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Abstract—In this paper, we consider the task of designing a or procedures to be carried out should a network come under
physical network topology that meets a high level of reliability stress.
with unreliable network elements. Our simple network model e iqeas presented in this work are applicable to the design
is one in which nodes are invulnerable and links are subject .
to failure in a statistically independent fashion. Our reliability of local-area networks (LA_NS), and_metropolltan—ar_ea netwo_rks
metrics are all- and two-terminal reliability. In our treatment of ~ (MANS), where communication link costs are inexpensive
the problem, we bring together previous contributions in the field enough to permit an artificial topology to be imposed on
and introduce additional insights that allow us to design networks 5 set of network nodes. In addition, the model we will be

which meet prescribed .rellablllty levels. We address both the case using in this paper, where links are vulnerable and nodes are
when links are very reliable, and the often neglected case, where .

links are very unreliable. We focus on Harary graphs as candidate invulnerable, is particularly relevant to optical networks where

topologies, as they have been shown to possess many attractivéh€ electronics in nodes are significantly more reliable than the
reliability properties, and develop new results for this family of optics in communication links.

graphs. o . Recently, network reliability metrics have been broadened to
Index Terms—network  reliability, network design, Harary jqoj,de some measure of performance, such as throughput or

raphs . .
grap delay, since for many networks a more meaningful measure
|. INTRODUCTION AND MOTIVATION than connectedness is the degree to which network perfor-
Network reliability — the notion of connectedness ofnance 1s degraded [1]. Connectedness measures, however,

. . . _remain useful in situations where network performance is con-
network nodes in the face of component failures — is a P

important consideration in network design for obvious reasohsé‘.jered satisfactory as long as the network remains connected,

The network reliability synthesis problem considered herefll vv_hen the'networks ab'“.ty to provide a m'”'ma' level of
is the design of a network which achieves a prescribed levgrvice is of interest. In addition, connectedness is the relevant

of “reliability”, while minimizing the number of components metric in many military apphcatl_ons, where capacities of net-
used. work components are over-designed, such that connectedness

ﬂf nodes ensures acceptable network performance.

A large portion of previous contributions to the researc Most of th back d. includina definiti
area of network reliability are of theoretical nature with little ost ot the necessary background, Inciuding detinitions,
otation and relevant work completed in the field, are cov-

i i licabil h ign of real icatiofO2" \ . © ;
immediate applicability to the design of real communicatio ed in the following section. Additional background will be

networks. In addition, existing results in the field are general ided th hout th K wh Section Il
fragmented and a cohesive methodology for planning a n fovide roughout the work when necessary. Section

work, based on different reliability metrics, has yet to emergg.u“i.nes the modelling assumptions employed i.n this work. In
This work is a step towards bridging the gap between theor ction IV, we present bounding techniques which are valuable
|0 the design of reliable networks. Section V specializes the

and practice by providing design tools which are of immediaf i . . i
value in the planning of networks. techniques in section IV to Harary graphs, and introduces new

In addition, most reliability studies to date have focuse sults for this family of graphs. Finally, section VI concludes

on the analysis and design of networks when links abd's work.

very reliable. However, the design of networks when links Il. GRAPH THEORY BACKGROUND

are unreliable, which is addressed in this paper, should not . :

be overlooked for several reasons. In situations where theGraph thgory is generally .use.(.j asafrgmework for r'nlodellmg

probability that a network is connected is quite small, so d analysis in network reliability studies. By ex_p_l0|t|ng th?

degree of connectedness in the network could still anoWh“eS? of graph_theory, researchers ha\_/e |_d_ent|f|ed a myriad
metrics to define and assess the reliability of networks.

for important functions to be carried out, such as relayi ese criteria can be broadly cateqorized as either determin-
emergency signals in times of distress. Another reason.i leria can yroadly goriz ! !
ic or probabilistic reliability metrics. Le’k’ C N be the

that even small probabilities of connectedness could allow o

acceptable expected times to failure for emergency functio %t of no_des_ N t_he gr‘?‘ph underlying a netvyork among which
communication is of interest. Then, katerminal reliability

The research in this paper was supported by: Defense Advanced Reseangiric reflects the difficulty in disrupting communication

Projects Agency, “Robust Architectures for Multi-Service, Multi-Level Reli-among any two nodes.d € K. When |K\ = n. this is
ability, Multi-Level Service and Multi-Priority WDM Local Area Networks”, ’ '

