
Network codes as codes on graphs
Ralf Koetter Michelle Effros Tracey Ho Muriel Médard

Abstract—This paper points out connections between linear net-
work coding and linear system theory. In particular, a network
code is interpreted as a state space realization of a network be-
havior that implements a desired set of network connections. A
reversibility theorem is derived for network coding that is a direct
consequence of a fundamental duality theorem derived by Forney
in the context of state-space realizations.

I. INTRODUCTION

Starting from the seminal work of Ahlswede et al. [1] it is by
now well understood that network coding is an essential ingre-
dient in achieving network capacity and a significant research
activity is developing around this topic. It turns out that the
problem of network coding for the multicast is especially at-
tractive and Li et al. could show that linear network coding is
in fact sufficient to achieve capacity in this setup. Consequently,
significant progress has been made for the question of multicast
network coding [2], [9], [10], [6], [11]. On the other hand, the
general network coding problem has remained elusive. While
the multicast scenario can capitalize on coding theoretic tools
— in particular MDS codes — the general problem is far more
intricate. The goal of this paper is to contribute to the under-
standing of the foundations of linear network coding. In partic-
ular, the goal is to exhibit a close connection of network cod-
ing with the representation of linear behaviors in given graphs.
This branch of linear system theory is essentially an outgrowth
of both the general theory of graphical models and the theory of
codes on graphs. While the parallels between these areas seem
puzzling at first, it turns out that there is a surprisingly accurate
way to translate insights on concepts between the different ar-
eas and we can utilize understanding and tools across the area
boundaries in a natural way. Here we focus on state space re-
alization as a prototype of a graphical model in linear systems
and show connections and parallels to network coding.

II. BASICS

In this section we set up the basic notations that are applica-
ble to networks and state space realization. We begin by defin-
ing the notations for state space realizations. For a thorough
treatment of state space realizations in arbitrary graph we refer
to the seminal paper by G.D. Forney [20]. See also [15], [16],
[17].

R. Koetter (koetter@uiuc.edu) is with the Coordinated Science Laboratory,
University of Illinois at Urbana-Champain, Urbana, IL 61801. M. Effros (ef-
fros@caltech.edu) is with the Department of Electrical Engineering, Califor-
nia Insitute of Technology, Pasadena, CA 91125. T. Ho (trace@mit.edu) and
M. Médard (medard@mit.edu) are with the Laboratory for Information and
Decision Systems (LIDS), Massachusetts Institute of Technology, Cambridge,
MA 02139. This research is supported in part by NSF Grants CCR-0325324
and CCR-0220039, University of Illinois subaward #02-194, Hewlett-Packard
008542-008, and Caltech’s Lee Center for Advanced Networking.

II-A. State-Space Realizations

A factor graph G = (V,E) with vertex set V and edge set
E is a bipartite graph consisting of a set of state/symbol nodes
VS, a set of function nodes Vf , (i.e., V = VS ∪ Vf ,) and a set
of edges E ⊆ VS ×Vf . For factor graphs, we consider edges as
sets of pairs of vertices and hence {v, u} ∈ E implies {u, v} ∈
E. We will use the terms “node” and “vertex” interchangeably.

To each vertex u ∈ VS we associate a set of symbols
�

u

called an alphabet. In the context of this paper we will assume
that all alphabets are finite.

The configuration space for the factor graph G is defined as
the Cartesian product

�
=

⊗

u∈VS

�
u. The restriction or projec-

tion of the configuration space to a subset V ′ ⊂ VS of vertices
is denoted by

�
|V ′ . Similarly, the restriction of any element

a ∈
�

to V ′ is denoted a|V ′ .
For any v ∈ V let Γ(v) denote the neighborhood of v, i.e.,

Γ(v) =
{

v′ : {v, v′} ∈ E
}

.

