess and
d, Asd

i is the number of subgraphs withi edges that connect
nodess and d, λsd is the minimum number of edge failures
required to disconnect nodess andd, andCsd

i is the number
of cutsets with respect to nodess andd of cardinalityi. If we
wish to maximize mins,d

[
P sd

c (G, p)
]

whenp is small, then it
is apparent from (4) that the property of super-λ is a necessary
condition. This is becauseλ = mins,d [λsd], and for super-λ
graphs,Csd

λsd
attains the minimum bound of two.

D. Harary graphs and circulants

As previously mentioned, Harary graphs, first presented in
[3], achieve the bounds presented in Theorem 1. This result
implies that Harary graphs also achieve the maximum value
of mins,d [λsd] and mins,d [χsd] over all graphs withn nodes
and e edges. In aH(n,∆) Harary graph where∆ is even,
each nodei, 0 ≤ i ≤ n − 1, is adjacent to nodesi ± 1, i ±
2, . . . , i ± �∆/2�(mod n); and if ∆ is odd, then each node

Fig. 1. TheH(8, 4) Harary graph.

i = 1, . . . , �(n−1)/2� is also adjacent to nodei+�n/2�. See
Figure 1 for an example of a Harary graph. Harary graphs
have the following properties [11]:

• H(n,∆) hase = 
nk/2�, χ = λ = ∆;
• H(n,∆) is regular of degree∆, unlessn and∆ are both

odd;
• H(n,∆) has one node of degree∆ + 1 andn− 1 nodes

of degree∆ if n and∆ are both odd.

Harary graphs belong to a more general family of graphs
known ascirculants. The circulant graphCn〈a1, a2, . . . , ah〉,
or more compactly,Cn〈ai〉, where0 < a1 < a2 < . . . < ah <
(n+ 1)/2, hasi± a1, i± a2, . . . , i± ah(mod n) adjacent to
each nodei. Owing to a theorem by Mader [12], which proves
that every connected node-symmetric1 graph hasλ = ∆, all
connected circulants are max-λ. Furthermore, in [13], Boesch
and Wang prove the following result:

Theorem 2 The only circulants which are not super-λ are the
cycles and the graphs C2m〈2, 4, . . . ,m − 1,m〉 with m ≥ 3,
and m an odd integer.

In [14], Wang and Yang derive the following useful result
for the number of spanning trees in circulant graphs:

Theorem 3 The number of spanning trees in the degree ∆
circulant graph G = Cn〈a1, a2, . . . , ah〉 is:

t(G) =




1
n

∏n−1
i=1

[
4
∑h

j=1 sin2 (ajiπ/n)
]
, if ∆ is even,

1
n

∏n−1
i=1

[
4
∑h−1

j=1 sin2 (ajiπ/n) − (−1)i + 1
]
,

if ∆ is odd.

In [13], Boesch and Wang examine the diameter properties
of circulants and derive lower diameter bounds for the family
of graphs. In [15], the same authors determined that even

1Two nodesu and v in a graph aresimilar if there is an automorphism
which mapsu onto v. A graph in which all nodes are similar isnode-
symmetric.



degree Harary graphs possess the fewest number of edge
cutsets of cutset cardinalityi, whenλ ≤ i ≤ 2∆ − 3. Each
cutset in the above range of cardinalities was shown to isolate
a single node in the Harary graph.

III. N ETWORK MODEL

As mentioned in the introductory section, networks will
be modelled as probabilistic graphs. In addition, we assume
the following about the the graphs underlying the networks
considered in the remainder of this paper:

• Nodes are invulnerable;
• Edges fail in a statistically independent fashion with

probability p;
• Edge capacities are assumed to be sufficiently large to

carry any possible network flow;
• Once an edge fails it cannot be repaired.

IV. B OUNDS ON PROBABILISTIC RELIABILITY METRICS

In this section, we introduce new and simple techniques
to bound the probability of connection of a network and the
probability of connection of a node pair in a network, which
are useful in carrying out any network design methodology.
The quality of these bounds are illustrated for the ten node,
degree three Harary graph in Figures 2, 3, and 4. In the
discussion that follows, we assume that all graphs are∆
regular and have maximum connectivity.