MDAG72-02-1-0021; and National Science Foundation ITR/SY, “High Specz@lled anall-terminal metric, and when K| = 2, it is called a
Wavelength-Agile Optical Networks”, 008963-001. two-terminal metric. Before delving into a discussion of these



different metrics, we present some necessary graph theoratithe disconnection of the tree. As a result, prime edge cutsets
background and notation. of the graphG can be formed from one edge of a spanning
tree of G and some of the edges not in this spanning tree.
A. Definitions and notation
In this work, networks will be modelled as undirected: Deterministic metrics
graphs. Anundirected graph G is an ordered pair of sets Two rudimentary, deterministic, all-terminal reliability crite-
(N, E), where the elements d¥ are nodes and the elementsia are the cohesion and connectivity of the graph underlying a
of £ are edges. Edges in a graph will correspond to links inretwork. Ann-node,e-edge graph having maximum cohesion
network, and nodes in a graph will correspond to nodes inisita max-A graph. Similarly, am-node,e-edge graph having
network. Anedge is an unordered pair of distinct nodes. Thenaximum connectivity is anax-y graph. The following result
sizes of setgV and E are denoted by: ande, respectively. relates connectivity and cohesion to the basic parameters of a
Two nodes areadjacent if they are elements of an edge. Angraph [2]:
edge isincident at its end nodes. Thimcidence matrix A of
an undirected graph is thex e matrix (each row correspondsTheorem 1
to a node and each column to an edge) with (the)th entry "
defined as follows: N<A<H< 1 S d; =2/n.
v — { 1, if edgej is incident at node, gt
Y 0, otherwise. Harary has shown [3] that the bounds in Theorem 1 can be
The size of the set of edges incident at nadis its degree  achieved, through the construction idérary graphs. Harary
and is denoted byl;. The smallest degree of all nodes in &raphs are discussed below, in addition to the more general
graph is denoted by, and the largest degree is denotedby family of circulant graphs to which they belong. Since these
If A =4 then the graph isegular of degreeA. If a graph is bounds can be achieved, we see that any mayaph is
not regular bud = [2¢/n |, then the graph islmost-regular. necessarily max, although the converse is not true in general.
The n-node graph which has all of its nodes adjacent is the More refined deterministic criteria for network reliability
complete graph K,,. GraphG’ = (N, E’) is asubgraph of can also be defined, such as the number of edge or node cutsets
G = (N,E)if N'C N andE’ C E and if the endpoints of of order A or x in a max-A or max-x graph, respectively. A
all edges inF’ lie in N'. graph issuper-) if it is max-\ and every edge disconnecting
A path is a sequence of distinct nodes such that consecutk@t of order) isolates a point of degre®. Similarly, a graph
nodes share an edge. Any two paths edge-disjoint if they IS super-y if it is max-x and every node disconnecting set of
have no edges in common andde-disjoint if they have no order x isolates a point of degreg.
nodes in common apart from the end nodes. The maximumAn alternative measure of a graph's ability to remain
length of any shortest path between any two nodes in a gragghinected is the number of spanning trees it possesses. The
G is the diameter k(G) of the graph. If we modify the characterization of graphs with a maximum number of trees
definition of a path such that the first and last nodes in tffi@s been solved for sparse graphs when the number of edges is
sequence are identical, then we have the definition ofcke.  at mostn + 3, and for dense graphs when the number of edges
Two distinct nodes areonnected if there exists a path is at most./2 less than that of the complete grafily [4]-{6].
between the nodes. An undirected grapledenected if there In addition, for the remaining cases where at mostiges are
exists a path between every pair of distinct nodes. A (minimal)issing fromK,,, Ke'mans, Petingi, Boesch, Suffel, Gilbert
set of edges in a graph whose removal disconnects the gr&@pll Myrvold have described graphs with a maximum number
is a (prime) edge cutset. A (minimal) set of nodes which hasof trees, assuming that they are almost regular [7]-[10].
the same property is grime) node cutset. The minimum . .
cardinality of an edge cutset is thedge connectivity or C- Probabilistic metrics
cohesion A(G). The minimum cardinality of a node cutset is Deterministic reliability metrics do not provide adequate
the node connectivity or connectivity x(G). Analogous two- measure of the susceptibility of networks to disconnection
terminal metrics are the edge-connectivity;(G) and node- because these metrics do not account for the reliability of
connectivity xs4(G) with respect to a pair of nodesandd. network components. Probabilistic reliability criteria, on the
The two-terminal edge (respectively, node) connectivity of @her hand, require knowledge of deterministic network prop-
graph is the minimum number of edges (respectively, nodeslies, in addition to the reliability of network components, and
whose removal disconnects the node pair. thus yield a more meaningful measure of network reliability.
An undirected graplt7 is atree if it is connected and has For this reason, this work will primarily be concerned with
no cycles. Another property of a tree is that it has 1 edges. probabilistic reliability criteria.
Given a connected, undirected gragh= (N, E), let E’ be Probabilistic reliability metrics require the concept of a
a subset ofF such thatT’ = (N, E’) is a tree.T is called a probabilistic graph. Aprobabilistic graph is an undirected
spanning tree of G. We denote the number of spanning treegraphG = (N, E) where each node itN has an associated
in G by ¢(G). Clearly, the deletion of any edge in a tree resulfgrobability of being in an operational state and likewise for



each edge ir. In probabilistic reliability analyses, networks
under stress are modelled as probabilistic graphs.