We assume a fixed ordering of the elements of Γ(v) for all
v ∈ Vf , and associate to each v ∈ Vf a local behavior � v ⊆
⊗

u∈Γ(v)

�
u.

For a given set of local behaviors a global behavior � is
obtained as a subset of

�
by requiring that the restriction of

any element of � to Γ(v) is an element in the local behavior � v

for all v ∈ Vf , i.e.,

� = {a ∈
�

: a|Γ(v) ∈ � v ,∀v ∈ Vf}.

Let I � and I �
v

be set indicator functions for sets � and
� v , respectively, that is I � (a) evaluates to one if a ∈ �
and evaluates to zero otherwise. The notion of a factor
graph reflects the factorization of the function I � as I � (a) =
∏

v∈Vf
I �

v
(a|Γ(v)).

Forney [20] introduced a specialization of factor graphs
which will lead to a notion of a state-space realization that is
suitable for this paper. In particular, Forney distinguishes be-
tween nodes in VS as symbol nodes VT and state nodes VL,
i.e., VS = VL ∪ VT . In the context of this paper, it will turn
out that state nodes reflect the capacity of links in the network
(hence the index L), while symbol nodes correspond to trans-
mitted data (hence the index T).

Definition 1 A normal graph is a factor graph with vertex set
V = VS ∪ Vf , VS = VL ∪ VT such that all vertices in VL have
degree exactly two and all vertices in VT have degree exactly
one.

The underlying understanding is that symbol nodes VT are
observable while state nodes VL are hidden and correspond to

2

c

c c

ss

s
ff

f1 1

1 2

2

2

3

3

3

Fig. 1. A normal graph representing a linear behavior. Symbol nodes are
represented by small unfilled circles, local behaviors are represented by small
unfilled circles, and states are represented by double circles.

a state in the network. We are particularly interested in the re-
striction of � to the vertices VT .

Definition 2 Let G = (Vf ∪ {VL ∪ VT}, E) be a normal graph
with global behavior � . We say that the normal graph G repre-
sents a code C if C = � |VT

.

Example 1 Before we continue we give an example for a nor-
mal graph, depicted in Figure 1, that represents a simple linear
behavior C with generator matrix

G =





1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1





.
The bits in words in � are grouped in groups of three so that

the symbol nodes c1, c2, c3 in Figure 1 can assume values over
an alphabet F

3
2. The state nodes s1, s2, s3 are assumed to take

on values in F
2
2. The local behaviors fi are thus subspaces of

F
3
2 × F

2
2 × F

2
2 ≡ F 7

2 given by the three generator matrices

G1 =





1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 1 0 1 0 1





G2 =





1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 1 0 1 0 1





G3 =





1 0 0 0 0 0 1
0 1 0 1 0 1 0
0 0 1 0 1 0 0





We will slightly extend the notion of normal graph and state-
space realization by allowing arrows in such graphical models.
Whenever a link direction is indicated by an arrow we implicitly
assume that information flows in the direction of the arrow.

Before we continue with a description of basic notations for
communication networks we give the following lemma which
allows the construction of complicated state space realization
out of considerably simpler ones. For simplicity, we restrict the
lemma to the binary case but it generalizes to arbitrary group
alphabets with little effort.

The reader familiar with the subject will realize that the lemma may be inter-
preted as a reformulation of the product construction of trellises of Kschischang
and Sorokine [18].

Let a normal graph G = (V,E) be given. Assume two dif-
ferent linear state space realizations indicated by superscripts
A and B are described in the normal graph with symbol al-
phabets F

s(u)A

2 , F
s(u)B

2 for u ∈ VS and suitably chosen in-
tegers s(u)A and s(u)B . Let a new state space realization,
indicated by a superscript C, be given with symbol alphabets
F

s(u)A+s(u)B

2 = F
s(u)C

2 for u ∈ VS . The new local behaviors
� C are given by simply concatenating the original local behav-
iors � A and � C . We say that the state space realization C is
obtained as the product of A and B.

