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Abstract—In this paper, we propose an innovative channel
coding scheme called accumulate-repeat-accumulate (ARA)
codes. This class of codes can be viewed as serial turbo-like codes
or as a subclass of low-density parity check (LDPC) codes, and
they have a projected graph or protograph representation; this
allows for high-speed iterative decoding implementation using be-
lief propagation. An ARA code can be viewed as precoded repeat
accumulate (RA) code with puncturing or as precoded irregular
repeat accumulate (IRA) code, where simply an accumulator is
chosen as the precoder. The amount of performance improvement
due to the precoder will be called precoding gain. Using density
evolution on their associated protographs, we find some rate-1/2
ARA codes, with a maximum variable node degree of 5 for which
a minimum bit SNR as low as 0.08 dB from channel capacity
threshold is achieved as the block size goes to infinity. Such a
low threshold cannot be achieved by RA, IRA, or unstructured
irregular LDPC codes with the same constraint on the maximum
variable node degree. Furthermore, by puncturing the inner
accumulator, we can construct families of higher rate ARA codes
with thresholds that stay close to their respective channel capacity
thresholds uniformly. Iterative decoding simulation results are
provided and compared with turbo codes. In addition to iterative
decoding analysis, we analyzed the performance of ARA codes
with maximum-likelihood (ML) decoding. By obtaining the weight
distribution of these codes and through existing tightest bounds
we have shown that the ML SNR threshold of ARA codes also
approaches very closely to that of random codes. These codes have
better interleaving gain than turbo codes.

Index Terms—Error bounds, graphs, low-density parity-check
(LDPC) codes, thresholds, turbo-like codes, weight distribution.

I. INTRODUCTION AND MOTIVATION OF THE STUDY

LOW-DENSITY parity-check (LDPC) codes were pro-
posed by Gallager [1] in 1962. After the introduction of

turbo codes by Berrou et al. [2] in 1993, researchers revisited
the LDPC codes and extended the work of Gallager. During
1962 to 1993, only a few people, notably Tanner in 1981 [3],
paid attention to the work of Gallager and made some contri-
butions. After 1993, over 500 contributions have been made to
LDPC codes; for example, see [5], [12], [13], [16], [19], and
[20], and references therein.
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Recently, repeat accumulate (RA) and irregular repeat accu-
mulate (IRA) codes, as simple subclasses of LDPC codes with
fast encoder structure, were proposed [6], [7]. RA and IRA
codes can also be considered as serial concatenated codes [22].
In addition to simplicity, RA codes have fairly good perfor-
mance. For rates less than or equal to 1/3, their thresholds with
iterative decoding are within 1 dB of the capacity. RA codes
use fixed repetition for input bits. On the contrary, IRA codes
inspired by RA and irregular LDPC [4] codes have irregular rep-
etition for input bits. In fact, node degree distribution can be op-
timized to achieve low threshold performance. To achieve very
low threshold for IRA, as for LDPC codes, maximum repetition
for some portion of input bits can be very high.

These recent results for RA and IRA codes motivated us to
find very simple codes with enhanced performance. Researchers
in [9] tried to improve the input–output extrinsic signal-to-noise
ratio (SNR) behavior of the outer convolutional codes in se-
rial concatenation in low extrinsic SNR region to lower SNR
threshold of serial concatenation by using repetition of certain
bits of the outer code. On the other hand, if a repetition code is
used as an outer code, e.g., as in RA codes, one should try to im-
prove the input–output extrinsic SNR behavior at high extrinsic
SNR region, since the input–output extrinsic SNR behavior of
repetition codes are excellent in the low extrinsic SNR region.
We discovered that an accumulator as a rate-1 precoder applied
before the repetition code will improve the performance.