Most approaches to probabilistic reliability analysis have fo-
cused on the probability that a subset of nodes in a network are
connected. Thus, the all-terminal reliability of a probabilistic
graph can be defined as the probability that any two nodes in
the graph have an operating path connecting them. If links fail
in a statistically independent fashion with probabilitythen
the all-terminal reliabilityP.(G, p) is given by:

PGp) = 3 All—p)p 1

i=n—1

1= Cip'(1—p) @)
=\

where A; denotes the number of connected subgraphs with Fig. 1. TheH(8,4) Harary graph.
edges, and”; denotes the number of edge cutsets of cardi-
nality i. For values ofp sufficiently close to zeroP.(G,p)

can be accurately approximated by- Cip*(1 —p)*~*. In - _ 1,...,[(n—1)/2] is also adjacent to nodet |n/2]. See

this case, an optimally reliable graph — one that achiev%ure 1 for an example of a Harary graph. Harary graphs
the maximumP.(G, p) over all graphs with the same numbeg e the following properties [11]:

of nodes and edges — has a minimum number of cutsets of o L AL

size A = [2e/n|. Therefore, in this regime of, optimally : gEZ’ﬁg igasazaain(i‘/glé?eé )\u;kaAS’Sn andA are both

reliable graphs are supergraphs. For values qf sufficiently odd" '

close to unity, P.(G,p) can be accurately approximated by '

the first term in (1),4,,_1(1 —p)" " 1pc="*! whereA, ; = .

t(G). Therefore, for values gb sufficiently close to unity, an of degreeA if n and A are both odd. i

optimally reliable graph has a maximum number of spanning H&rary graphs belong to a more general family of graphs

trees. Known ascirculants. The circulant graplC,, (a1, as, ..., an),
The two-terminal reliability of a probabilistic graph is the®" More compactyCy, (a;), where0 < a; <as <... <aj <

probability that a given pair of nodes; and d, have an (1 1)/2, hasi+ai,i£ay,... i+ ay(modn) adjacent to
operating path connecting them: each node. Owing to a theorem by Mader [12], which proves

. that every connected node-symmetrgraph has\ = A, all
psd(c _ ASA(] — p)ipe—i 3 connected circulants are mla\x—Furthermore, in [13], Boesch
e (Gp) Z S=p)p 3) and Wang prove the following result:

e H(n,A) has one node of degre®+ 1 andn — 1 nodes

i:wsd

= 1— Z Cipi(1 — p)et (4) Theorem 2 The only circulants which are not super-\ are the
i=Asd cycles and the graphs Cs,,,(2,4,...,m — 1,m) with m > 3,

where wgy is the shortest path length between nodesnd and m an odd integer.

d, A" is the number of subgraphs withedges that connect | [14], wang and Yang derive the following useful result

nodess andd, Ay is the minimum number of edge failures;o the number of spanning trees in circulant graphs:
required to disconnect nodesandd, andC;¢ is the number

of cutsets with respect to nodesandd of cardinalityi. If we
wish to maximize mig 4 [P5%(G, p)| whenp is small, then it
is apparent from (4) that the property of supeis a necessary
condition. This is becausg = min, 4 [A\;q], and for supetx %H;;l 42?:1 sin2 (ajm/n)}, if A is even,
graphs,C3? attains the minimum bound of two. Q) — el he1 . o .

" : HG) = S ITS) 422520 sin® (agim/n) — (=1) + 1}»
D. Harary graphs and circulants if A is odd.

As previously mentioned, Harary graphs, first presented in ) ) )
[3], achieve the bounds presented in Theorem 1. This resulfn [13], Boesch and Wang examine the diameter properties
implies that Harary graphs also achieve the maximum val@é circulants and derive lower diameter bounds. for the family
of min, 4 [Asq] @and min, 4 [x.4] over all graphs with nodes of graphs. In [15], the same authors determined that even
and e edges. In aH(n,A) Harary graph wherel is even, | . N ) )

h de. 0 < i< n—1. is adiacent to nodes—+ 1.7 + 'Two nodesu andv in a graph area_mnar if there is an gu?omqrphlsm
each node, U < 7 < n » IS adjal X which mapsu onto v. A graph in which all nodes are similar isode-
2,...,ix [A/2|(modn); and if A is odd, then each node symmetric.

Theorem 3 The number of spanning trees in the degree A
circulant graph G = C,,{a1,as,...,an) is.



degree Harary graphs possess the fewest number of efigen, analytic solutions or bounds are obtainable; otherwise,
cutsets of cutset cardinalityy when A < i < 2A — 3. Each one must resort to more general techniques.
cutset in the above range of cardinalities was shown to isolaté/e now introduce a technique to determine the coefficients

a single node in the Harary graph. B, for general graphs. It is known [16] that a vector represen-
tation of the prime failure events of a graph can be expressed
Il. N ETWORK MODEL in two ways as the modulo two sum of a subset of rows of a

As mentioned in the introductory section, networks wilgraph’s incidence matrix. Specifically, a prime failure event
be modelled as probabilistic graphs. In addition, we assurpartitions a network into two subsets of nodes. Therefore,
the following about the the graphs underlying the networkge can obtain a prime failure event by adding modulo two
considered in the remainder of this paper: the rows that correspond to each of the nodes in one of the

