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Abstract— Small-world graphs, exhibiting high clustering
coefficients and small average path length, have been shown to
capture fundamental properties of a large number of natural
and man-made networks. In the context of communication
networks, navigable small-world topologies, i.e. those which
admit efficient distributed routing algorithms, are deemed
particularly effective, for example in resource discovery tasks
and peer-to-peer applications. Intrigued by the fundamental
limits of communication in networks that exploit this type
of topology, we study two classes of navigable small-world
networks from the point of view of network information flow
and provide inner and outer bounds for their max-flow min-
cut capacity. Our contribution is in contrast with the standard
approach to small world networks which privileges parameters
pertaining to connectivity.

I. INTRODUCTION

Random graphs play an important role as mathematically
tractable models for complex, large-scale networks. The
most recent addition to this set of tools is a class of objects
generally designated by small world graphs, which exhibit
high clustering coefficients (i.e. neighboring nodes are likely
to be connected) and small average path length — the
diameter of a graph with n nodes is in fact bounded by a
polynomial in log n. The term small-world graph itself was
coined by Watts and Strogatz, who in their seminal paper [1]
defined a class of models which interpolate between regular
lattices and random Erdös-Rényi graphs by adding long-
range shortcuts with a certain probability p, as illustrated
in Fig. 1. The most salient feature of these models is
that for increasing values of p the average shortest-path
length diminishes sharply, whereas the clustering coefficient
remains practically constant during this transition.

p=0 p=0.1 p=0.9

Fig. 1. Small-World model with added shortcuts for different values of the
adding probability p.

Since their discovery, small-world graphs have been
shown to capture fundamental properties of relevant phe-
nomena and structures in sociology, biology, statistical
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Fig. 2. Kleinberg small-world model. Each node is directly connected to
all neighbors within h hops, and also to q more distant nodes through so
called shortcuts. In the shown example, where h = q = 1, lightly shaded
circles represent the nodes that are directly connected to node (i, j), i.e. the
four direct neighbors of (i, j) and one additional node (k, l) connected by
a shortcut.

physics and man-made networks, with examples ranging
from Milgram’s “six degrees of separation” [2] between any
two people in the United States to such diverse networks
as the U.S. electric power grid, the nervous system of the
nematode worm Caenorhabditis elegans [3], food webs [4],
telephone call graphs [5], citation networks of scientists [6],
and, most strikingly, the World Wide Web [7]. It is therefore
not surprising that key attributes of small-world networks,
such as the degree distribution of the nodes, the clustering
coefficient of the graph, the shortest path length between two
nodes, or the betweenness of a node (i.e. the total number
of shortest paths that pass trough it), have become the focus
of intense research (see e.g. [8] and references therein).
The combination of strong local connectivity and long-

range shortcut links renders small-world topologies poten-
tially attractive in the context of communication networks,
either to increase capacity or simplify certain tasks. Re-
cent examples include resource discovery in wireless net-
works [9] and design of heterogeneous networks [10], [11].
Another relevant application is related to overlay networks
for peer-to-peer communications, for which small world
properties are deemed to be particularly useful [12].
When applying small-world principles to communication

networks, we would like not only that short paths exist
between any pairs of nodes, but also that such paths can
easily be found using merely local information. In [13]
Kleinberg showed that this navigability property, which is
key to the existence of effective distributed routing algo-
rithms, is lacking in the small-world models of [1] and [14].



The alternative navigable model presented in [13] consists
of a grid to which shortcuts are added not uniformly but
according to a harmonic distribution, such that the number
of outgoing links per node is fixed and the link probability
depends on the distance between the nodes, as illustrated
in Fig. 2. For this class of small-world networks a greedy
routing algorithm, in which a message is sent through
the outgoing link that takes it closest to the destination,
was shown to be effective, thus opening the door towards
information flow in a distributed fashion.
Motivated by their potential to improve the transfer of

data in networks with multiple parties, we set out to inves-
tigate the fundamental limits of network information flow in
small world networks. In [15], we focused on the original
(non-navigable) models of [1] and [14], and proved a high
concentration result that gives upper and lower bounds on
the max-flow min-cut capacity of said networks. The main
goal of this paper is to provide a preliminary characterization
of the capacity of navigable small-world networks, for
which highly efficient distributed routing algorithms are
known to exist and distributed network coding strategies
(allowing processing at intermediate nodes) are likely to be
found. Our main contributions are as follows:

• Capacity Bounds for Kleinberg Small-World Networks:
We construct upper and lower bounds for the max-
flow min-cut capacity of Kleinberg graphs derived
from a square lattice and illustrate how the choice of
connectivity parameters affects communication.