Before elaborating on the role of accumulator as a precoder
for RA codes and graph representation of ARA codes, we use
the definition of protograph introduced by Thorpe in [8]. A
similar definition called projected graph was introduced by
Richardson et al. in [10] for implementation of the decoder
for LDPC codes. They show that, if an LDPC code can be
represented by the smallest base-graph or projected graph, then
high-speed implementation of the decoder will be more fea-
sible. Protograph definition also facilitates the minimal graph
representation for the overall graph of an LDPC code. We will
show that ARA codes have such a protograph or projected
graph representation, which is another advantage. Projected
graph definition also has been extended to turbo-like codes in
[18].

A protograph [8] is a Tanner graph with a relatively small
number of nodes. A protograph consists of a set
of variable nodes , a set of check nodes , and a set of edges

. Each edge connects a variable node to a
check node . Parallel edges are permitted, so the mapping

is not necessarily 1:1. As a simple ex-
ample, we consider the protograph shown in Fig. 1. This graph
consists of variable nodes and check nodes,
connected by edges. The four variable nodes in the pro-
tograph are denoted by “0,1,2,3” and the three check nodes by
“0,1,2.” By itself, this graph may be recognized as the Tanner
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Fig. 1. Rate–1/3 RA code with repetition 3, multi-edge, and protograph ver-
sions.

graph of an LDPC code with ( , ). In Fig. 1, the
variable nodes connected to the channel are shown with dark
circles i.e., transmitted nodes. Blank circles are those variable
nodes not transmitted through the channel, i.e., punctured nodes.
Check nodes are circles with plus sign inside. Under certain
conditions on the corresponding parity check matrix, i.e., full
rank, the code rate for the protograph code can be defined as

, where represent a set of transmitted
nodes in the protograph. There are types of edges in the
protograph representation of RA code. In fact, the protograph
LDPC codes are subclass of multi-edge-type LDPC codes intro-
duced in [11]. In multi-edge-type LDPC code, a group of edges
may represent a type, where in the protograph LDPC codes each
edge is a type.

For a given protograph, we can obtain a larger graph by a
copy-and-permute operation. For more details on protographs,
see [8]. The resulting larger graph is called the derived graph
and the corresponding LDPC code is a protograph code. In gen-
eral, we can apply the copy-and-permute operation to any pro-
tograph to obtain derived graphs of different sizes. This oper-
ation consists of first making copies of the protograph and
then permuting the endpoints of each edge among the vari-
able and check nodes connected to the set of edges copied
from the same edge in the protograph. Equivalently, the derived
graph can be viewed as a multi-edge-type LDPC code in which
each edge in the protograph is a distinct type. Thus, the derived
graph can be obtained by replacing each edge of the protograph
with a permutation of size . In other words, LDPC codes with
a protograph are multi-edge codes with an equal number ( )
of edges for each type. In our examples, we will consider both
multi-edge-type LDPC codes and protograph LDPC codes. The
difference is mainly in the use of permutation on multiple edges
or on single edges. Multi-edge-type LDPC codes with rational
degree distribution can also have a projected graph description.
In Fig. 1(a), the encoder with single permutation (interleaver)
may represent a multi-edge-type RA code. As follows we as-
sume tail biting is used for accumulators. In Fig. 1(b), proto-
graph-based RA code is shown. In the figure, the minimum

iterative decoding threshold of protograph RA code is
also shown.

II. PUNCTURED RA CODES

Classical rate-1/2 RA code, with repetition 2, has a high
threshold of 3.01 dB. Rate-1/2 RA code with lower threshold
can be obtained by puncturing the lower rate RA codes that

Fig. 2. Systematic RA code. (a) Encoder for multi-edge-type using puncturing.
(b) Equivalent encoder using SPC. (c) Rate-1/2 protograph of systematic RA.