« Nodes are invulnerable: partitions. Conversely, it can be shown that the modulo two

. Edges fail in a statistically independent fashion witfum Of any proper subset of rows of a graph’s incidence matrix
probability p; yields a prime failure event. Therefore, we can find all prime

. Edge capacities are assumed to be sufficiently large filure events of a graph by summing modulo two the rows of
carry any possible network flow; the 2"*.1 - 1 sub;gts of the rows the incidence mat.n?( which
« Once an edge fails it cannot be repaired. yield distinct partitions of the netwofk The B; coefficients
are determined by simply counting the number of prime failure
IV. BOUNDS ON PROBABILISTIC RELIABILITY METRICS  events obtained which have cardinality
In this section, we introduce new and simple '[echniquesAnOther approach to upper boundidgy(G, p) whenp ~ 0

to bound the probability of connection of a network and th to co_mpgte a lower bound on the first few terms of the
probability of connection of a node pair in a network, whic ummation in (2) and to then subtract these terms from unity.

are useful in carrying out any network design methodolog} S cigc?rs]s;ad N se(;:tlon ”'a’ Baesch a?]d Wang derrt]r(])nsftratedt
The quality of these bounds are illustrated for the ten no ,[ ] that even degree arary grap S posgess € tewes
degree three Harary graph in Figures 2, 3, and 4. In t mber of edge cutsets of card|r.1ahty./vhen.)\ Si<2A-3.
discussion that follows, we assume that all graphs Are e number of cutsets of cardinalityachieved by Harary

: . graphs in this range is(j:ﬁ). This expression is thus a lower
regular and have maximum connectivity. bound achievable by an& regular graph witm nodes. Using

A. All-terminal reliability when p ~ 0 this result, we obtain the following upper bound (G, p)

In this subsection, we derive upper and lower bounds for tF\%r any A regular graph witt nodes:

probability that graphG is connectedP.(G,p). The general 28073 AN ‘
approach we follow is based on enumeration of prime failure P.(G,p) <1-— Z n( B A)pz@ —p)et
events. We define prime failure event as an event in which i=A

a subset of nodes bepome disconn_e_cted from the rest of ther, o torminal reliability when p ~ 0

graph through the failure of the minimal number of edges.

Clearly, prime failure events are only a subset of all possible!f instead of the probability that grapty = (N, E) is
graph disconnection events, since graph disconnection can &@gnected”.(G, p), we desire the probability that nodes? €
occur when more than the minimal number of edges failV are connected’s*(G,p), we can use an approach similar
Therefore, in order to obtain an upper bound m(G7p), we to that of section IV-A to obtain the foIIowing bounds:

subtract from unity the probabilities of the mutually exclusive e e
prime failure events: 1— Z Bpt < P3G, p) <1 — Z Bpi(1 —p)e?
e i=Asq i=Asa
P(G.p) <13 Byp'(1—p) 5) (7)

where B:¢ is the number of prime failure events with respect

to nodess and d of cardinality 7, and \,; is the minimum

where B; is the number of prime failure events of cardinali'%umber of edge failures required to disconnect nodasdd.
i- To obtain a lower bound for%.(G,p), we note that any |, g 4er 1o determine the coefficient8;?, we use an

failure scenario requires that at least one of the prime fa”ugf)proach similar to that giV-A. Since we are only interested
events oceur. Therefor_e, we obt_am a lower bounngIG,p)_ in prime failure events ofy which disconnect nodes and
by subtracting from unity the union bound of the prime faﬂurg we add modulo two to the row corresponding goall

events: e possible subsets of the remaining rows of the incidence matrix,
P.(G,p) >1-— Z B;p'. (6) except for the row corresponding &b Clearly, there are" 2
i=A such possible subsets. This will provide us with a binary

PED

It now remains to determine the coefficieri®s. If the graph
a grap 2Note that if we sum modulo two the rows of alf* possible subsets,

under can|derat|on is e|thgr trivially small, or simple ang,e, we are counting every partitioning scenario twice, including the null and
symmetric as is the case with Harary networks, then closegnplete partitions.



vector representation of all possible prime failure events whichThe value of mip 4 [de(G,p)] whenp ~ 1 corresponds

disconnects andd. to a node pair with shortest path length equal to the graph
In a similar manner to section IV-A, we can upper boundiameterk(G). A simple lower bound for ming [P:%(G, p)]

P:4(G,p) by lower bounding the first few terms in theis (1 — p)*(%), which is just the probability that the shortest

summation of (4). We lower boun@;“ for A < i < 2A—3for path between the most distant node pair is available:

any A regular graph withn nodes, and obtain the followin .

up{)er bo?md fgrP;F‘)i(G,p): ° (1=p)MD <min, o [P2(G,p)] (11)

