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Abstract
By using impulsive frequency-shift keying (FSK)

with vanishingly small duty cycle, capacity can be
achieved in the limit of infinite bandwidth in wideband
systems that decorrelate in time and frequency. With
limits on bandwidth and peak power, impulsive FSK
schemes with small duty cycle can still achieve rates
of the order of capacity in ultrawideband systems. We
compare performance of single tone and two-tone FSK
schemes. Our results indicate that, two-tone FSK can
be applicable at lower bandwidth with almost no detri-
ment in the error exponent.

1 Introduction
The capacity of the infinite-bandwidth general mul-

tipath fading channel is equal to the capacity of
the infinite-bandwidth additive white Gaussian noise
(AWGN) channel with the same average received
power constraint. This result has been shown by
Kennedy[6], Gallager[5, §8.6] and Telatar and Tse[11].
The proofs are constructive and use frequency-shift
keying with non-coherent detection in a system that
transmits at a vanishingly low duty cycle. This
capacity-achieving transmission scheme, which we
term impulsive FSK, is thus ”peaky” both in fre-
quency and time. Such a scheme is quite different
from the wideband spread-spectrum schemes that cre-
ate signals that mimic white Gaussian noise (WGN),
such as would be optimal for infinite bandwidth non-
fading channel. Indeed, the use of signals akin to
WGN, which we term bandwidth-scaled, with mo-
ments that scale inversely with bandwidth, has been
shown to yield a vanishing capacity in the limit of in-
finite bandwidth ( [11], [8], [10]).

While the results of [6] and [11] only provide a
capacity-achieving method for vanishingly small duty

cycle and infinite bandwidth, the results do not show
how and how fast a system can approach this limit.
Recent results show that this limit is approached
slowly. In [12], by considering the relation among
SNR, capacity and spectral efficiency, Verdú shows
that approaching capacity may require extremely large
bandwidths and peak-to-average signal ratios. A sim-
ilar conclusion is reached by Lun, Médard and Abou-
Faycal in [3], [2] by considering the per codeword prob-
ability of error as a function of peak energy, duty cycle
and total bandwidth for Rayleigh and general fading
channels using impulsive FSK.

From the above discussion emerge two main
themes. First, bandwidth-scaled signals, of the type
used in commercial direct-sequence code-division mul-
tiple access (DS-CDMA) systems, perform poorly in
the wideband regime for fading channels. Second,
the optimal schemes in the infinite bandwidth regime
require extremely high bandwidth and peak power
to approach capacity. Both of these results may be
viewed as negative results, indicating what certain
types of signaling cannot do. What, then, is the ap-
propriate way of transmitting for ultrawideband com-
munications, over bandwidths of the order of several
GHz? For such bandwidths and moderate signal en-
ergy, bandwidth-scaled signals perform poorly. On the
other hand, the limitations on bandwidth and peak
power in practical systems are well below those re-
quired to approach the infinite-bandwidth capacity.

Our goal in this paper is to present a family of sig-
naling schemes which achieve a capacity of the order
of the infinite-bandwidth capacity for bandwidths and
peak power constraints that are large but well below
those required to achieve the infinite bandwidth ca-
pacity. The transmission schemes are impulsive single
tone FSK and multi-tone FSK with small duty cycle



and large bandwidth. The multi-tone FSK is intro-
duced in [1] which means several frequencies is used
at a time in transmitting a symbol instead of one fre-
quency per symbol scheme. The size of the symbol
alphabet is increased while the power per frequency
is reduced in order to maintain the overall trans-
mission power constant. We proved that multi-tone
FSK can achieve capacity in the infinite bandwidth
limit [1]. We study the performance of these schemes
in Rayleigh fading channels with limited bandwidth.
Our FSK scheme assumes no channel side information
at the sender or at the receiver. The multi-tone FSK
schemes can be applied at lower bandwidths than tra-
ditional single-tone FSK schemes. We also get the er-
ror exponents for single-tone and two-tone FSK which
are representatives of coding complexity and delay.
The two-tone FSK has almost the same performance
as single-tone FSK in terms of error exponent.