use repetition 3 or higher, provided that the systematic bits are
transmitted through the channel, i.e., systematic punctured RA
codes. Instead of puncturing, equivalently, we can use a single
parity check ( ) which adds input bits and outputs
one parity, followed by an accumulator without puncturing.
Based on the equivalent graph of a punctured accumulator,
we obtain the protograph of a systematic punctured RA code.
The iterative decoding threshold for this code with protograph
representation is 1.116 dB, which is an improvement of close
to 2 dB. The systematic punctured multi-edge-type RA code is
shown in Fig. 2(a), and the protograph RA is shown in Fig. 2(b).
An irregular punctured RA code (which also can be viewed
as IRA code) can be constructed by using irregular repetition.
Referring to Fig. 2, if 2/3 of the input nodes use repetition 3,
and 1/3 use repetition 4, then the corresponding protograph
will be the same as in the figure except for additional edge
from variable node 1 to check node 1. The iterative decoding
threshold for this rate-1/2 irregular punctured protograph RA
code is 0.990 dB.

III. ACCUMULATE-REPEAT-ACCUMULATE CODES

Let us consider a rate-1/3 serial concatenated code where the
outer code is a repetition 3 code. Assume that the systematic
bits are transmitted to the channel. Alternatively consider the
same outer code but the repetition 3 is precoded by an accumu-
lator. Let us compare the extrinsic SNR behavior of these two
outer codes using Gaussian density evolution as shown in Fig. 3.
As the Gaussian density evolution analysis shows, the use of a
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Fig. 3. Gaussian density evolution for rate-1/3 ARA and RA codes showing the improvement due to the precoder.

rate-1 accumulator dramatically improves the extrinsic SNR be-
havior of repetition 3 at a high extrinsic SNR region. However,
it slightly deteriorates the behavior of repetition 3 code at a very
low extrinsic SNR region.

Now let us use a punctured accumulator as the inner code. The
periodic puncturing pattern in this example is X0X, where 0’s
indicate the puncturing positions. Since the serial concatenation
consists of outer accumulator, middle repetition, and inner ac-
cumulator, we call it Accumulate-Repeat- Accumulate (ARA)
code. The rate-1/3 ARA code, the corresponding protograph,
and the extrinsic input–output SNR curves using Gaussian den-
sity evolution are shown in Fig. 3. Except for this example in
which we used Gaussian density evolution to show the advan-
tage of precoding, in this paper, actual density evolution on pro-
tographs will be used. Using density evolution, we obtain the
exact iterative decoding threshold of dB for the proto-
graph shown in Fig. 3. If we remove the precoder and transmit
node 1 in Fig. 3, the threshold will be 0.73 dB. Thus, the pre-
coder improves the iterative decoding threshold by 0.7 dB. We
call such performance improvement due to the use of a precoder
as “ Precoding gain.”

These comparisons are fair if we fix the maximum variable
node degree. Shortly, we will show such comparisons with
rate-1/2 unstructured irregular LDPC codes. In a similar way,
we can construct rate-1/2 ARA codes. However, due to more
puncturing of the inner accumulator, some portion of the input
bits should not be passed through the precoder in order to allow
the iterative decoding to start, i.e., “ Doping ” [29] is required
for the iterative decoder to start. An example of a simple
rate-1/2 ARA code, its protograph, and the corresponding

threshold are shown in Fig. 4 when . We also propose
a constructive method to design codes with higher rates from
a rate-1/2 ARA code and its protograph by further puncturing
of the rate-1/2 ARA code. additional variable nodes each
with degree 3 are added to the protograph. This is like adding

repeat 3 RA codes to a single rate-1/2 ARA code. In this
case, the addition is done at the inner check nodes of rate-1/2
ARA, and one common inner accumulator is used. Similar high
rate codes can be obtained using the protograph of the other
rate-1/2 ARA codes that will be discussed in this paper. One
example of such a family of ARA codes for various code rates
is shown in Fig. 4. For single decoder implementation that can
handle various code rates, one should consider the protograph
for the highest desired code rate. For encoding of lower rates,
one should insert zeros for those input variable node bits that
corresponds to the higher code rate generation (see variable
nodes marked with letter A in Fig. 4). These bits should not be
sent to the channel, i.e., to be punctured. Thus, this method can
be considered a solution to the problem of decoding various
code rates using a single protograph.