2A-3 A tighter lower bound for min, [P:%(G, p)] can be derived

P3(G,p) <1 — Z 2<6 B A)#’(1 —p)et using (10) if the lengths or an upper bound on the lengths of
imA i—A the edge-disjoint paths joining the most distant node pair is
C. All-terminal reliability when p ~ 1 available.
We approach the task of boundirf@, (G, p) in the regime V. ANALYSIS OF HARARY GRAPHS

of p~ 1 in an analogous fashion to section IV-A. The events | this section, we specialize the results of the previous
of interest here, however, are the existence of spanning tré@gtion to the family of Harary graphs. Our reason for fo-
rather than prime failure events. A lower bound f(G, p) is  cusing on Harary graphs is that they possess good reliability
obtained by summing the events that correspond to a spanniipgperties in thep ~ 0 regime. Specifically, we showed in
tree existingand the remaining links in the network beingsection II-C that whenp ~ 0, a necessary condition for
inoperative: P.(G,p) and min 4 [P5%(G,p)] to be maximized is that
P.(G.p) > t(G)(1 — p)—Lpe—n+L, 8 G must be supek Amqng super gr_aphs, even degree
(Gp) 2 HG) L =)™ ® Harary graphs are especially good wheis small, since they
An upper bound foP.(G, p) can be obtained be invoking theachieve the fewest number of cutsets of cardinaljtyvhen
union bound on the spanning tree events: A < i < 2A — 3. Admittedly, however, whem ~ 1 Harary
el graphs are suboptimal graphs as they possess relatively few
Pe(G,p) < H(G)(1 —p)" . ©) spanning trees and large diameters. In fact, it is easy to find
It now remains to determingG). Fortunately, this is a well circulant graphs with the same number of nodes and edges
studied problem, ant{G) is known [17] to be the determinantWhich possess more spanning trees and smaller diameters than
of an (n — 1) x (n — 1) matrix T(G) whose(i, /)" entry is the corresponding Harary graphs. Nonetheless, we justify our

defined as follows: attention to Harary graphs in this work since highly reliable
i, ifi= links (i.e.p = 0) are more realistic than highly unreliable links
t;j =< —1, if i andj are adjacent, (ie.p~1)in a qetwork. .
0 otherwise Before beginning our analysis of Harary graphs, we prove

an intuitive and useful theorem regarding this family of graphs.
D. Two-terminal reliability when p ~ 1

Whenp ~ 1, most of the links in a network have failed andrheorem 4 Consider a Harary graph H(n,A), where A is
the underlying graph has relatively few edges. In such spars@¥gn. Partition the n nodes into a subset of j nodes S; and a
connected graphs, the disconnection of nodasdd is nearly Subset of n— j nodes S,,_;, where we assume that j < n — ;.
equivalent to a set of edge-disjoint paths betweemdd all  Then, the minimum number of edges joining S; to S, ; occurs
having failed. To be precise, the disconnection of nodasd When the j nodes in S; (and hence, the n — j nodesin S, ;)
d actually implies the failure of a set df edge-disjoint paths are consecutively numbered (modulo n).
betweens andd, but the converse is not necessarily true. This
is because each of the edge-disjoint paths can fail but ther
may still exist a pqth beFvyegm and d through the use of Lemma 1 Partition the n nodes of the H (n, A) Harary graph
segments of the failed disjoint paths. Hence, we can lower . ) .
bound P54(G, p) as follows: into a subset of j < n —j nodes_ S;, and a subset of n —J

¢ nodes S, _;, such that the nodes in S; (and hence, the n — j

P:4(G,p) > 1 — Pr(A edge-disjoint paths fail) nodesin S,,_;) are consecutively numbered (modulo n). Then,
the number of edges joining .S; to S,,—; is:

él’o prove the theorem, we need the following lemma:

A
=1 - [] Pr(pathi fails)

. (10) A if j =1,
. GA—2(9), if2<j<|A/2)+1, (12)
—1— H [1-(1-p)] [A/2]2 4+ [A/2], otherwise.
=1

Proof. The case ofi = 1 is trivial. When2 < j < |A/2] +1,
wherel; is the length of theith edge-disjoint path, and thea consecutive partition of nodes allows the nodes ifi; to
second and third lines follow from the independence of edde fully connected. In this case, the number of edges joining
failures. S; to S,_; follows from the fact that the total number of



edge endpoints incident &;’s nodes isjA and that the this way — finding a pair of consecutive nodes in different
total number of edge endpoints in a fully connected subgraphrtitions and moving one node to the other partition, always
of j nodes is2(32'). For the remaining case, when the nodedecreasing the number of edges connecting the partitions, until
are consecutively arranged, the nodes at either end of thewe have increased the size of our initial partitionjofodes
partition possespA /2] connections t&,,_ ;, the nodes which to n—j nodes. At this point, we have created a partitioning of
are second from either end of the partition posgesg2] —1 the graph intoj andn — j nodes which achieves fewer edges
connections toS,_;, and so on. Hence, the total numbejoining the partitions than the partitioning of the graph in our

of edges joiningS; to S, is the constane>[2/21; — induction hypothesis, which was assumed to be optimal. This
(A/2]2 +[A/2]), as required is a contradiction, implying that a consecutive arrangement of
We are now ready to prove Theorem 4: nodes is optimallJ