Lemma 1 Let two state space realizations be defined on the
same normal graph each representing a behavior � A and � B .
The product of the two state space realizations represents a be-
havior � C = {(cA, cB) : cA ∈ � A, cB ∈ � B}

Example 2[Example 1 continued] It is straightforward to verify
that the state space realization in Example 1 may be thought
of as obtained as the product of three state space realizations
each representing a linear behavior corresponding to a binary
repetition code of length three.

II-B. Communication Networks

For the purpose of this paper a communication network is a
collection of directed links connecting transmitters, switches,
and receivers. Hence, a network may be represented by a di-
rected graph G = (V,E) with a vertex set V and an edge set E.
In order to model links of different capacity in a uniform fash-
ion, we will allow multiple edges between two vertices and,
hence, E is a subset of E ⊆ V × V × Z+, where the last in-
teger enumerates edges between two vertices. Thus, edges are
denoted by round brackets (v1, v2, i) ∈ E and assumed to be
directed. The head and tail of an edge e = (v′, v, i) is denoted
by v = head(e) and v′ = tail(e).

We define ΓI(v) as the set of edges that end at a vertex v ∈ V

and ΓO(v) as the set of edges originating at v. Formally, we
have

ΓI(v) = {e ∈ E : head(e) = v}

ΓO(v) = {e ∈ E : tail(e) = v}.

The in-degree δI(v) of v is defined as δI(v) = |ΓI(v)|while
the out-degree δO(v) is defined as δO(v) = |ΓO(v)|.

A network is called cyclic if it contains directed cycles, i.e. if
there exists a sequence of edges (v0, v1), (v1, v2), . . . , (vn, v0)
in G. A network is called acyclic if it does not contain directed
cycles. To each link e ∈ E we associate a non-negative number
C(e), called the capacity of e.

Let � (v) = {X(v, 1), X(v, 2), . . . ,X(v, µ(v))} be a col-
lection of µ(v) discrete random processes that are observ-
able at node v. We want to allow communication between
selected nodes in the network, i.e. we want to replicate,
by means of the network, a subset of the random processes
in � (v) at some different node v′. We define a connec-
tion c as a triple (v, v′, � (v, v′)) ∈ V × V × ��� (v),
where � (v, v′) denotes a subset of � (v) The rate R(c) of
a connection c = (v, v′, � (v, v′)) is defined as R(c) =

3

∑

i:X(v,i)∈ � (v,v′)

H(X(v, i)), where H(X) is the entropy rate

of a random process X.
Given a connection c = (v, v′, � (v, v′)), we call v a source

and v′ a sink of c and write v = source(c) and v′ = sink(c). For
notational convenience we will always assume that source(c) 6=
sink(c).

A node v can send information through a link e = (v, u)
originating at v at a rate of at most C(e) bits per time unit.
The random process transmitted through link e is denoted by
Y (e). In addition to the random processes in � (v), node v can
observe random processes Y (e′) for all e′ in ΓI(v). In general
the random process Y (e) transmitted through link e = (v, u) ∈
ΓO(v) will be a function of both � (v) and Y (e′) if e′ is in
ΓI(v).

If v is the sink of any connection c, the collection of ν(v)
random processes � (v) = {Z(v, 1), Z(v, 2), . . . , Z(v, ν(v))}
denotes the output at v = sink(c). A connection c =
(v, v′, � (v, v′)) is established successfully if a (possibly de-
layed) copy of � (v, v′) is a subset of � (v′).

We will make a number of simplifying assumptions:
1) The capacity of any link in G is a constant, e.g. m bits

per time unit.
2) Each link in the communication network has the same

delay.
3) Random processes X(v, l), l ∈ {1, 2, . . . , µ(v)} are in-

dependent and have a constant and integral entropy rate
of, e.g., m bits per unit time.

4) The random processes X(v, l) are independent for differ-
ent v.