Another simple example of a rate-1/2 ARA code with regular
repetition is the precoded version of the punctured RA code
in Fig. 2. The precoded version is shown in Fig. 5. This code
has a threshold of 0.400 dB, compared with 1.116 dB for the
systematic punctured RA code in Fig. 2. Thus, there is a 0.7-dB
precoding gain due to the use of a rate-1 accumulator precoder.
Fig. 5 shows an alternative implementation of an encoder using
a differentiator that has the same protograph. In this case,
we call the coding scheme Differentiate-Repeat-Accumulate
(DRA) code, which is a nonsystematic code. We can also use
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Fig. 4. ARA code family for rates 1/2 to 7/8, encoder for multi-edge-type , protographs, and protograph thresholds in decibels.

Fig. 5. Rate-1/2 ARA, DRA, and the corresponding protograph representation.

irregular repetition instead of regular repetition in ARA codes,
which results in irregular ARA (IARA) codes.

A simple example of a rate-1/2 IARA code is the precoded
version of the IRA example discussed previously. The threshold
for that IRA example was 0.990 dB. The precoded version has

Fig. 6. Rate-1/2 low-threshold ARA protograph.

a threshold of 0.364 dB. A family of higher rate ARA codes
can be obtained simply by puncturing the ARA code or IARA
code in the previous two examples. A low-threshold (0.264 dB)
rate-1/2 ARA code is shown in Fig. 6. The protograph has a
maximum degree of 5. The best rate-1/2 unstructured irregular
LDPC code with a maximum degree of 5 in [4] has a threshold
of 0.72 dB. There are few reasons for such difference. In [4], the
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Fig. 7. Simulation results for few examples of rate-1/2 ARAs, and the rate-1/2 wireless standard turbo code.

degree of variable nodes are greater or equal to 2, and punctured
variable nodes were not allowed. If we look at the protographs of
ARA codes, they contain degree-1 variable nodes and punctured
variable nodes. In fact, later, Richardson and Urbanke [11], [13]
mentioned that the degree-1 variable nodes and punctured vari-
able nodes also can be used in the multi-edge-type LDPC code
design. As we mentioned earlier, protograph-based ARA codes
use permutations per each edge of protograph. When we have
accumulators, a protograph-based ARA can be constructed if
the structure of the interleaver in ARA codes is based on edge
connections in the ARA protograph between middle variable
nodes and inner check nodes (right most check nodes), i.e., be-
tween repetition and accumulator. However a multi-edge-type
ARA code can be defined when permutations are used per group
of edges, e.g., a single random permutation is used for repetition.

Consider the rate-1/2 ARA code with threshold 0.516 dB that
was shown in Fig. 4, for (also shown in Fig. 7). For this
example, we can use six interleavers each of size , where
is the input block size. Each interleaver corresponds to one of
the six edges between the repetition 3 and the punctured accu-
mulator; i.e., the edges between variable nodes “1,2” and check
nodes “1,2” in the ARA protograph in Fig. 7. Simulation re-
sults for random type interleavers and circulant permutations

per each edge of protograph are shown in Fig. 7 for three ex-
amples of rate-1/2 ARA codes with a protograph structure and
compared with a rate-1/2 turbo code with well-optimized spread
interleaver. Use of circulant permutations instead of random
permutations is preferred for implementation of an encoder and
decoder. For decoding ARA codes, the message passing algo-
rithm was used. For iterative decoding of turbo code the standard
BCJR algorithm is used. For performance simulation results of
protograph ARA codes for various code rates, see [23] and [24].
For encoders for protograph-based ARA codes with circulant
permutations, see [27].

