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Abstract

We consider the issue of coding for non-multicast networks. For multicast net-
works, it is known that linear operations over a field no larger than the number
of receivers are sufficient to achieve all feasible connections. In the case of non-
multicast networks, necessary and sufficient conditions are known, if we restrict
ourselves to linear codes over a finite field [1]. However, no linearity sufficiency
results exist for non-multicast networks. Indeed, [2] shows that linearity over a
field is not sufficient in general. We present a coding theorem that provides nec-
essary and sufficient conditions, in terms of receiver entropies, for an arbitrary set
of connections to be achievable on any network. We conjecture that linearity is
sufficient to satisfy the coding theorem, when linear operations are performed over
vectors rather than scalars in a field. We illustrate the intuition of this conjecture
with an example. This work is part of an ongoing cooperation with R. Koetter.

1 Introduction

The beautiful results of [3] and [2] suggest a fundamental difference between the network
coding problems for multicast and non-multicast networks. In [3], Li, Yeung, and Cai
prove that linear coding is sufficient for multicast network coding problems. In contrast,
Lehman and Lehman [2] demonstrate that the same linear coding model is not sufficient
to achieve the optimal network coding performance in networks with arbitrary demands.

We begin with a simple new example that teases out the behavior that breaks the
linear coding definition in [2]. The given example suggests that the problem discovered by
Lehman and Lehman is not that linearity fails in non-multicast networks, but rather that
prior definitions of linearity are too restrictive to admit known solutions to some simple
non-multicast networks. Roughly, the prior models allow linear operations on a symbol-
by-symbol basis but prohibit linear operations on vectors of symbols. While these schemes
group symbols into vectors prior to coding, each resulting vector is considered as a single
symbol from a fixed finite field. Necessary and sufficient conditions for achievability
of connections for such linear schemes over a finite field have been established in [1].
However, allowing only linear operations on symbols over some finite field does not achieve
all outcomes afforded by linear operations on vectors created from the original source
symbols.
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The example we give in this paper leads to our conjecture that linear coding (according
to its most general definition) is sufficient for network coding on non-multicast networks.

We pursue the conjecture of linearity by seeking an understanding of the space of
achievable network coding problems. Towards this end, we first consider a collection of
network simplifications, demonstrating that the most general network coding problem can
be solved by solving a considerably smaller class of possible network problems. Using
the given simplifications, we finally prove a coding theorem that gives necessary and
sufficient conditions for the achievability of a collection of fixed demands in a general
network. This coding theorem is only in terms of entropies at the receivers.

2 Example

We begin by providing a non-multicast example on a K3,4 graph shown in Figure 1. This
example is due to R. Koetter. The sources and demands are as shown in the figure.

Notice that a pure routing solution fails. Using routing, only one of the two sources
sent to node 4 can be forwarded to any receiver. Therefore, the receiver that requires
both of the sources that are sent to node 4 cannot be satisfied.

The following argument demonstrates that no code that uses only linear operations
on symbols from a fixed finite field can solve the given network. We begin by examining
node 4. If the output on any of the edges leaving node 4 is a linear combination of the
node’s inputs, then either

• edges (1,3) and (1,4) must carry the same linear combination or

• edges (2,4) and (2,5) must carry the same linear combination.

If neither of these conditions is satisfied, then the receivers cannot separate A and B at
the decoders. Suppose that (1,3) and (1,4) carry the same mixture, then either

• sources A and A′ cannot be unmixed or

• only one of A and A′ gets through to the receivers.

In either case, the code fails to meet the given demands.
Now consider mixing at nodes 1 and 2. If node 1 mixes A and A′ along either of

its edges, say edge (1,3), then any node receiving information that passed through (1,3)
needs the information that passed through (1,4) as well. Since 4 does no mixing, then
the receiver in question can get only one stream originating at node 2. This leaves that
receiver the ability to get only one of B or B′. Since all demands are represented in the
network, one receiver cannot reconstruct its required sources.

While the above argument shows that linear coding on scalars is insufficient to meet
the given demands, linear coding on vectors achieves the desired goal. Figure 2 gives a
solution. This solution requires operations over two time steps. Note that the capacity
of each link is now two bits per two time steps. In effect, we are renormalizing over time.
In this 2-dimensional vector framework, we can meet all of the demands at all of the
receivers using a pure routing solution. This solution can also be posed as a linear coding
solution on a vector space of dimension 2.

Note that the reduction of 3-SAT in [2] also provides an example in which a vector
solution is necessary. Thus, while the example in [2] violates linearity if we do not allow
vector linear solutions, it bears a vector linear solution.
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Figure 1: Linear operations on symbols are insufficient to achieve the capacity of this
network.
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Figure 2: Linear operations on vectors are sufficient to achieve the capacity of this
network.