Proof of Theorem 4. The case of = 1 is trivial. Consider now . o
the case of < j < A/2+1. Note that minimizing the number A. All-terminal reliability when p ~ 0

of edges joiningS; to S, ; is equivalent to maximizing theé  Eyery graph disconnection scenario can be viewed as a
number of internal edges shared by the nodes of one of theitioning of the graph into two subsets of nodes which are
partitions. Wher2 < j < A/2+1, a consecutive partition of gisconnected. Now, since a partition pfconsecutive nodes
Jj nodes 'allows the nodesﬁl‘y to be fully copnected, yielding minimizes the number of edges joining; to S,_; in an
th_e maximum number of internal connections, and hence 8¢, degree Harary graph, the probability that a partitiop of
minimum number of external edges. nodes becomes disconnected from a partitios,of; nodes is

For the remaining case whem/2 + 2 < j < n/2, W& maximized when the partition of nodes are consecutive. We
carry out the proof by induction. We may use our resulfy, therefore form an upper bound for the probability of graph
for j = A/2+1 as our base case. Now, assume that fisconnection (and hence, a lower bound for the probability of
consecutive arrangement gf nodes achieves the minimum raph connection) by upper bounding the probabilitgpaind
number of external edges. Let us now proceed by contradictign ' hecoming disconnected by the consecutive case, and then
by assuming the existence of a partitish, , of j + 1 nodes employing a union bound on these events. Furthermore, since

which achieves a smaller number of external edges than {hg H(n,2|2 ) Harary graph is a subgraph of tHé(n, A)
. . 3 9 2 9
number achieved by a consecutive arrangemenitiof nodes arary graph, the all-terminal reliability of an odd degree

in Lemma 1. . _ , Harary graphs is lower bounded by the all-terminal reliability
If we can find a node ir5;, , which contains at leash/2 ¢ the'Harary graph with degree one less. Thus, a lower bound

edges to ;L,j,_l_, then we move this node 6, 1. This ¢ P.(G,p) for a Harary graph (n, A) is:
creates a partitioning of the graph injoand n — j nodes

which achieves fewer edges joining the two partitions than a

consecutive arrangement. This would contradict our induction LA2l+t N .

hypothesis, implying that a consecutive arrangement of nodes Fe(G,p) > 1 — np® + Z (l.)PZA%)

is optimal. =2 (13)
Now, let us consider the case where there does not exist a ln/2]

node inS},, which contains at leash /2 edges toS;, _, ;. + Z (7_1>pm/ﬂ2+m/ﬂ

We proceed by finding a pair of consecutive nodes in the i=|A/2]+2

graph such that one of the nodesbelongs toS’,, and the . )

other nodev belongs oS’ . ,. Examining the window of Becaus_e gutset failure events were used to Qerlve (;L3), the
A + 1 consecutive nodes centered:atour assumption that bound is tight forp close to zero. We can derive a slightly
there does not exist a node &, , which has at least\ /2 looser lower bound for”.(G,p) by bounding some of the
edges t0S,_,_, requires that at leash/2 + 2 nodes in this €MS In (13):

window belong taS’ , ;. We now consider the window af+1 A |A n Ao

consecutive nodes centeredvaiSince the window formed by ~ Pe(G,p) > 1 — (np + {gJ (LAJ I 1) (p2

the union ofu andv’s windows of lengthA+1 has sizeA +2 2
nodes, there can be at ma&y¥2 nodes in this larger window
that_ Ipel(_)ng toS;, ;1. By moving v to S}, we create a L1/ n
partitioning of the graph intg + 2 andn — j — 2 nodes which {2" + B (Ln/QJ) -—n— 1]) .
achieves fewer edges joining the two partitions than that of the

S, andS;,_,_, partitioning, and hence, fewer than that offhe quality of these bounds is illustrated in Figure 2 for
a consecutive arrangement pndn — j nodes. Note that by the ten node, degree three Harary graph. The bounds plotted
movingv to S ;, we have not created a node$f,; which are quite tight for values op less than approximately 0.1.
possesses at least/2 edges to the other partition. This isFurthermore, the more useful upper bounds on the probability
because thg + 1 nodes initially in S, only gain internal of disconnection are tighter than the lower bounds. The
edges by moving to S}, andv now possesses fewer tharbounds derived here thus useful tools for the design of Harary
A/2 edges to the other partition. Thus, we can continue iretworks in thep ~ 0 regime.