IV. MAXIMUM-LIKELIHOOD (ML) DECODING

ANALYSIS OF ARA CODES

Here, we intend to prove that the ensemble weight distribu-
tion of RA codes can be improved by using precoding. Also, if
ML decoding is used, there will be roughly the same amount of
precoding gain as in the iterative decoding. First, we analyze
the ML decoding performance of multi-edge-type RA codes
with single random permutation and with regular puncturing.
We show that, with puncturing, we can construct better codes as
far as the performance is concerned. Then, we extend the results
to multi-edge-type ARA codes with single random permutation.
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Since there is no practical ML decoding algorithm available
for block codes with large block size, we use the performance
bounds to obtain some insight on codes’ behavior. In [14], Di-
vsalar provides a tight upper bound on frame (word) error rate
(FER) and bit error rate (BER) for a linear block code
with code rate and distance spectrum (number
of codewords with weight ), decoded by ML criterion over an
additive white Gaussian noise (AWGN) channel. It also pro-
vides a minimum threshold with closed-form expres-
sion. We use this bound throughout the paper. Defining normal-
ized distance as and normalized distance spectrum as

, the FER bound in [14] or [15] can be expressed
as

(1)

where

(2)
and

(3)

where , and . When
, the bound reduces to union bound. To compute the BER

bound, replace with in the FER bound,
where is the number of codewords with input weight and
output weight . An important result of this bound is the tightest
minimum that can be written in closed form as

(4)

The threshold will be the minimum when , thus
we need to obtain the asymptotic distance spectrum, i.e.,
as .

A. Weight Distribution of Ensemble of RA Codes With
Puncturing

RA codes are the simplest codes among turbo-like codes,
which make them very attractive for analysis. In an RA code,
an information block of length is repeated times and in-
terleaved to make a block of size , and then followed by a
rate-1 accumulator (see Fig. 1 for ). We use the concept
of uniform interleaver [21] to compute the overall input–output
weight enumerator (IOWE). The final derived IOWE should
be considered as the averaged IOWE over all interleavers be-
tween repetition code and the inner accumulator with punc-
turing. Therefore, we need to compute the IOWE of both repe-
tition code and the accumulator. For repetition code, it is [6]

(5)

Fig. 8. Accumulator with period p = 3 puncturing 00X and its equivalent
graph.

where is Kronecker delta function. The IOWE of the accu-
mulator is

(6)

RA codes are usually nonsystematic codes, i.e., the informa-
tion block is not sent along with the output of the accumulator.
However, the RA codes with puncturing should be systematic
in order to be decodable by iterative decoding. To compute the
IOWE of the RA codes with puncturing, we use the equiva-
lent graph depicted in Fig. 8 instead of the accumulator with
puncturing. Puncturing uses a periodic pattern with pe-
riod , where zeros indicate the puncturing positions. For com-
putation of IOWE, the equivalent code is a concatenated code
of a regular check code (a rate code with inputs and one
parity check as output), and an accumulator. Since the check
code is regular and memoryless, the presence of any interleaver
between two codes does not change the IOWE of the overall
code. This is a key observation in obtaining the IOWE. In order
to compute the IOWE for this code, we insert a uniform in-
terleaver between two codes. The next step is to compute the
IOWE of the check code. The IOWE of the check code can be
expressed by a simple closed-form formula if we use the two-di-
mensional (2-D) -transform of IOWE denoted by .
The inverse -transform results in . Starting with ,
i.e., one check code with inputs and one output, the
of check code can be expressed as

(7)

where
, and

. Since there
are independent check nodes in the code the IOWE can
be written in -transform as

(8)

The IOWE is obtained by taking the inverse -transform. The
closed-form expression for for arbitrary can be derived,
but the expression is complicated. Instead, in this paper, we de-
rive the IOWE for , 3, and 4, which are practically most
useful for the codes that we already discussed in previous sec-
tions.
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1) Case : Using the general formula in -transform,
we have

(9)

This can be expanded as

(10)
Therefore, the IOWE can be expressed as

(11)