2 System model
The system is studied in Rayleigh fading channel

conditions, which are common in wireless communi-
cation scenarios. Related work has considered the ca-
pacity of FSK schemes. In [9], Stark determined the
capacity of FSK schemes under non-selective Rician
fading with receiver side information. A similar sys-
tem is considered in [7] for channels with erasures.
However, we consider channels with decorrelation in
time and bandwidth and thus none of the above re-
sults apply to our model. We send multi-frequency
signals which are selected from a large set of frequen-
cies and transmitted using a low duty cycle. We term
this signal multi-tone FSK. Because we use a large
set of frequencies in a wide bandwidth, the frequency
difference between two successive symbols we assume
to be greater than the coherence frequency. More-
over, the low duty cycle means successive symbols are
generally separated in time by more than a coherence
time. Hence, the probability of sending two successive
signals within a coherence band in the same coher-
ence time is negligible. We can thus assume different
symbols experience independent fading.

We will discuss the model of multi-tone FSK which
can be generalized to the FSK case by let the number
of tones, Q, be 1. For multi-tone FSK, the channel
output y(t) for an input waveform x(t) is given by

y(t) =
L∑

l=1

al(t)x(t − dl(t)) + z(t), (1)

where L is the number of paths, al(t) and dl(t) are
the gain and delay on the lth path at time t respec-
tively, and z(t) is white Gaussian noise with power

spectral density N0/2. Let Tc and Td be the coher-
ence time and delay spread of the fading channel re-
spectively. We assume that the processes {al(t)} and
{dl(t)} are constant and i.i.d. over time intervals of Tc

(block-fading model in time), and that Td � Tc (an
underspread channel).

Suppose that the average power constraint is P ,
and let θ ∈ (0, 1] which is duty cycle. We have M
frequencies in which we will send Q of them as Multi-
tone(Q-tone) FSK scheme demands. One code word is
represented at baseband as the summation of Q com-
plex sinusoids with Q different frequencies of ampli-
tude

√
P/Qθ, that is

x(t) =

{√
P
Qθ

∑
i⊆Cm

exp(j2πfit) 0 ≤ t ≤ Ts,

0 otherwise;
(2)

where Ts satisfies Td < Ts ≤ Tc. Cm is a set of
Q different integers in [1,M ]. There are CQ

M combi-
nations for the selection of Q integers, 1 ≤ m ≤ CQ

M .
The frequency fi is chosen such that it is an integer
multiple of 1/(Ts − Td).

Let us consider the channel output over the inter-
val [Td, Ts]. During this interval, the Q sinusoids have
different channel gains and delays which are constant
in the interval owing to the assumptions of the model,
and we denote their values by {al,i} and {dl,i} re-
spectively. Hence by (1), the received signal when a
message m is sent is

y(t) =
∑

i⊆Cm

L∑
l=1

al,i

√
P

Qθ
exp(j2πfi(t − dl,i)) + z(t)

=
∑

i⊆Cm

Gi

√
P

Qθ
exp(j2πfi(t − dl,i)) + z(t) (3)

where Gi =
∑L

l=1 al,i exp(−j2πfidl,i) is a complex-
valued random variable. We define signal power in the
conventional sense as the received signal power, and
thus normalize the channel gain so that E[|Gi|2] = 1.

At the receiver, we get the correlator outputs

Rk =
1√

N0(Ts − Td)

∫ Ts

Td

exp(−j2πfkt)y(t)dt (4)

for 1 ≤ k ≤ M . Therefore,

Rk =

{
Gk

√
P (Ts−Td)

QθN0
+ Wk k ⊆ Cm,

Wk Otherwise.
(5)

where {Wk} is a set of i.i.d. circularly-symmetric
complex Gaussian random variables, each satisfying
E[|Wk|2] = 1.



Let ζ = P (Ts−Td)
QN0

. When n ⊆ Cm, the received

|Rn|2 has the probability density given by (6), other-
wise, |Rn|2 has the density given by (7).