A. All-terminal reliability when p ≈ 0

In this subsection, we derive upper and lower bounds for the
probability that graphG is connectedPc(G, p). The general
approach we follow is based on enumeration of prime failure
events. We define aprime failure event as an event in which
a subset of nodes become disconnected from the rest of the
graph through the failure of the minimal number of edges.
Clearly, prime failure events are only a subset of all possible
graph disconnection events, since graph disconnection can also
occur when more than the minimal number of edges fail.
Therefore, in order to obtain an upper bound forPc(G, p), we
subtract from unity the probabilities of the mutually exclusive
prime failure events:

Pc(G, p) ≤ 1 −
e∑

i=λ

Bip
i(1 − p)e−i (5)

whereBi is the number of prime failure events of cardinality
i. To obtain a lower bound forPc(G, p), we note that any
failure scenario requires that at least one of the prime failure
events occur. Therefore, we obtain a lower bound forPc(G, p)
by subtracting from unity the union bound of the prime failure
events:

Pc(G, p) ≥ 1 −
e∑

i=λ

Bip
i. (6)

It now remains to determine the coefficientsBi. If the graph
under consideration is either trivially small, or simple and
symmetric as is the case with Harary networks, then closed

form, analytic solutions or bounds are obtainable; otherwise,
one must resort to more general techniques.

We now introduce a technique to determine the coefficients
Bi for general graphs. It is known [16] that a vector represen-
tation of the prime failure events of a graph can be expressed
in two ways as the modulo two sum of a subset of rows of a
graph’s incidence matrix. Specifically, a prime failure event
partitions a network into two subsets of nodes. Therefore,
we can obtain a prime failure event by adding modulo two
the rows that correspond to each of the nodes in one of the
partitions. Conversely, it can be shown that the modulo two
sum of any proper subset of rows of a graph’s incidence matrix
yields a prime failure event. Therefore, we can find all prime
failure events of a graph by summing modulo two the rows of
the 2n−1 − 1 subsets of the rows the incidence matrix which
yield distinct partitions of the network2. TheBi coefficients
are determined by simply counting the number of prime failure
events obtained which have cardinalityi.

Another approach to upper boundingPc(G, p) whenp ≈ 0
is to compute a lower bound on the first few terms of the
summation in (2) and to then subtract these terms from unity.
As discussed in section II-D, Boesch and Wang demonstrated
in [15] that even degree Harary graphs possess the fewest
number of edge cutsets of cardinalityi, whenλ ≤ i ≤ 2∆−3.
The number of cutsets of cardinalityi achieved by Harary
graphs in this range isn

(
e−∆
i−∆

)
. This expression is thus a lower

bound achievable by any∆ regular graph withn nodes. Using
this result, we obtain the following upper bound forPc(G, p)
for any ∆ regular graph withn nodes:

Pc(G, p) ≤ 1 −
2∆−3∑
i=λ

n

(
e− ∆
i− ∆

)
pi(1 − p)e−i.

B. Two-terminal reliability when p ≈ 0

If instead of the probability that graphG = (N,E) is
connectedPc(G, p), we desire the probability that nodess, d ∈
N are connectedP sd

c (G, p), we can use an approach similar
to that of section IV-A to obtain the following bounds:

1 −
e∑

i=λsd

Bsd
i pi ≤ P sd

c (G, p) ≤ 1 −
e∑

i=λsd

Bsd
i pi(1 − p)e−i

(7)
whereBsd

i is the number of prime failure events with respect
to nodess and d of cardinality i, and λsd is the minimum
number of edge failures required to disconnect nodess andd.

In order to determine the coefficientsBsd
i , we use an

approach similar to that of§IV-A. Since we are only interested
in prime failure events ofG which disconnect nodess and
d, we add modulo two to the row corresponding tos all
possible subsets of the remaining rows of the incidence matrix,
except for the row corresponding tod. Clearly, there are2n−2

such possible subsets. This will provide us with a binary

2Note that if we sum modulo two the rows of all2n possible subsets,
then we are counting every partitioning scenario twice, including the null and
complete partitions.



vector representation of all possible prime failure events which
disconnects andd.

In a similar manner to section IV-A, we can upper bound
P sd

c (G, p) by lower bounding the first few terms in the
summation of (4). We lower boundCsd

i for λ ≤ i ≤ 2∆−3 for
any ∆ regular graph withn nodes, and obtain the following
upper bound forP sd

c (G, p):

P sd
c (G, p) ≤ 1 −

2∆−3∑
i=λ

2
(
e− ∆
i− ∆

)
pi(1 − p)e−i.