• Capacity Bounds for Navigable Small-World Networks
on Ring Lattices: Arguing that the corners present in
Kleinberg’s models introduced undesirable artefacts in
the computation of the capacity, we define a navigable
small world network based on a ring lattice and derive
a high-concentration result for the capacity of this
instance, as well.

The rest of the paper is organized as follows. Sec. II gives
an overview of related work pertaining the capacity of
communication networks. Then, Sec. III provides precise
definitions for the two small-world models of interest in
this work, so that the main results can be stated and proved
in Sec. IV. The paper concludes with Sec. V.

II. OTHER RELATED WORK

Although the capacity of networks (described by general
graphs with or without edge capacities) supporting multiple
communicating parties is largely unknown, progress has
recently been reported in several relevant instances of this
problem. In the case where the network has one or more
independent sources of information but only one sink, it is
known that routing offers an optimal solution for transport-
ing messages [16] — in this case the transmitted information
behaves like water in pipes and the capacity can be obtained
by classical network flow methods. Specifically, the capacity
of the network follows from the well-known Ford-Fulkerson
max-flow min-cut theorem [17], which asserts that the max-
imal amount of a flow (provided by the network) is equal to
the capacity of a minimal cut, i.e. a nontrivial partition of

the graph vertex set V into two parts such that the sum
of the capacities of the edges connecting the two parts
(the cut capacity) is minimum. In [18] it was shown that
network flow methods also yield the capacity for networks
with multiple correlated sources and one sink.
The case of general multicast networks, in which a single

source broadcasts a number of messages to a set of sinks, is
considered in [19], where it is shown that applying coding
operations at intermediate nodes (i.e. network coding) is
necessary to achieve the max-flow/min-cut bound of the
network. In other words, if k messages are to be sent then the
minimum cut between the source and each sink must be of
size at least k. A converse proof for this problem, known as
the network information flow problem, was provided by [20],
whereas linear network codes were proposed and discussed
in [21] and [22]. Max-flow min-cut capacity bounds for
Erdös-Rényi graphs and random geometric graphs were
presented in [23].
Another problem in which network flow techniques have

been found useful is that of finding the maximum stable
throughput in certain networks. In this problem, posed
by Gupta and Kumar in [24], it is sought to determine
the maximum rate at which nodes can inject bits into a
network, while keeping the system stable. This problem was
reformulated in [25] as a multicommodity flow problem, for
which tight bounds were obtained using elementary counting
techniques.
Since small world graphs were proposed as models for

complex networks [1] and [14], most contributions in the
area of complex networks focus essentially on connectivity
parameters such as the degree distribution, the clustering
coefficient or the shortest path length between two nodes
(see e.g. [26]) . In spite of its arguable relevance —
particularly where communication networks are concerned
— the capacity of small-world networks has, to the best of
our knowledge, not yet been studied in any depth by the
scientific community.

III. NAVIGABLE SMALL-WORLD NETWORKS

We start by presenting rigorous definitions for the two
small-world models used in the rest of the paper. In the
following, we also assume that all edges have unitary
weight.

Definition 1 (Kleinberg Small-World graph, see Fig. 2):
We begin from a two-dimensional grid and a set of nodes
that are identified with the set of lattice points in an n × n
square, {(x, y) : x ∈ {1, 2, ..., n}, y ∈ {1, 2, ..., n}}, and
we define the lattice distance between two nodes (x, y)
and (w, z) to be the number of lattice steps (or hops)
separating them: d((x, y), (w, z)) = |w − x| + |z − y|.
For a constant h ≥ 1, the node (u1, u2) is connected to
every other node within lattice distance h (we denote the
set of this initial edges as EL). For universal constants
q ≥ 0 and r ≥ 0, we also construct edges from (u1, u2)
to q other nodes using independent random trials; the ith

edge from (u1, u2) has endpoint (v1, v2) with probability
proportional to [d((u1, u2), (v1, v2))]−r. To ensure a valid

2



probability distribution, we consider the set of nodes that
are not connected with (u1, u2) in the initial lattice, i.e.