P|Rn|2 (r) =
1

1 + ζ
exp

[ −r

1 + ζ

]
(r > 0) (6)

p|Rn|2 (r) = exp [−r] (r > 0) . (7)

Keeping the system’s average power constant, a
change in the duty cycle parameter θ will affect the
signal power P .

To decide which signal was transmitted, we use the
maximum-a-posteriori (MAP) rule based on the obser-
vation of |Rn|2 at the receiver. The probability sys-
tem transmits nothing in a symbol slot is 1−θ. When
there is no signal being transmitted in a slot, the joint
probability density of

(
|R1|2 , |R2|2 , .., |RM |2

)
is

p (r1, r2, ..., rM ) =
∏M

i=1 exp(−ri). (8)

Otherwise, if one signal is sent, the joint probability
density in the slot should be

p (r1, r2, ..., rM ) =
∏

j⊆Cm

exp
[−rj

1+ζ

]
1 + ζ

∏
i�Cm

exp(−ri).

(9)

According to the MAP rule, the summation of the
largest Q of |Rn|2s will be compared with a thresh-
old. If

∑
largest Q |Rn|2 is greater than Z, the receiver

will decide that the corresponding signal was trans-
mitted. Otherwise, the decoder declares no signal was
transmitted.

Because the symbols experience independent fad-
ing, the complex gain of the channel, A, decorrelates
in any two symbol slots. We compute the capac-
ity of this system using a discrete memoryless chan-
nel(DMC) model. The capacity of the system is data
rate per symbol over symbol time.

For performance analysis, we restrict ourselves to
the 2-tone case. First, we set up a discrete system
model. The transmitter sends one of M(M−1)/2 mes-
sages which contains two equal power sinusoid wave-
forms with different frequencies or sends nothing. At
the receiver, a bank of matched filters with central
frequencies fn(1 ≤ n ≤ M) are used to detect sig-
nals. The detector decodes the message based on∑

largest 2 |Rn|2. We select the two largest |Rn|2’s, and
get their sum. We then compare the sum to a thresh-
old Z. The threshold is determined by the MAP rule:

Z =
(

1 + ζ

ζ

)
ln

[
(1 + ζ)2

1 − θ

θ

(
M
2

)]
(10)

The discrete model associated with this decoding
scheme has M(M−1)/2+1 inputs and M(M−1)/2+1
outputs. With probability θ, the transmitter trans-
mits one of M(M − 1)/2 messages. Each message
has an input probability 2θ

M(M−1) . With probability

1 − θ, it transmits nothing. The distribution of |Rn|2
is known and the decoding rule is determined, so the
transition probabilities can be get. The mutual infor-
mation of the system is optimized on the probability
of input, and thus equals capacity for our input alpha-
bet, input distribution constraint and channel transi-
tion probabilities.

In section 5, we use numerical methods to calculate
the capacity of impulsive FSK and two-tone FSK.

3 Bounds on capacity
Before we discuss the capacity of our system, we

first consider some bounds on this capacity. From
[11], we know that the capacity of the Rayleigh fading
channel is the same as that of the AWGN channel in
the limit of infinite bandwidth. So a tight bound on
capacity is

C =
Ts − Td

Ts
F ln(1 +

P

2N0F
) (11)

where F is the bandwidth of the system, P is the av-
erage signal power, N0 is single-sided power density
per dimension for additive noise. The factor Ts−Td

Ts
is

introduced because the effective time of transmission
is [Td, Ts]. When F goes to infinity, the bound ap-
proaches (1− Td

Ts
) P
2N0

. We term this bound the limited
energy bound.