C. All-terminal reliability when p ≈ 1

We approach the task of boundingPc(G, p) in the regime
of p ≈ 1 in an analogous fashion to section IV-A. The events
of interest here, however, are the existence of spanning trees
rather than prime failure events. A lower bound forPc(G, p) is
obtained by summing the events that correspond to a spanning
tree existingand the remaining links in the network being
inoperative:

Pc(G, p) ≥ t(G)(1 − p)n−1pe−n+1. (8)

An upper bound forPc(G, p) can be obtained be invoking the
union bound on the spanning tree events:

Pc(G, p) ≤ t(G)(1 − p)n−1. (9)

It now remains to determinet(G). Fortunately, this is a well
studied problem, andt(G) is known [17] to be the determinant
of an (n − 1) × (n − 1) matrix T(G) whose(i, j)th entry is
defined as follows:

tij =




di, if i = j,
−1, if i and j are adjacent,
0, otherwise.

D. Two-terminal reliability when p ≈ 1

Whenp ≈ 1, most of the links in a network have failed and
the underlying graph has relatively few edges. In such sparsely
connected graphs, the disconnection of nodess andd is nearly
equivalent to a set of edge-disjoint paths betweens andd all
having failed. To be precise, the disconnection of nodess and
d actually implies the failure of a set of∆ edge-disjoint paths
betweens andd, but the converse is not necessarily true. This
is because each of the edge-disjoint paths can fail but there
may still exist a path betweens and d through the use of
segments of the failed disjoint paths. Hence, we can lower
boundP sd

c (G, p) as follows:

P sd
c (G, p) ≥ 1 − Pr(∆ edge-disjoint paths fail)

= 1 −
∆∏

i=1

Pr(pathi fails)

= 1 −
∆∏

i=1

[
1 − (1 − p)li

]
(10)

where li is the length of theith edge-disjoint path, and the
second and third lines follow from the independence of edge
failures.

The value of mins,d

[
P sd

c (G, p)
]

when p ≈ 1 corresponds
to a node pair with shortest path length equal to the graph
diameterk(G). A simple lower bound for mins,d

[
P sd

c (G, p)
]

is (1 − p)k(G), which is just the probability that the shortest
path between the most distant node pair is available:

(1 − p)k(G) ≤ mins,d

[
P sd

c (G, p)
]
. (11)

A tighter lower bound for mins,d

[
P sd

c (G, p)
]

can be derived
using (10) if the lengths or an upper bound on the lengths of
the edge-disjoint paths joining the most distant node pair is
available.

V. A NALYSIS OF HARARY GRAPHS

In this section, we specialize the results of the previous
section to the family of Harary graphs. Our reason for fo-
cusing on Harary graphs is that they possess good reliability
properties in thep ≈ 0 regime. Specifically, we showed in
section II-C that whenp ≈ 0, a necessary condition for
Pc(G, p) and mins,d

[
P sd

c (G, p)
]

to be maximized is that
G must be super-λ. Among super-λ graphs, even degree
Harary graphs are especially good whenp is small, since they
achieve the fewest number of cutsets of cardinalityi, when
λ ≤ i ≤ 2∆ − 3. Admittedly, however, whenp ≈ 1 Harary
graphs are suboptimal graphs as they possess relatively few
spanning trees and large diameters. In fact, it is easy to find
circulant graphs with the same number of nodes and edges
which possess more spanning trees and smaller diameters than
the corresponding Harary graphs. Nonetheless, we justify our
attention to Harary graphs in this work since highly reliable
links (i.e.p ≈ 0) are more realistic than highly unreliable links
(i.e. p ≈ 1) in a network.

Before beginning our analysis of Harary graphs, we prove
an intuitive and useful theorem regarding this family of graphs.

Theorem 4 Consider a Harary graph H(n,∆), where ∆ is
even. Partition the n nodes into a subset of j nodes Sj and a
subset of n− j nodes Sn−j , where we assume that j ≤ n− j.
Then, the minimum number of edges joining Sj to Sn−j occurs
when the j nodes in Sj (and hence, the n− j nodes in Sn−j)
are consecutively numbered (modulo n).