In addition to the above constraints, we assume that commu-
nication in the network is performed by transmission of vectors
(symbols) of bits. The length of the vectors is equal in all trans-
missions and we assume that all links are synchronized with
respect to the symbol timing.

Any binary vector of length m can be interpreted as an
element in F

m
2 , the vector space of binary sequences of

length m. The random processes X(v, l), Y (e) and Z(v, l)
can hence be modeled as discrete processes X(v, l) =
{X0(v, l),X1(v, l), . . .}, Y (e) = {Y0(e), Y1(e), . . .} and
Z(v, l) = {Z0(v, l), Z1(v, l), . . .}, that consist of a sequence
of symbols from F

m
2 .

A network code is a collection of input output relationships at
nodes in the network. In contrast to classical, “routing” commu-
nication networks, where random processes that are observed at
sources and incoming links are simply forwarded to appropri-
ately chosen outgoing links, in a coded network the random
processes on outgoing links can be formed in an arbitrary way
from the incoming messages. It is clear that this added freedom
cannot yield any solutions that are inferior to the routing solu-
tions. In fact, it is by now well understood that network coding
is necessary in order to achieve capacity for the case of arbitrary
network problems.

II-C. Linear network codes as state space realizations

An especially useful restriction in network coding is the re-
striction to only use linear operations in the network. It has been

A

A B A B

B

B

A B

A A BB

A

A

A

A A

B

B

B

B

B+

+

+

a) b)

Fig. 2. A network coding problem and its equivalent state space realization.
a) Bits A and B have to be communicated to two sink nodes. The transmission
is possible only if the information is transmitted in a coded fashion through the
bottleneck link in the middle of the network. b) An equivalent state space re-
alization. In particular state space sizes correspond to the rates of transmission
on particular links.

shown by Li et al. [2] that this does not constitute a restriction
in the context of multicast communication, i.e. a setup where
a single source wants to communicate the same information to
a collection of receivers. In other words the multicast scenario
is characterized by a set of connections (u, v′, � (u)) where v′

can range over a set of receiver nodes. In a general setup it is
not known if linearity is sufficient to solve any given network
coding problem. For a treatment of these issues we refer to [12],
[13] for a discussion of related questions. For completeness we
give a definition of linearity which is suitable for out purpose.
The definition goes beyond the definition of linearity originally
given in [3] by allowing arbitrary vector spaces (rather than fi-
nite fields) as alphabets for communication. In particular this
includes the possibility of time sharing as discussed in [12],
[14], [13].

Definition 3 Let a network code be given on an arbitrary com-
munication network. We call a network code linear if

1) All messages communicated on links are equipped with
the structure of a vector space.

2) The set of vectors of local input/output symbols that is al-
lowed by the local input/output relationships at any node
in the network constitutes a linear space.

The above definition is very general and encompasses a num-
ber of interesting scenarios. In particular, continuous operation
of networks is covered by the setup where the communicated
symbols are simply elements of the field of formal power series.
Other scenarios covered include time sharing between different
solutions and the simple case where the communicated symbols
are just elements of an arbitrary finite or non-finite field.

Definition 3 clearly resembles the definition if a linear state
space realization where we required that local behaviors � u

should carry the algebraic structure of a linear space. In fact,
it is straight forward to make this connection precise. We will
do so in the remainder of this section using a (by now) standard
example of network coding depicted in Figure 2.