N(u1,u2) = {(v1, v2) : d((u1, u2), (v1, v2)) > h}
and divide [d((u1, u2), (v1, v2))]−r by the appropriate nor-
malizing constant

s(u1, u2) =
∑

(v1,v2)∈N(u1,u2)

[d((u1, u2), (v1, v2))]−r.

In the next section, we will see that this model exhibits
unexpected effects related to the corners of the chosen
base lattice. Motivated by this observation, we construct a
somewhat different model, which uses a ring lattice but still
keeps the key relationship between shortcut probability and
node distance that assures the navigability of the model.
Before proceeding with its definition, we require a precise
notion of distance in a ring.

Definition 2: Consider a set of n nodes connected by
edges that form a ring (see Fig. 3, left plot). The ring
distance between two nodes is defined as the minimum
number of hops from one node to the other. If we number
the nodes in clockwise direction, starting from any node,
then the ring distance between nodes i and j is given by
d(i, j) = min{|i − j|, n + i − j, n − |i − j|}.
Since the type of distance will always be clear from the

context, using the same notation for ring distance and lattice
distance does not cause confusion. For simplicity, we refer
to d(i, j) as the distance between i and j. Next, we define
a k-connected ring lattice.

Fig. 3. Illustration of a k-connected ring lattice: from left to right k =
2, 4, 12.

Definition 3: A k-connected ring lattice (see Fig. 3) is a
graph L = (VL, EL) with nodes VL and edges EL, in which
all nodes in VL are placed on a ring and are connected to
all the nodes within distance k

2 .
Notice that in the definition of a k-connected ring lattice,

all the nodes have degree k. Based on this topology, we can
now present a precise definition of an alternative model.

Definition 4 (Navigable Small-World Network): Starting
with a k-connected ring lattice, add one edge to each
node i randomly according to the probability distribution
p(i, j) = d(i, j)−r, where d(i, j) denotes the distance
between nodes i and j and r > 0 is a fixed parameter.

IV. MAX-FLOW MIN-CUT BOUNDS IN NAVIGABLE
SMALL-WORLD NETWORKS

In Sec. II, we argued that the max-flow min-cut capacity
provides the fundamental limit of communication for various
relevant network scenarios. Motivated by this observation,
we will now use network flow methods and random sam-
pling techniques in graphs to derive a set of bounds for the

capacity of the small-world network models presented in the
previous section.

A. Preliminaries

We start by introducing some notation. Let G be an
undirected and unweighted graph and let Gs be the graph
obtained by sampling on G, such that each edge e has
sampling probability pe. From G and Gs, we obtain Gw by
assigning to each edge e the weight pe, i.e. w(e) = pe,∀e.
We denote the global minimum cuts of Gs and Gw by cs

and cw, respectively. It is helpful to view a cut in Gs as a
sum of Bernoulli experiences, whose outcome determines if
an edge e connecting the two sides of the cut belongs to Gs

or not. It is not difficult to see that the value of a cut in Gw

is the expected value of the same cut in Gs.
The next theorem gives a characterization of how close a

cut in Gs will be with respect to its expected value.
Theorem 1 (From [27]): Let ε =

√
2(d + 2) ln(n)/cw.

Then, with probability 1 − O(1/nd), every cut in Gs has
value between (1− ε) and (1+ ε) times its expected value.
Notice that although d is a free parameter, there is a

strict relationship between the value of d and the value of ε.
In other words, the proximity to the expected value of the
cut is intertwined with how close the probability is to one.
Theorem 1 yields also the following useful property.

Corollary 1: Let ε =
√

2(d + 2) ln(n)/cw. Then, with
high probability, the value of cs lies between (1− ε)cw and
(1 + ε)cw.

B. Capacity Bounds for Navigable Small-World Networks
based on Ring Lattices

We start with the somewhat simpler class of navigable
small-world networks based on ring lattices and prove the
following result.