Another bound on capacity is deduced from the
discrete model of the system. Owing to the limited
number of input symbols, an upper bound on FSK
capacity is given by

C ≤ ln(M + 1)
Ts

. (12)

This bound is tight when power is very large, as we
shall see in following discussion. We denote this bound
as the limited bandwidth bound. Similarly, multi-tone
FSK has a bound:

C ≤
ln

((
M
K

)
+ 1

)
Ts

. (13)

4 The error exponents
The error exponent is very important for studying

the relationship between error probability and code
length. To discuss the error exponents of this system,
we can use the results in [4]:

Ecodebooks [Pe,m] ≤ 2−N [E0(ρ,PX(x))−ρR] (14)



where
E0(ρ, PX (x)) = (15)

− log2




∑
y

[∑
x

PX (x) PY |X (y|x)
1

1+ρ

]1+ρ



ρ is an arbitrary value between (0, 1). PX (x) is input
distribution. PY |X (y|x) is the transition probability.
Based on our system model, we can have transition
probabilities. Let

Er (ρ,R, PX (x)) = E0(ρ, PX (x)) − ρR (16)

We can get the bound on Ecodebooks [Pe,m]:

Ecodebooks [Pe,m] ≤ 2−NEr(ρ,R,PX(x)) (17)

Using the Markov inequality, we bound the probability
of error as:

Pe,m ≤ 4 × 2−NEr(ρ,R,PX(x)) (18)

Let
ξ(R) = max

0≤ρ≤1
max
PX(x)

Er(R,PX (x) , ρ) (19)

We will evaluate ξ(R) numerically.

5 Numerical results
A high peak signal power makes transmission reli-

able. However, when the average received signal power
is constant, we should lower the signal duty cycle in
order to improve the peak signal power, which will put
a limitation on the data rate. Hence, we need to ad-
just the duty cycle parameter θ to optimize the system
capacity. In our simulation, all results are optimized
with respect to θ by default.
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Figure 1: Capacity vs. System Bandwidth. Ts =
10µs, Td = 1µs.

In Figure 1, we fix power, and find, as expected,
that the capacity of FSK increases with the band-
width of system. However, it grows very slowly, and

has roughly a gap of 2dB with the infinite bandwidth
bound when the system bandwidth is between 1MHz
and 10THz. Note that our scheme achieves at moder-
ate bandwidths capacities very close to those achiev-
able under very large bandwidths.

For bandwidth F = 1MHz, we compare the capac-
ity of 2-tone FSK system and that of FSK system in
different power conditions. The simulation results are
shown in Figure 2. The capacity of 2-tone FSK sys-
tem is a little bit lower than that of the FSK system
where the limited energy bound is a main limitation
for the FSK system. When power is very large, the
limited bandwidth bound will limit the system perfor-
mance. In this region, the capacity of 2-tone FSK will
exceed that of FSK, because Multi-tone FSK has a
higher limited bandwidth bound. We can also see that
for moderate received power, the limitation in band-
width does not hamper these schemes, which achieve
capacities of the order of the limited energy bound.
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Figure 2: FSK vs. 2-tone FSK with fixed bandwidth
F = 1MHz, Td = 1µs, Ts = 10µs.

The limited bandwidth bound will increase with M
while the limited energy bound is not changed with
bandwidth. Figure 3 shows how the capacities of 2-
tone FSK and FSK are changed with M . We use Ts =
0.1s and P

2N0
= 40 here. M is related to bandwidth

by F = M/(Ts − Td).
While multi-tone FSK does better in some regions,

its error exponents may be a little worse than that
of FSK, which means it needs a longer code length to
achieve the same error probability. Figure 4 shows the
error exponents of FSK and multi-tone FSK under the
same power and bandwidth condition. The capacity of
multi-tone FSK is higher in this case, when data rate
is low, FSK need shorter code length for achieving the
same error probability as multi-tone FSK. However,
the performances of the two schemes are quite close.
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Figure 4: Error exponents for FSK and 2-tone FSK
with F = 5MHz, Td = 1µs, Ts = 10µs, θ = 0.01,
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6 Conclusions

The capacity grows slowly with bandwidth, and is
nearly 2 dB lower than the infinite bandwidth bound
for bandwidths commensurate with general mobile
communication conditions. Using a moderate band-
width, we can approach the capacity achieved by us-
ing very large bandwidth. Multi-tone FSK can get a
higher capacity than FSK when bandwidth is limited
and power can be sufficiently large. The error expo-
nent will almost not be hurt when the number of tones
is small.
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