2) Case : Starting from the general formula in the
-transform, we have

(12)
This can be expanded as

(13)
Letting , we then have

(14)
Therefore, the IOWE is

(15)
3) Case : The check code for this case can be viewed as

a concatenation of two check codes each with . Because
the check code is regular and memoryless, we can put any in-
terleaver between the check codes without changing the IOWE
of the overall check code with . By using a uniform inter-
leaver and the results found for case , the IOWE can be
written as

(16)

Using the result for , we obtain

(17)
This method can be applied for any that can be decomposed
into two smaller numbers. Having computed the IOWE of the
check code, we can use the uniform interleaver formula to com-
pute the IOWE of the accumulator with puncturing as

(18)

Thus, for , and , we obtain

(19)

(20)

It should be noted that, despite the fact that we used a uniform
interleaver to obtain the IOWE, we come up with the exact (not
averaged) IOWE for accumulator with puncturing. The next step
is to find the IOWE of the systematic RA code with puncturing,
which is derived in case of a uniform interleaver after repetition
as

(21)

For systematic punctured RA ( , ), which will be
denoted by RA(3,3), we get

(22)

Now, we obtain the asymptotic expression of for RA(3,3)
as the block size goes to infinity. To do so, we sum (22) over
to get , and use ,
where is the binary (natural) entropy function,
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. Let for ,
for , for

, and for ,
with , to yield

(23)

Using (23) in (4), we can obtain the minimum threshold
for RA(3,3).

For systematic punctured RA with ( , ), which
will be denoted by RA(4,4), we have

(24)

Now, we obtain the asymptotic expression of for
RA(4,4), after summing (24) over . Let for

, for , for
, and for ,

with , to yield

(25)

Using (25) in (4), we can obtain the minimum threshold
for RA(4,4).

B. Weight Distribution of Ensemble of ARA Codes

Here, we obtain the ML performance of ARA codes, as a
precoded RA code with puncturing, using an accumulator as a
precoder. As we have seen, in ARA codes, that a portion of the
information block goes to the accumulator. In other words,

Fig. 9. Block diagram of the ARA code.

bits are passed through without any change and the remaining
- bits go through an accumulator. The overall output bits

are applied to the punctured RA code. The use of these bits is
essential for the iterative decoding to start the message-passing
algorithm. is considered a parameter in code design. The
effect of this parameter is studied in ML decoding. Fig. 9 shows
the ARA code and the block diagram of the precoder.

In order to find the performance of the code, we need to com-
pute the IOWE of the precoder. It is computed using the IOWE
of the accumulator code as follows:

(26)

Therefore, the IOWE of the overall systematic ARA ( , ) code
can be written as

(27)

For systematic punctured ARA with ( , ), which
will be denoted by ARA(3,3), we obtain

(28)

Now, we obtain the asymptotic expression of for
ARA(3,3) using (28). Let for ;

for ,
for , for ,

for , for
, and for

to yield
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(29)

Using (29) in (4), we can obtain the minimum
threshold for ARA(3,3).

For systematic punctured ARA with ( , ), which
will be denoted by ARA(4,4), we obtain

(30)

At this point, we obtain the asymptotic expression of for
ARA(4,4), using (30). Let for ;

for , for
, for , for ,

for , and for
, to yield

(31)

Fig. 10. BER bounds for RA(3,3), RA(4,4), ARA(3,3), ARA(4,4), and random
codes for input blocksize of 4000 b.

Using (31) in (4), we can obtain the minimum threshold
for ARA(4,4).