Theorem 2: With high probability, the capacity of the
navigable small-world network has a value in the interval
[(1 − ε)cw, (1 + ε)cw], with ε =

√
2(d + 2) ln(n)/cw and

cw = k + (1 + an) · (n − an

2
)−r + 2 ·

n−an
2 −1∑

i=k+1

i−r,

where an = 1−(−1)n

2 .
Proof: Consider the fully connected graph Gw =

(VL, E) with weights defined as follows: the weights of
edges (i, j) ∈ EL is set to one and those of (i, j) /∈ EL are
equal to w(i, j) = d(i, j)−r, i.e. the probability of adding
edge (i, j). Notice that the ring distance between two nodes
does not depend on which node is numbered first. It is
therefore correct to state that all the nodes have the same
number of nodes at distance h. We also have that all the
edges in the ring lattice unitary weight. Based on these two
observations and the fact that Gw is a fully connected graph,
it is clear that the global minimum cut in Gw, denoted cw,
is a cut in which one of the partitions consists of a single
node, say node 1. Thus, we may write

cw = k +
∑
i∈A

d(1, i)−r,
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Fig. 4. Bounds for the capacity of a navigable small-world network for
n = 1000, k = 20, d = 1, and different values of parameter r. The
dashed line represents the expected value of the capacity and the solid
lines represent the bounds. As expected, the capacity decreases sharply
with higher r, because increasing r decreases the probability of adding
new edges.

with A = {i : (1, i) /∈ EL} = {i : d(1, i) > k}.
Now, we must distinguish between two different situations:
even n and odd n. If n is even, it is not difficult to see that
the single node that maximizes the distance to node 1 is
node n

2 +1, with d(1, n
2 +1) = n

2 . Notice that, for distances
h inferior to n

2 , there are two nodes at a distance h to node
1. Therefore, if n is even, we have

cw = k + (
n

2
)−r + 2 ·

n
2 −1∑

i=k+1

i−r.

When n is odd, it is also easy to see that there are two nodes
that maximize the distance to node 1, nodes n+1

2 and n+3
2 ,

with the maximum distance being n−1
2 . Therefore, if n is

odd,

cw = k + 2 ·
n−1

2∑
i=k+1

i−r.

Using Corollary 1 and observing that an = 1−(−1)n

2 is equal
to 1 if n is odd and equal to 0 if n is even, we obtain the
desired bounds.
The result is illustrated in Fig. 4.

C. Capacity of Kleinberg Small World Networks

Before proceeding with the bounds for the capacity of
Kleinberg small-world networks, we require an algorithm
to calculate the normalizing constants

s(x, y) =
∑

(i,j)∈N(x,y)

[d((x, y), (i, j))]−r,

for x, y ∈ {1, ...n}.. For this purpose, we note that the
previous sum can be written as

s(x, y) =
∑

(i,j) �=(x,y)

(|i − x| + |j − y|)−r

−
∑

(i,j)/∈N(x,y)

[d((i, j), (x, y))]−r.

Clearly, the first term can be easily calculated. Thus, the
challenging task is to present an algorithm that deals
with the calculation of

∑
(i,j)/∈N(x,y)

[d((i, j), (x, y))]−r . The
nodes (i, j) /∈ N(x,y) are the nodes initially connected to
node (x, y), i.e., the nodes at a distance t ≤ h from node
(x, y). It is not difficult to see that the nodes at a distance
t from node (x, y) are the nodes in the square line formed
by the nodes (x− t, y), (x + t, y), (x, y + t) and (x, y − t).
Then, we could just look at nodes in the square formed by
the nodes (x−h, y), (x+h, y), (x, y+h) and (x, y−h) and
sum all the corresponding distances to node (x, y). A corner
effect occurs when when this square lies outside the base
lattice. Assume that we start by calculating the distances to
the nodes in line y + i, with i ≥ 0.

To avoid calculating extra distances (i.e., distances of
nodes that are out of the grid), we must make sure that
this line verifies y + i ≤ n and also y + i ≤ h. For this
reason, i must vary according to i ∈ {0 . . . min{h, n− y}}.
Now, in each line y + i, we first look at the nodes in
the right side of (x, y), i.e., we calculate the distances
of the nodes (x + j, y + i), with j ≥ 0. Now, notice
that in the line y, we have h points on the right side of
(x, y) that are in the square (regardless of whether they
are in the grid). Because the distance is the minimum
number of steps in the grid, we have that in line y + i
there are h − i points at the right side of (x, y) that are
inside the square. This way, j must be vary according to
j ∈ {0 . . . min{h − i, n − x}}. Now, when looking at the
nodes at the left side (i.e., the nodes (x − j, y + i), with
i ≥ 1), the idea is the same. The only difference is that, in
this case, the variation for j is j ∈ {1 . . . min{h−i, x−1}}.
Then, we proceed analogously for the lines below (x, y), i.e.,
the lines y−i, with i ∈ {1 . . . min{h, y−1}}. This algorithm
is summarized in Table I. The matrix z is a buffer for the
distances, i.e., z(u1, u2) = d((x, y), (u1, u2)). We impose
z(x, y) = 0, because d((x, y), (x, y))−r is also calculated
in this procedure.