A slightly more general form of network coding would be obtained for “group
network coding” where the communicated alphabets carry a group structure and
the restriction at a intermediate node allows subgroups of the direct product of
the adjacent groups. However, this technicality adds little insight to the here
presented results

4

It should be clear from Figure 2 how the separate elements
of a communications network correspond to the elements of a
state space realization. I particular, sink and source nodes corre-
spond to visible or symbol nodes. The transmission links in the
communication network may be interpreted as communicating
a state value from one node in the network to another. Finally,
the encoding and decoding that is achieved in a network at inter-
mediate nodes is subsumed by the notion of a local behavior in
state space realizations. While state space realizations usually
are considered as undirected any sense of direction that may be
inherited from a network is included naturally in its descrip-
tion. Thus the overall behavior or code that is implemented in
the graph of Figure 2 has a generator matrix of the form

G =

(

1 1 1 0 0 0
0 0 0 1 1 1

)

where the first three positions of codewords in � correspond to
the source and two sinks for bit A and the last three positions
correspond to the source and two sinks for bit B.

The question arises which insights can be obtained from the
connection between state communication networks and state
space realization. This will be the topic of the next section
where we leverage a beautiful theorem for state space realiza-
tions due to Forney [20] in the context of communication net-
works.

III. A DUALITY RELATION

Linear state space realizations describe indicator functions
for linear spaces. One of the most successful principles for the
understanding of linear spaces is the notion of duality. Given
a linear space and an inner product 〈·, ·〉 defined as 〈a, b〉 =
∑

i aibi, the dual space of a linear space � is defined as � ⊥ =
{c : 〈c, a〉 = 0 ∀ a ∈ � }. A natural question arising for state
space realizations is how the dual space might be representable
by a normal graph. The following theorem gives an answer to
this problem.

Theorem 2 (Forney [20]) Let a normal graph G be given to-
gether with a collection of local behaviors C = { � v : v ∈ Vf}
representing the code C. The same normal graph G together
with the collection of local behaviors C⊥ = { � ⊥

v : v ∈ Vf}
represents the dual code C⊥.

In some situations it may be of interest to reverse a solutions to
a network problem. An example would be a scenario where a
network supports a number of N individual connections of type
(ui, vi, � (ui)) i = 1, 2, . . . ,N where ui 6= uj and vi 6= vj for
i 6= j.

In the reversed network we assume that all links have
changed direction and the set of connections has been replaced
by (vi, ui, � (vi)) i = 1, 2, . . . ,N . Figure 3 give an example
of a network and its reversed form.

By the symmetry of the problem it is clear that a solution
to the network problem in Figure 3 a) implies a solution to the
network problem in Figure 3 b). It is interesting to now that
the local behaviors f ,f ′ as well as g and g′ satisfy a duality
relationship. While the behavior at node f in Figure 3a) is a

A B A B

B A B A

f

g

f’

g’

a) b)

Fig. 3. A network coding problem and its reverse problem.

parity check code the behavior at node f ′ is a repetition code.
A similar ralationship holds for the local behaviors g and g′.
Before we proceed to prove the main duality/reversibility claim
we will need the following lemma.

Lemma 3 Let C be a linear code of dimension k and length n

over a field F and let I = {i1, i2, . . . , ik} be an information
set so that any codeword position c` may be computed as c` =
∑k

j=1 α
(`)
j cij

, α
(`)
j ∈ F. The set J = {1, 2, . . . , n} \ I is an

information set of the dual code C⊥.
Proof. This is a straightforward consequence of the fact

that a generator matrix for C can be written (potentially after a
permutation of symbols) as G = (Ik : P) and a parity check
matrix is then given as H = (−P T : In−k) for a suitably
chosen k × (n − k) matrix P .

Assume we have a network code that locally implements a
local behavior � u. The incoming links on a node u must corre-
spond to an information set of � u. Indeed if the incoming links
do not correspond to an information set we have two possible
situations. Either the incoming links carry only a restricted set
of symbol combinations in order to satisfy the local behavior
� u and thus we can reduce the set of locally allowed behaviors
further, or the network code allows for random choices at node
u which cannot be beneficial in a network coding context and
again leads to the possibility to further constrain � u

Thus we immediately see that dualizing a local code � u is
naturally accompanied with a reversal of all link directions of
links that are incident with a node u. We thus have the following
theorem:

Theorem 4 Let a communication network G be given together
with a desired set of connections C = (ui, vi, � (ui)) i =
1, 2, . . . ,N where ui 6= uj and vi 6= vj for i 6= j. Assume there
exists a linear network code that solves the resulting network
coding problem. The network is reversible, i.e. after reversing
the direction of all links in the network there exists a solution
to the network problem posed by the new reversed network and
the set of connections C = (vi, ui, � (vi)) i = 1, 2, . . . ,N
where ui 6= uj and vi 6= vj for i 6= j. This network coding
solution is obtained by dualizing all local behaviors � u in the
associated state space realization.

Proof. Most of the theorem is a direct consequence of For-
ney’s duality theorem. Lemma 3 guarantees that reversing link
directions and dualizing local behaviors is unproblematic. The
theorem then follows from observing that the network code C

5

that needs to be implemented to solve the original problem has
a generator matrix G = (IN : IN) where the first N columns
correspond to vertices ui and the last N columns correspond to
vertices vi. Thus, C is self dual and all that reversing and du-
alizing the network does, is change the direction of data trans-
mission.

Remark 1 The above theorem is fairly general with respect to
the alphabet used for transmission of information. In fact, the
algebraic framework of [3] may also be used to give an alter-
native proof of Theorem 4 if the underlying alphabets used for
transmission of information carry the algebraic structure of a
field. The generality of Forney’s duality theorem allows us to
cover less restrictive situations. If the alphabet is itself only a
vector space, i.e. vectors of length m, the embedded behav-
ior may be interpreted as generated again by a generator matrix
G = (IN : IN), where however each element in G is itself an
m × m matrix, either an all zero matrix or an identity matrix
Im. The theorem even holds essentially unchanged in the case
that the network code is only equipped with merely a group
structure. However, in this case the notion of duality has to
be extended to the notion of Pontryagin duality, a technicality
outside the scope of this paper.

It is an intriguing question about the effect of reversing and
dualizing a network code which implements a behavior that is
different form a collection of disjoint point-to-point connec-
tions. In order to keep track of the demands we introduce a
K × |V | binary demand matrix D describing which (if any) of
K possible sources node v ∈ V requires. Let the K sources
be given as u1, u2, . . . , uK . The entry Di,v equals one if the
network problem contains the connection (ui, v, � (ui)) and is
zero otherwise. The demand matrix can be easily interpreted
in terms of a state-space realization. In fact the behavior C that
has to be imprinted into the network is described by a generator
matrix G = (IK : D) where the identity matrix corresponds to
the sources and the matrix D corresponds to the demands. For
simplicity we have assumed that any source that also acts as
sink has been modeled as two nodes. Dualizing and reversing
the network now implements a behavior with generator matrix
H = (DT : IN) where each previous sink acts as independent
source but the original sources now receive the modulo two sum
of all the reversed connections. While the utility of this situa-
tion at first seems somewhat unclear, we believe that it might
have interesting applications. In particular, the reversed multi-
cast scenario might be of independent interest. We formulate
the situation in the following theorem:

Theorem 5 Let a communication network G be given together
with a desired set of (multicast) connections C = (u, vi, � (u))
i = 1, 2, . . . ,N . Assume there exists a linear network code
that solves the resulting network coding problem. The network
is reversible, i.e. after reversing the direction of all links in
the network and dualizing all local behaviors in the network
the communication network implements a situation where N

independent sources at the nodes vi transmit their modulo two
sum to the node u.

A possible application of the scenario of Theorem 5 could
be a sensor network where only one of many sensors might ob-
serve a certain event. Setting a communication network up as
a “reverse multicast” network will efficiently solve the task of
communication the occurrence of the event to a central node.
A particular intriguing possibility is to set up the multicast net-
work code in a randomized fashion [5], [8] before all operations
are locally reversed.