To prove the theorem, we need the following lemma:

Lemma 1 Partition the n nodes of the H(n,∆) Harary graph
into a subset of j ≤ n − j nodes Sj , and a subset of n − j
nodes Sn−j , such that the nodes in Sj (and hence, the n− j
nodes in Sn−j) are consecutively numbered (modulo n). Then,
the number of edges joining Sj to Sn−j is:

∆, if j = 1,
j∆ − 2

(
j
2

)
, if 2 ≤ j ≤ �∆/2� + 1,


∆/2�2 + 
∆/2�, otherwise.
(12)

Proof. The case ofj = 1 is trivial. When2 ≤ j ≤ �∆/2�+1,
a consecutive partition ofj nodes allows the nodes inSj to
be fully connected. In this case, the number of edges joining
Sj to Sn−j follows from the fact that the total number of



edge endpoints incident atSj ’s nodes isj∆ and that the
total number of edge endpoints in a fully connected subgraph
of j nodes is2

(
j
2

)
. For the remaining case, when the nodes

are consecutively arranged, the nodes at either end of theSj

partition possess
∆/2� connections toSn−j , the nodes which
are second from either end of the partition possess
∆/2�−1
connections toSn−j , and so on. Hence, the total number
of edges joiningSj to Sn−j is the constant2

∑�∆/2�
i=1 i =(
∆/2�2 + 
∆/2�), as required.�

We are now ready to prove Theorem 4:
Proof of Theorem 4. The case ofj = 1 is trivial. Consider now
the case of2 ≤ j ≤ ∆/2+1. Note that minimizing the number
of edges joiningSj to Sn−j is equivalent to maximizing the
number of internal edges shared by the nodes of one of the
partitions. When2 ≤ j ≤ ∆/2 + 1, a consecutive partition of
j nodes allows the nodes inSj to be fully connected, yielding
the maximum number of internal connections, and hence the
minimum number of external edges.

For the remaining case where∆/2 + 2 ≤ j ≤ n/2, we
carry out the proof by induction. We may use our result
for j = ∆/2 + 1 as our base case. Now, assume that a
consecutive arrangement ofj nodes achieves the minimum
number of external edges. Let us now proceed by contradiction
by assuming the existence of a partitionS′

j+1 of j + 1 nodes
which achieves a smaller number of external edges than the
number achieved by a consecutive arrangement ofj+1 nodes
in Lemma 1.

If we can find a node inS′
j+1 which contains at least∆/2

edges toS′
n−j−1, then we move this node toS′

n−j−1. This
creates a partitioning of the graph intoj and n − j nodes
which achieves fewer edges joining the two partitions than a
consecutive arrangement. This would contradict our induction
hypothesis, implying that a consecutive arrangement of nodes
is optimal.

Now, let us consider the case where there does not exist a
node inS′

j+1 which contains at least∆/2 edges toS′
n−j−1.

We proceed by finding a pair of consecutive nodes in the
graph such that one of the nodesu belongs toS′

j+1 and the
other nodev belongs toS′

n−j−1. Examining the window of
∆ + 1 consecutive nodes centered atu, our assumption that
there does not exist a node inS′

j+1 which has at least∆/2
edges toS′

n−j−1 requires that at least∆/2 + 2 nodes in this
window belong toS′

j+1. We now consider the window of∆+1
consecutive nodes centered atv. Since the window formed by
the union ofu andv’s windows of length∆+1 has size∆+2
nodes, there can be at most∆/2 nodes in this larger window
that belong toS′

n−j−1. By moving v to S′
j+1, we create a

partitioning of the graph intoj+2 andn− j−2 nodes which
achieves fewer edges joining the two partitions than that of the
S′

j+1 andS′
n−j−1 partitioning, and hence, fewer than that of

a consecutive arrangement ofj andn− j nodes. Note that by
movingv to S′

j+1, we have not created a node inS′
j+1 which

possesses at least∆/2 edges to the other partition. This is
because thej + 1 nodes initially inS′

j+1 only gain internal
edges by movingv to S′

j+1, andv now possesses fewer than
∆/2 edges to the other partition. Thus, we can continue in

this way – finding a pair of consecutive nodes in different
partitions and moving one node to the other partition, always
decreasing the number of edges connecting the partitions, until
we have increased the size of our initial partition ofj nodes
to n−j nodes. At this point, we have created a partitioning of
the graph intoj andn− j nodes which achieves fewer edges
joining the partitions than the partitioning of the graph in our
induction hypothesis, which was assumed to be optimal. This
is a contradiction, implying that a consecutive arrangement of
nodes is optimal.�

A. All-terminal reliability when p ≈ 0

Every graph disconnection scenario can be viewed as a
partitioning of the graph into two subsets of nodes which are
disconnected. Now, since a partition ofj consecutive nodes
minimizes the number of edges joiningSj to Sn−j in an
even degree Harary graph, the probability that a partition ofj
nodes becomes disconnected from a partition ofSn−j nodes is
maximized when the partition ofj nodes are consecutive. We
can therefore form an upper bound for the probability of graph
disconnection (and hence, a lower bound for the probability of
graph connection) by upper bounding the probability ofSj and
Sn−j becoming disconnected by the consecutive case, and then
employing a union bound on these events. Furthermore, since
theH(n, 2�∆