3 Conjecture

We conjecture that linear coding – under its most general definition – is sufficient for
network coding in systems with arbitrary demands. We next derive a collection of nec-
essary and sufficient conditions, in terms of receiver entropies, for meeting a collection of
demands on an arbitrary, fixed network. This argument suggests a partial proof of the
sufficiency of linearity by showing that a collection of demands can be met with a code
that uses only linear operations at the internal nodes (along with possibly non-linear op-
erations at the system encoders and decoders) if and only if the entropies achievable by a
non-linear operation at any step in the network are identical to the entropies achievable
by a linear operation (perhaps of a different vector dimension) at the same location.

4 Coding Theorem

We define a network coding problem by describing a graph G, a source matrix S, and a
demand matrix D. The graph, which is by assumption directed and acyclic, is character-
ized by its vertex set V (representing the network nodes), its edge set E (representing the
network links), and its link capacities R = [r(e)]e∈E ;1 we therefore write G = (V , E ,R).
The source matrix is a K × |V| binary matrices describing which, if any, of K possi-
ble sources nodes enter the network at nodes v ∈ V . Similarly, the demand matrix is a
K×|V| binary matrix describing which, if any, of K possible sources are required at nodes
v ∈ V .More precisely, let B = (B1, . . . , BK) be a collection of K input processes. Since
this paper considers block coding, we use B1,B2, . . . to describe samples of source vector
B, with Bt = (B1,t, B2,t, . . . , BK,t) representing the vector of source samples at integer
time t and Bn

k = (Bk,1, . . . , Bk,n) representing the first n samples of the kth random pro-
cess Bk,1, Bk,2, . . . for any k ∈ K = {1, . . . , K}. The source matrix S = [s(k, v)](k,v)∈K×V
has entries

s(k, v) =

{
1 if source Bk is available at node v
0 otherwise.

The demand matrix D = [d(k, v)](k,v)∈K×V has entries

d(k, v) =

{
1 if node v requires source Bk

0 otherwise.

We assume s(k, v) = 1 implies d(k, v) = 0 and
∑

v∈V d(k, v) > 0 for all k ∈ K. Thus
a single node of the network can be both a transmitter and a receiver, but not for the
same source; further each source entering the network has a destination distinct from all
network entry points for that source.

Given an arbitrary graph G = (V , E ,R), define a network code (fn, gn) for graph G to
be a set of edge encoders and node decoders. Each encoder fn

e in the set fn = {fn
e }e∈E is a

deterministic mapping describing the output on edge e ∈ E as a function of the available
inputs. The decoder set gn = {gn

k,v}(k,v)∈K×V defines K node decoders (gn
1,v, . . . , g

n
k,v) for

each node v ∈ V ; each decoder gn
k,v is a deterministic mapping giving the reconstruction

of source Bn
k at node v. More notation is necessary to make these definitions precise.

For any edge e ∈ E , let t(e) and h(e) denote the node from which edge e originates
and to which it goes, respectively. For any node v ∈ V , let I(v) ⊆ E and O(v) ⊆ E

1We here assume that each link is lossless when used at any rate below its capacity and disallow the
use of a link at any rate above its capacity.



denote the set of edges coming into and going out from node v, respectively. Finally,
assuming a block coding strategy with blocklength n, let wn

e ∈ Wn
e and xn

v ∈ X n
v be

the message transmitted across edge e ∈ E and all information available to node v ∈ V ,
respectively, in a single use of a fixed block coding strategy. (Capital W n

e and Xn
v denote

the values corresponding to a random network input.) Message wn
e is the binary message

that traverses edge e in n uses of the network; thus

Wn
e = {0, 1}nr(e).

Source xn
v is the concatenation of all sources available to node v and all messages incoming

from the edges in I(v); thus

X n
v = {0, 1}n(

∑K

k=1
s(k,v)+

∑
e∈I(v)

r(e))
.

For each edge e ∈ E , any deterministic mapping

fn
e : X n

t(e) →Wn
e

represents a legitimate encoder for mapping the space of available input information into
the space of messages that can be transmitted in n uses of channel e. Similarly, for each
(k, v) ∈ K × V , any deterministic mapping

gn
k,v : X n

v → {0, 1}n

gives a legitimate decoder for reconstructing input source vector Bn
k from output source

vector Xn
v at node v. Sequentially applying the above definitions (visiting the edges and

nodes in an order that is consistent with the partial ordering imposed by directed graph
G) gives

xn
v =

(
(bn

k)k∈K:s(k,v)=1 , (wn
e )e∈I(v)

)

wn
e = fn

e (xn
t(e))

when the values of the input processes (sample values of Bn
1 , . . . , Bn

K) are bn
1 , . . . , b

n
K .

We say that (G,S,D) is achievable if and only if there exists some n ≥ 1 and a
code (fn, gn) such that, if {xn

v} are the output source vectors resulting from input source
vectors (bn

k)K
k=1, then

(
gn

k,v(x
n
v )

)
(k,v)∈K×V = (d(k, v) · bn

k)(k,v)∈K×V

for all (bn
k)K

k=1 ∈ {0, 1}nK . Notice that for any (k, v) such that d(k, v) = 0, the decoding
rule gn

k,v(x
n
v ) = 0n for all xn

v ∈ X n
v meets the above constraint; thus node v need only

reconstruct the samples bn
k for values of k where d(k, v) = 1.