To compare the asymptotic thresholds of RA codes with
puncturing and ARA codes with classical RA codes and random
codes, we need to know the asymptotic weight distribution of
these codes. The asymptotic expression of for RA code
with repetition is [6]

(32)
and the asymptotic expression of for random codes with
code rate is (see, for example, [15])

(33)

C. ML Performance and ML Thresholds of Ensemble of RA
Codes With Puncturing and ARA Codes

Using the derived weight distributions in Section IV-A, the
BER performance for rate-1/2 RA(3,3), and RA(4,4) using
the bound in (1) are shown in Fig. 10 for input block size
of 4000 bi. Similarly, using the derived weight distributions
in Section IV-B, the BER performance bound for rate-1/2
ARA(3,3) and ARA(4,4) for different ’s are compared with
that of random code for the same input block size (4000) in
Fig. 10. In the ARA case, it is observed that the larger the
number of input bits that pass through the accumulator in
the precoder, the better the performance becomes. However,
the improvement diminishes past a certain point, which is

for ARA(3,3) and for ARA(4,4).
When , the codes turn into RA with puncturing. It is
very interesting that the performance of the ARA(4,4) very
closely approaches that of random codes for the same block
size in low region.

The thresholds of these rate-1/2 codes for infi-
nite block lengths using the derived asymptotic from
Sections IV-A, and IV-B and applying to (4) are computed
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as: 1.497 dB for RA(3,3), 0.871 dB for RA(4,4), 0.51 dB
for ARA(3,3), 0.31 dB for ARA(4,4), 0.308 dB for random
codes, and 3.364 dB for RA code with . Discrepancy
between random code threshold and the Shannon limit is due
to the upper bound which is slightly loose for rate-1/2. In the
ARA case, we minimized the threshold expression in (4) with
respect to . It is easy to show that the second derivative of the
threshold with respect to is always negative. Thus, for ML
decoding, the minimum threshold is achieved when .
However, for all values of in case of ARA(3,3),
and in case of ARA(4,4), very small change
in threshold was observed. As we expected, based on the
BER performance bound for input block of 4000, the
threshold of ARA(4,4) for infinite block is also extremely close
to the threshold of random codes, based on the same bound.

To obtain the interleaving gain as defined in [21] and [22],
we can use the method in [22] to find the maximum exponent
of in the weight distribution. However, an easier way is to
view the ARA codes as serial concatenated codes, where the
combined version of outer accumulator (precoder) and repeti-
tion 3 or 4 code can be considered as an outer code with a min-
imum distance of 3 or 4, respectively. The inner code then is
the inner accumulator (as a recursive convolutional code) with
puncturing. Then, we can use the theorems in [28] to obtain
interleaving gains. Note that the ARA codes are systematic;
thus, when the output weight of accumulator with puncturing
is zero for a nonzero input weight, the ARA codeword weight
is nonzero. Then, the interleaving gain for the ARA codes with
repetition 3 or 4 for FER is and for BER is i.e., av-
eraged word error rate , and averaged bit error
rate . Thus, precoder improves the SNR threshold
but the interleaving gain remains unchanged with respect to
RA(3,3) or RA(4,4). The ensemble weight distribution of pro-
tograph based ARA codes can be obtained using the method
proposed in [25] and [26].

V. CONCLUSION

In this paper, we proposed a new channel coding scheme
called Accumulate Repeat Accumulate codes (ARA). This class
of codes can be viewed as a subclass of LDPC codes with fast
encoder structure, and they have a projected graph or protograph
representation, which allows for high-speed iterative decoding
implementation using belief propagation. Based on density evo-
lution for protograph-based ARA codes, we have shown that, for
maximum variable node degree 5, a minimum bit SNR as low
as 0.08 dB from channel capacity for rate-1/2 can be achieved
as the block size goes to infinity. Such a low iterative decoding
threshold cannot be achieved by RA, IRA, or unstructured ir-
regular LDPC codes with the same constraint on the maximum
variable node degree. We constructed families of higher rate
both multi-edge-type and protograph-based ARA codes with it-
erative decoding thresholds that stay close to their respective
channel capacity thresholds uniformly. Iterative decoding sim-
ulation results for ARA are provided and compared with turbo
codes. The weight distribution of some simple multi edge type
ARA codes is obtained, and through existing tightest bounds

we have shown the ML performance of ARA codes approaches
very closely to the performance of random codes.
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