_pla/21%+ mm) 4 pla/21P+1a/2] (14)
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TTR, summation, upper bound
* - TTR, closed form, upper bound

Probability of graph disconnection
=
T

Probability of node pair disconnection

O ATR, summation, upper bound _ .
]_(f10 L % ATR, closed form, uppF;Jer bound [ 10 oL TTR, simple lower bound
- gg, simple IIo;Nerb(E)undd o TTR, general, lower bound
ATR, SZEZZI f;%eerr bound TTR, general, upper bound
12 — ATR simulated _1p — TTR simulated
0 -3 -2 = 0 10 - -3 = = 0
10 10 10 10 10 10 10 10 10 10
Probability of link failure (p) Probability of link failure (p)

Fig. 2. Probability of graph disconnection verspsor H(10,3). “ATR,  Fig. 3.  Worst-case probability of node pair disconnection versu®r
simple lower bound” refers tap® (1—p)c—4, “ATR, general, lower bound” H(10,3). “TTR, simple lower bound” refers t@p®(1 — p)—2, “TTR,
refers to (5), “ATR, general, upper bound” refers to (6), “ATR, summatiorgeneral, lower bound” refers to the right inequality of (7), “TTR, general,
upper bound” refers to (13), and “ATR, closed form, upper bound” refers tgper bound” refers to the left inequality of (7), “TTR, summation, upper
(24). bound” refers to (15), and “TTR, closed form, upper bound” refers to (16).

B. Two-terminal reliability when p ~ 0 C. All-terminal reliability when p ~ 1

The derivation of a lower bound for the node pair connection Itzlprp dclpse tot.unltyl/{/vzte bo#ng?c(G,p) u3|Eg thle gppro?ctrr:
probability P:¢(G, p) is virtually identical to that ofP.(G, p) outined n section Tv=L, Which requires knowledge of the
for p close to zero in section V-A. The difference is that we aﬁumber of spanning trees in a graph. We specialize Theorem
only interested in partitions of the network nodes that res {0 Harary graphs:
in nodess and d residing in different partitions. Hence, we

modify (13) to obtain: Lemma 2 The number of spanning trees in the degree A

Harary graph is:

B2 2\ o LT (a2 sin? (jin/ )} if A is even
PGp)=1—[2p2+2 ) ( 1)p’A2(5) nth=l j=L S I ] '

_ - — n—1 h—1 . .. i

i—2 (15) (@) LTI 42252 sin? (jim/n) — (=1)" + 1}7

if A isodd.

The quality of these bounds is illustrated in Figure 4 for the
ten node, degree three Harary graph. In general, it appears
In a manner similar to section V-A, we can derive a slightif’at Harary graphs have fewer spanning trees than many of
looser upper bound foP3(G, p): its circulant counterparts with the same number of nodes and
edges. For example, the Harary graph(10,4) possesses
30250 spanning trees, whereas the circuléig(l,3) pos-
Al (n—2 _ sesses 40500 spanning trees. For valueg olbse to 1 this
sd >1_ A = 2A—2 - v ) i
Pe(Gip) 21 <2p 2 |12 w translates to a probability of connection fBi(10, 4) which is

L oo .
S ( > PIA/217+18/2]
i=A/242

_pm/z12+w21> +pFA/212+fA/21 (16) smaller than that of';o(1, 3) by approximatelyl0250(1—p)®.
n—9 D. Two-terminal reliability when p =~ 1
n—2
{2 + (L"T_QD QD When the probability of link failurep is close to unity,

we bound the probability of node pair connection using the
The quality of these bounds is illustrated in Figure 3 for the teachnique outlined in section IV-D. This technique requires
node, degree three Harary graph. As in the all-terminal cagapwledge of the edge-disjoint path lengths between nodes
the two-terminal bounds plotted are quite tight for values af and d. We consider Harary graphs of even degree only,
p less than approximately 0.1, and the upper bounds on the the case of odd degree is significantly more complex.
probability of disconnection are tighter than the lower boundket d,; denote the node separation efand d. Define the
parameteh as min(dsq, N — dsq). By inspecting the structure
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Fig. 4. Probability of graph connection and worst-case probability of no

pair connection versup for H(10,3). “ATR, lower bound” refers to (8),

“ATR, upper bound” refers to (9), and “TTR, lower bound” refers to (17).

of even degree Harary graphs, the length of pafor i =
1,...,min(h,A/2) is found to be:
L:{Ejii
! A2
where the functiond, (i) equals unity when its argumerit

equalsz and is otherwise equal to zero.X/2 > h, then the
length of pathi for i = h+1,...,A/2 is given by:

i—h
= 1
=5 |+
Finally, the length of path for i = A/2+1,..., A is given
by:

W +1—6(i)

I [nhiJrl

A2 w +1—0a/241(4).

The quality of this bound is illustrated in Figure 4 for the
ten node, degree three Harary graph. Note that as the number
of nodesn increases relative to the degree odd degree
Harary graphs possess diameters which are approximately half
as large as even degree Harary graphs.