IV. CONCLUSIONS

Network coding, and in particular linear network coding has
deep connections to linear system theory and the theory of state
space realizations. In this paper we have begun to focus on the
connections between these areas and to point out synergistic
benefits of considering linear network coding as part of linear
system theory. As an example of such benefits we have derived
a reversibility theorem for network codes based on a fundamen-
tal duality theorem for state space realizations. We believe that
many more fruitful connections can be made, in particular, in
the context of minimal state space realizations of given behav-
iors and the question of finding the most efficient network code
for a given setup.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, “Network information
flow,” IEEE Trans. on Information Theory, vol. 46, pp. 1024-1016, 2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai. “Linear network coding”. IEEE
Trans. on Information Theory , vol 49 pp.371-381, Februray, 2003

[3] R. Koetter, M. Medard, “An Algebraic Approach to Network Coding”,
Transactions on Networking, October 2003

[4] T. Ho, M. Medard, R. Koetter, “A coding view of network recovery and
managment for single receiver communication”, CISS 2002

[5] T. Ho, R. Koetter, M. Medard, D. Karger and M. Effros, “The Benefits of
Coding over Routing in a Randomized Setting”, ISIT 2003

[6] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L.
Tolhuizen, “Polynomial time algorithms for multicast network code con-
struction,” IEEE Transactions on Information Theory. Submitted July
2003.

[7] E.Erez and M. Feder, “On Codes for Network Multicast,” 41st Annual
Allerton Conference on Communication Control and Computing, Oct.
2003.

[8] T. Ho, M. Médard, J. Shi, M. Effros and D. R. Karger, “On Randomized
Network Coding”, 41st Annual Allerton Conference on Communication
Control and Computing, Oct. 2003.

[9] Meir Feder, Dana Ron, Ami Tavory, “Bounds on Linear Codes for Net-
work Multicast”. Electronic Colloquium on Computational Complexity
(ECCC) 10(033), 2003

[10] R. Dougherty, C. Freiling, and K. Zeger, “Linearity and Solvability in
Multicast Networks,” submitted to the IEEE Transactions on Information
Theory

[11] P. Sanders, S. Egner, L. Tolhuizen, “Polynomial time algorithms for the
construction of multicast network codes,” 41st Annual Allerton Confer-
ence on Communication Control and Computing, Oct. 2003.

[12] A. Rasala-Lehman and E. Lehman, “Complexity Classification of Net-
work Information Flow Problems,” 41st Annual Allerton Conference on
Communication Control and Computing, Oct. 2003.

[13] S. Riis, “Linear versus non-linear Boolean functions in Network Flow,”
preprint, November, 2003

[14] M. Medard, M. Effros, T. Ho, D. Karger, “On coding for non-multicast
networks,” 41st Annual Allerton Conference on Communication Control
and Computing, Oct. 2003.

[15] R. Koetter and A. Vardy, “Factor Graphs: Construction, Classification,
and Bounds,” in Proceedings of the 1998 IEEE International Symposium
on Information Theory, Cambridge, MA, 1998.

[16] R. Koetter, ”On the Representation of Codes in Forney Graphs”,
Festschrift to the 60th birthday of G.D. Forney, 2001.

[17] R. Koetter and A. Vardy, “Minimality of Factor Graphs,” in Proceedings
of MTNS 1998, Padua, Italy, 1998.

6

[18] F. R. Kschischang and V. Sorokine, “On the Trellis Structure of Block
Codes,” IEEE Transactions on Information Theory, vol. 41, pp. 1924–
1937, 1995.

[19] R. Koetter and A. Vardy, “Construction of Minimal Tail-Biting Trellises,”
in Proceedings of the 1998 Information Theory Workshop, (Killarney),
Ireland, pp. 72–74, June 1998.

[20] G. D. Forney, “Codes on Graphs: Normal Realization,” IEEE Transac-
tions on Information Theory, vol. IT-47, pp.520–548, Feb. 2001.