2 �) Harary graph is a subgraph of theH(n,∆)
Harary graph, the all-terminal reliability of an odd degree
Harary graphs is lower bounded by the all-terminal reliability
of the Harary graph with degree one less. Thus, a lower bound
for Pc(G, p) for a Harary graphH(n,∆) is:

Pc(G, p) ≥ 1 −

np∆ +

�∆/2�+1∑
i=2

(
n

i

)
pi∆−2(i

2)

+
�n/2�∑

i=�∆/2�+2

(
n

i

)
p�∆/2�2+�∆/2�


 .

(13)

Because cutset failure events were used to derive (13), the
bound is tight forp close to zero. We can derive a slightly
looser lower bound forPc(G, p) by bounding some of the
terms in (13):

Pc(G, p) ≥ 1 −
(
np∆ +

⌊
∆
2

⌋(
n⌊

∆
2

⌋
+ 1

)(
p2∆−2

−p�∆/2�2+�∆/2�
)

+ p�∆/2�2+�∆/2�
[
2n−1 +

1
2

(
n

�n/2�
)
− n− 1

])
.

(14)

The quality of these bounds is illustrated in Figure 2 for
the ten node, degree three Harary graph. The bounds plotted
are quite tight for values ofp less than approximately 0.1.
Furthermore, the more useful upper bounds on the probability
of disconnection are tighter than the lower bounds. The
bounds derived here thus useful tools for the design of Harary
networks in thep ≈ 0 regime.
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Fig. 2. Probability of graph disconnection versusp for H(10, 3). “ATR,
simple lower bound” refers tonp∆(1−p)e−∆, “ATR, general, lower bound”
refers to (5), “ATR, general, upper bound” refers to (6), “ATR, summation,
upper bound” refers to (13), and “ATR, closed form, upper bound” refers to
(14).

B. Two-terminal reliability when p ≈ 0

The derivation of a lower bound for the node pair connection
probabilityP sd

c (G, p) is virtually identical to that ofPc(G, p)
for p close to zero in section V-A. The difference is that we are
only interested in partitions of the network nodes that result
in nodess and d residing in different partitions. Hence, we
modify (13) to obtain:

P sd
c (G, p) ≥ 1 −


2p∆ + 2

∆/2+1∑
i=2

(
n− 2
i− 1

)
pi∆−2(i

2)

+2
�n/2�∑

i=∆/2+2

(
n− 2
i− 1

)
p�∆/2�2+�∆/2�


 .

(15)

In a manner similar to section V-A, we can derive a slightly
looser upper bound forP sd

c (G, p):

P sd
c (G, p) ≥ 1 −

(
2p∆ + 2

⌊
∆
2

⌋(
n− 2⌊

∆
2

⌋
) (

p2∆−2

−p�∆/2�2+�∆/2�
)

+ p�∆/2�2+�∆/2�
[
2n−2 +

(
n− 2
�n−2

2 �
)
− 2

])
.

(16)

The quality of these bounds is illustrated in Figure 3 for the ten
node, degree three Harary graph. As in the all-terminal case,
the two-terminal bounds plotted are quite tight for values of
p less than approximately 0.1, and the upper bounds on the
probability of disconnection are tighter than the lower bounds.
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Fig. 3. Worst-case probability of node pair disconnection versusp for
H(10, 3). “TTR, simple lower bound” refers to2p∆(1 − p)e−∆, “TTR,
general, lower bound” refers to the right inequality of (7), “TTR, general,
upper bound” refers to the left inequality of (7), “TTR, summation, upper
bound” refers to (15), and “TTR, closed form, upper bound” refers to (16).

C. All-terminal reliability when p ≈ 1

For p close to unity, we boundPc(G, p) using the approach
outlined in section IV-C, which requires knowledge of the
number of spanning trees in a graph. We specialize Theorem
3 to Harary graphs:

Lemma 2 The number of spanning trees in the degree ∆
Harary graph is:

t(G) =




1
n

∏n−1
i=1

[
4
∑h

j=1 sin2 (jiπ/n)
]
, if ∆ is even,

1
n

∏n−1
i=1

[
4
∑h−1

j=1 sin2 (jiπ/n) − (−1)i + 1
]
,

if ∆ is odd.