Furthermore, because Harary graphs are defined such that
nodes are connected to their nearest neigibtine diameter
of Harary graphs are generally larger than graphs with the
same number of nodes and edges. For example, the Harary
graph H(30,4) has diameter eight, whereas the circulant
C30(4,5) has diameter four. It is interesting to consider the
relationship between a graph’s diameter and its number of
spanning trees. Although a smaller diameter does not neces-
sarily imply a larger number of spanning trees, or vice versa,
there does seem to exist an inverse correlation between these
properties. The intuition behind this trend is that for the same
number of nodes and edges, the nodes of a graph with a larger
diameter are generally more distant from one another. The

$2sult is that there are fewer combinations of edges of the

graph that could form spanning trees since there are more
constraints on the edges in order that more distant nodes be
connected. Hence, the number of spanning trees generally
decreases with diameter when the number of nodes and edges
is held constant. Thus, when= 1, graphs which have good
all-terminal reliability performance generally have good two-
terminal reliability performance, and vice versa.

VI. CONCLUSION

In this paper, general reliability bounds which are useful in
the design of communication networks were presented. Our
reliability study addressed the often neglecteg 1 regime,
in which network diameter and number of spanning trees were
identified as the key figures of merit. Our reliability study was
then specialized to Harary graphs, which yielded new results
for this family of graphs.

ACKNOWLEDGEMENTS

These path lengths can now be substituted into (10) to Obtainl’he authors would to thank Ramesh Johari and Professor

a lower bound forPs4(G, p).

Whenp =~ 1, P*¥(G,p) is minimized for node pairs which
are most distantly placed i@. For even degree Harary graphs,

such node pairs have indices which differ iy, — 1)/2]. The
diameter of even degree Harary graphs is t%{:é’"”g—l}. For

odd degree Harary graphsnost distantly placed nodes can be

shown to have indices which differ byn+ A —3) /4], with a
resulting graph diameter of2; [2+2=2]. Thus, using (11),
we have the following lower bound for min [P:%(G, p)] for

Harary graphs:

(1= p)"@ < ming 4 [P:*(G, p)] €%)
where,
2 rn—1 H H
_ [ AL if A is even,
k(G) —{ 2 _[ntAs3] i Alis odd.

3We restrict our attention to odd degree Harary graphs whichstaietly
regular. These graphs therefore have an even number of nodes.

Daniel Kleitman for their useful insights.

REFERENCES

[1] C. J. Colbourn, “Reliability issues in telecommunications network
planning,” in Telecommunications network planning, P. Soriano and

B. Sanso, Eds. Kluwer Academic Publishers, 1999, ch. 9, pp. 135-146.

[2] F. Harary,Graph Theory. Addison-Wesley, 1969.

[83] ——, “The maximum connectivity of a graph,Proceedings of the
National Academy of Sciences USA, vol. 48, pp. 1142-1146, 1962.

[4] F. T. Boesch, X. Li, and C. Suffel, “On the existence of uniformly
optimally reliable networks,Networks, vol. 21, pp. 181-194, 1991.

[5] G. Wang, “A proof of boesch’s conjectureletworks, vol. 24, pp. 277—
284, 1994.

[6] A. Satyanarayana, L. Schoppmann, and C. Suffel, “A reliability-
improving graph transformation wiht applications to network reliability,”
Networks, vol. 22, pp. 209-216, 1992.

[7] A. K. Kel'mans, “Laplacian polynomials and the number of spanning
trees of a graph,” Talk 20726th SE Conference on Combinatorics,

Graph Theory and Computing, Boca Raton, 1995.

4This is strictly true for only even degree Harary graphs.



(8]

El

[10]
[11]
(12]

[13]

[14]

[15]

[16]

(17]

L. Petingi, “On the characterization of graphs with maximum number
of spanning trees,” PhD Dissertation, Stevens Institute of Technology,
1991.

L. Petingi, F. T. Boesch, and C. Suffel, “On the characterization of
graphs with maximum number of spanning treddgtworks, vol. 179,

pp. 185-203, 1998.

B. Gilbert and W. Myrvold, “Maximizing spanning trees in almost-
complete graphs,Networks, vol. 30, pp. 23-30, 1997.

F. T. Boesch, “Synthesis of reliable networks — a survef{fEE
Transactions on Reliability, vol. 35, no. 3, pp. 240-246, 1986.

W. Mader, “Minimale n-fach kantenzusammémigende graphenVath.
Ann,, vol. 191, pp. 21-28, 1971.

F. T. Boesch and J. Wang, “Reliable circulant networks with minimum
transmission delayJEEE Transactions on Circuits and Systems, vol. 32,

no. 12, pp. 1286-1291, Dec. 1985.

J. F. Wang and C. S. Yang, “On the number of spanning trees in circulant
graphs,”International Journal of Computer Mathematics, vol. 16, pp.
229-241, 1984.

F. T. Boesch and J. Wang, “Super line-connectivity properties of
circulant graphs,SSAM J. Algebraic and Discrete Methods, vol. 7, pp.
89-98, 1986.

M. N. S. Swamy and K. Thulasirama@raphs, Networks, and Algo-
rithms. John Wiley & Sons, 1981.

L. Weinberg, “Number of trees in a graphProceedings of the IRE,

vol. 46, no. 12, pp. 1954-1955, Dec. 1958.