The following quantities will be instrumental towards

TABLE I

ALGORITHM FOR COMPUTING NORMALIZING CONSTANTS

Algorithm 1:
z = [0]n×n

for i = 0 : min{h, n − y}
for j = 0 : min{h − i, n − x}

z(x + j, y + i) = (i + j)−r

for j = 1 : min{h − i, x − 1}
z(x − j, y + i) = (i + j)−r

for i = 1 : min{h, y − 1}
for j = 0 : min{h − i, n − x}

z(x + j, y − i) = (i + j)−r

for j = 1 : min{h − i, h − (m1 − i), x − 1}
z(x − j, y − i) = (i + j)−r

z(x, y) = 0
z =
�n

i=1

�n
j=1 z(i, j)

s(x, y) =
�

(i,j) �=(x,y)(|i − x| + |j − y|)−r − z
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characterizing the capacity:

M = max
{

h(h + 3)
2

+ q, (1 − ε)cw

}

ε =
√

2(d + 2) ln(n2)/cw

cw =
h(h + 3)

2
+

h+1∑
x=1

n∑
y=h+2−x

f(x, y)

+
n∑

x=h+2

n∑
y=1

f(x, y) (1)

f(x, y) = q · (g(x,y)(1, 1) + g(x,y)(x, y)

g(x,y)(a, b) =
(

1 − (x + y − 2)−r

s(a, b)

)q−1

· (x + y − 2)−r

s(a, b)

s(1, 1) =
n−1∑

i=h+1

(i + 1) · i−r

+
n−2∑
i=0

(n − 1 − i) · (n + i)−r.

Recall that s(x, y) can be calculated using Algorithm 1.
The proof of the capacity will rely heavily on the following
lemma.

Lemma 1: Let Gw be the weighted graph associated with
Kleinberg’s model of a small-world graph, and cw be the
global minimum cut in Gw. Then, for h < n − 1, cw is
given by (1).

Proof: All the edges e ∈ EL have weight 1 (because
they are never removed), all nodes in Gw have degree
n2 − 1, and the weights of these edges depend only on
the distance between the nodes they connect. Therefore, the
global minimum cut in Gw must be a cut in which one of
the partitions consists of one node. Because the weight of an
edge in Gw decreases with the distance between the nodes
that it connects, the global minimum cut in Gw must be a
cut in which one of the partitions consists of a single node
that maximizes the distance to other nodes. Therefore, cw

must be a cut in which one of the partitions consists of a
corner node: (1, 1), (1, n), (n, 1) or (n, n).
Now, let w((u1, u2), (v1, v2)) be the weight of the edge
connecting the nodes (u1, u2) and (v1, v2). Assume, without
loss of generalization, that cw is the cut in which one
of the partitions consists of node (1, 1). This way, cw =∑

(u1,u2) �=(1,1) w((1, 1), (u1, u2)). Now, we must count how
many edges connecting node (1, 1) are in EL, therefore,
having weight 1. For this, we define an auxiliary way to nu-
merate diagonals: {(1, 1)} is the diagonal 0, {(1, 2), (2, 1)}
is diagonal 1, and so on.

It is not difficult to see that the nodes in the ith diagonal
have a distance i to node (1, 1) (i = 1, ..., 2(n − 1)). Now,
for i ≤ n− 1, there are i+1 nodes in the ith diagonal and,
for i = n+j (j = 0, ..., n−2), there are n−1−j nodes in the
ith diagonal. Then, there are

∑h
i=1 i+1 = h(h+3)/2 nodes

initially connected to node (1, 1) (again, with h < n − 1),
then there are h(h + 3)/2 edges with weight 1. Therefore,

we have that:

cw =
h(h + 3)

2
+

h+1∑
x=1

n∑
y=h+2−x

w((1, 1), (x, y))

+
n∑

x=h+2

n∑
y=1

w((1, 1), (x, y)).