The quality of these bounds is illustrated in Figure 4 for the
ten node, degree three Harary graph. In general, it appears
that Harary graphs have fewer spanning trees than many of
its circulant counterparts with the same number of nodes and
edges. For example, the Harary graphH(10, 4) possesses
30250 spanning trees, whereas the circulantC10〈1, 3〉 pos-
sesses 40500 spanning trees. For values ofp close to 1 this
translates to a probability of connection forH(10, 4) which is
smaller than that ofC10〈1, 3〉 by approximately10250(1−p)9.

D. Two-terminal reliability when p ≈ 1

When the probability of link failurep is close to unity,
we bound the probability of node pair connection using the
technique outlined in section IV-D. This technique requires
knowledge of the edge-disjoint path lengths between nodes
s and d. We consider Harary graphs of even degree only,
as the case of odd degree is significantly more complex.
Let dsd denote the node separation ofs and d. Define the
parameterh as min(dsd, N − dsd). By inspecting the structure
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Fig. 4. Probability of graph connection and worst-case probability of node
pair connection versusp for H(10, 3). “ATR, lower bound” refers to (8),
“ATR, upper bound” refers to (9), and “TTR, lower bound” refers to (17).

of even degree Harary graphs, the length of pathi for i =
1, . . . ,min(h,∆/2) is found to be:

li =
⌈
h− i+ 1

∆/2

⌉
+ 1 − δ1(i)

where the functionδx(i) equals unity when its argumenti
equalsx and is otherwise equal to zero. If∆/2 > h, then the
length of pathi for i = h+ 1, . . . ,∆/2 is given by:

li =
⌈
i− h

∆/2

⌉
+ 1.

Finally, the length of pathi for i = ∆/2 + 1, . . . ,∆ is given
by:

li =
⌈
n− h− i+ 1

∆/2

⌉
+ 1 − δ∆/2+1(i).

These path lengths can now be substituted into (10) to obtain
a lower bound forP sd

c (G, p).
Whenp ≈ 1, P sd

c (G, p) is minimized for node pairs which
are most distantly placed inG. For even degree Harary graphs,
such node pairs have indices which differ by
(n− 1)/2�. The
diameter of even degree Harary graphs is thus2

∆
n−1
2 �. For

odd degree Harary graphs3, most distantly placed nodes can be
shown to have indices which differ by
(n+∆−3)/4�, with a
resulting graph diameter of 2

∆−1

⌈
n+∆−3

4

⌉
. Thus, using (11),

we have the following lower bound for mins,d

[
P sd

c (G, p)
]

for
Harary graphs:

(1 − p)k(G) ≤ mins,d

[
P sd

c (G, p)
]

(17)

where,

k(G) =
{

2
∆
n−1

2 �, if ∆ is even,
2

∆−1

⌈
n+∆−3

4

⌉
, if ∆ is odd.

3We restrict our attention to odd degree Harary graphs which arestrictly
regular. These graphs therefore have an even number of nodes.

The quality of this bound is illustrated in Figure 4 for the
ten node, degree three Harary graph. Note that as the number
of nodesn increases relative to the degree∆, odd degree
Harary graphs possess diameters which are approximately half
as large as even degree Harary graphs.

Furthermore, because Harary graphs are defined such that
nodes are connected to their nearest neighbors4, the diameter
of Harary graphs are generally larger than graphs with the
same number of nodes and edges. For example, the Harary
graph H(30, 4) has diameter eight, whereas the circulant
C30〈4, 5〉 has diameter four. It is interesting to consider the
relationship between a graph’s diameter and its number of
spanning trees. Although a smaller diameter does not neces-
sarily imply a larger number of spanning trees, or vice versa,
there does seem to exist an inverse correlation between these
properties. The intuition behind this trend is that for the same
number of nodes and edges, the nodes of a graph with a larger
diameter are generally more distant from one another. The
result is that there are fewer combinations of edges of the
graph that could form spanning trees since there are more
constraints on the edges in order that more distant nodes be
connected. Hence, the number of spanning trees generally
decreases with diameter when the number of nodes and edges
is held constant. Thus, whenp ≈ 1, graphs which have good
all-terminal reliability performance generally have good two-
terminal reliability performance, and vice versa.

VI. CONCLUSION

In this paper, general reliability bounds which are useful in
the design of communication networks were presented. Our
reliability study addressed the often neglectedp ≈ 1 regime,
in which network diameter and number of spanning trees were
identified as the key figures of merit. Our reliability study was
then specialized to Harary graphs, which yielded new results
for this family of graphs.
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