We can calculate s(1, 1) as

s(1, 1) =
n−1∑

i=h+1

(i + 1) · i−r +
n−2∑
i=0

(n − 1 − i) · (n + i)−r.

Next, we determine the weights, w((u1, u2), (v1, v2)). Con-
sider two nodes that are not connected initially, (u1, u2)
and (v1, v2), and the edge ((u1, u2), (v1, v2)). This edge can
be added in two different trials: one for node (u1, u2) and
another one for node (v1, v2). Because we do not consider
multiple edges, these can be viewed as two mutually exclu-
sive trials. Therefore, the weight of this edge is the sum of
the probabilities of adding this edge when looking at node
(u1, u2) and when looking at node (v1, v2). Let us focus on
node (u1, u2). The trial “add edge ((u1, u2), (v1, v2))” fol-
lows a Binomial distribution, with q Bernoulli experiences,
with success probability

a(u1,u2)(v1, v2) =
[d((u1, u2), (v1, v2))]−r

s(u1, u2)

=
(|u1 − v1| + |u2 − v2|)−r

s(u1, u2)
.

Therefore, the weight of the edge ((u1, u2), (v1, v2)) is

w((u1, u2), (v1, v2))

= q · ((1 − a(u1,u2)(v1, v2))q−1 · a(u1,u2)(v1, v2)
+(1 − a(v1,v2)(u1, u2))q−1 · a(v1,v2)(u1, u2)).

Now, observing that a(1,1)(x, y) = x+y−2
s(1,1) and

a(x,y)(1, 1) = x+y−2
s(x,y) , and using expression (1) for

cw, the result follows.
We are now ready to state our main result.
Theorem 3: For h < n − 1 the capacity of a Kleinberg

small-world network graph lies, with high probability, in the
interval [M, (1 + ε)cw].

Proof: Using Lemma 1 and Corollary 1, we have that,
with high probability,

cs ∈ [(1 − ε)cw, (1 + ε)cw] .

A tighter lower bound can be obtained for cs as follows.
Each node has a number of initial edges, determined by h,
and q additional shortcut edges. The nodes with less initial
edges are obviously the corner nodes, which exhibit h(h+3)

2
initial connections. Therefore, we have that

cs ≥ h(h + 3)
2

+ q,

and the result follows.
The bounds of Theorem 3 are illustrated in Fig. 5.
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Fig. 5. Bounds for the capacity of a navigable small-world network for
n = 80 (i.e. 1600 nodes), h = 2, r = 2 e d = 1, and different values of
the shortcut parameter q. The white dots represent the expected value of
the capacity and the dark dots represent the bounds computed according
to Theorem 3.

V. CONCLUDING REMARKS

We studied the max-flow min-cut capacity of two classes
of navigable small world networks. In both cases, we derived
upper and lower bounds and illustrated their dependency on
the parameters of the chosen topology.

In [13], Kleinberg explains that, in order to obtain a
probability distribution, d((u1, u2), (v1, v2))−r should be
divided by

∑
(v1,v2) �=(u1,u2)

[d((u1, u2), (v1, v2))]−r. As we
have shown, the previous expression is not an accurate
normalizing constant, because the candidates for new con-
nections from node (u1, u2) are not all the nodes of the base
lattice, but only those nodes that are initially not connected
to node (u1, u2). For the goals of [13], this aspect is not very
important, because in the cases of interest for that particular
work (very small values of h relatively to the total number
of nodes n2) the difference between the two quantities is
irrelevant in the construction of the model. However, as our
work shows, using the correct normalizing factor is crucial
towards bounding the capacity. The main reason is that this
normalizing constant differs from node to node. In order to
calculate the weights of the edges connecting a single node,
we need to compute this normalizing constant for every node
in the base lattice. Thus, the accumulation of errors affects
the calculation of cw, often leading to erroneous bounds.

Possible directions for future work include tighter capac-
ity results, extensions to other classes of small-world net-
works (e.g. weighted models and other navigable topologies
used in peer-to-peer networks [12]), and understanding if
and how small-world topologies can be exploited in the
design of capacity-attaining network codes and distributed
network coding algorithms.
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