Theorem 1 For any (G,S,D), there exists a corresponding (G̃, S̃, D̃) such that only one
node in G̃ serves as a transmitter (|{v ∈ V :

∑K
k=1 s̃(k, v) > 0}| = 1), each receiver in G̃

demands only one source (
∑K

k=1 d̃(k, v) ≤ 1 for all v ∈ V), each receiver is connected to
only one other node and has incoming capacity 1 (for each v ∈ V with

∑K
k=1 d̃(k, v) = 1,

|I(v)| = 1, |O(v)| = 0, and
∑

e∈I(v) r(e) = 1), and (G,S,D) is achievable if and only if

(G̃, S̃, D̃) is achievable.



Proof: Let G = (V , E ,R), S, and D be the given graph, source matrix, and demand
matrix. We build G̃ = (Ṽ , Ẽ , R̃), S̃, and D̃ by modifying G, S, and D as follows. First
we add a single new transmitter node v0 to serve as the single initiation point for all
K sources. For each v ∈ V such that

∑K
k=1 s̃(k, v) > 0, we add a directed edge ev0,v

from v0 to v. Next, for each (k, v) ∈ K × V that satisfies s(k, v) = 1 or d(k, v) = 1,
we add a new node ṽv,k and a new edge ẽv,k from node v to node ṽv,k. Let V ′ = {v0},
E ′ = {ev0,v :

∑K
k=1 s(k, v) > 0}, V ′′ = {ṽv,k : (k, v) ∈ K × V ∧ s(k, v) + d(k, v) = 1},

and E ′′ = {ẽv,k : (k, v) ∈ K × V ∧ s(k, v) + d(k, v) = 1} be the sets of added nodes and
edges. Set Ṽ = V ∪ V ′ ∪ V ′′, Ẽ = E ∪ E ′ ∪ E ′′, R̃ = [r̃(e)]e∈Ẽ , S̃ = [s̃k,v](k,v)∈K×Ṽ , and

D̃ = [d̃k,v](k,v)∈K×Ṽ , where

r̃(e) =





∑K
k=1 s(k, v) if e ∈ E ′

1 if e ∈ E ′′
r(e) otherwise

s̃(k, v) =

{
1 if v ∈ V ′
0 otherwise

d̃(k, v) =

{
1 if v ∈ V ′′
0 otherwise.

If (G,S,D) is achievable then there exists an n ≥ 1 and a network code (fn, gn) such
that for any input (bn

k)K
k=1,(
gn

k,v(x
n
v )

)
(k,v)∈K×V = (d(k, v) · bn

k)(k,v)∈K×V .

Define (f̃n, g̃n)

f̃n
e (xn

t(e)) =





(bn
k)k:s(k,h(e))=1 if e ∈ E ′

gn
k,v(x

n
t(e)) if e = ev,k ∈ E ′′

fe(x
n
t(e)) otherwise

g̃n
k,v(x

n
v ) =





0n if v ∈ V ′
xn

v if v ∈ V ′′
gn

k,v(x
n
v ) otherwise.

In words, the new transmitter distributes the sources to the transmitters from G; each
receiver from G decodes the desired sources and transmits them to its new children. Since
the rates are sufficient for these tasks by construction,

(
g̃n

k,v(x
n
v )

)
(k,v)∈K×Ṽ =

(
d̃(k, v) · bn

k

)
(k,v)∈K×Ṽ .

If (G̃, S̃, D̃) is achievable, then there exists an n ≥ 1 and a network code (f̃n, g̃n) such
that for all input processes (bn

k)k∈K(
g̃n

k,v(x
n
v )

)
(k,v)∈K×Ṽ =

(
d̃(k, v) · bn

k

)
(k,v)∈K×Ṽ .

For any e such that
∑K

k=1 s(k, t(e)) > 0, let xn
t(e) = (xn

t(e),1,x
n
t(e),2), where xn

t(e),1 =
(bn

k)k:s(k,v)=1 is the source portion of xn
t(e) and xn

t(e),2 is the portion of xn
t(e) comprised

of messages forwarded from other nodes in the network. Then define {(fn, gn)} as

fn
e (xn

t(e)) =

{
f̃n

e (f̃ek0,t(e)
(xn

t(e),1),x
n
t(e),2) if

∑K
k=1 sk,t(e) > 0

f̃n
e (xn

t(e)) otherwise

gn
k,v(x

n
v ) =

{
g̃n

k,ṽk,v
(f̃n

ek,v
(xn

v )) if
∑K

k=1 d(k, v) > 0

g̃n
k,v(x

n
v ) otherwise.



The network code on the smaller graph G emulates the behavior of the network code on
the larger graph G ′. Since the latter allows reconstruction of the sources at the receivers
that demand them, the former does as well, giving

(
gn

k,v(x
n
v )

)
(k,v)∈K×V = (d(k, v) · bn

k)(k,v)∈K×V

when the inputs are (bn
k)n

k=1. 2

The preceding theorem demonstrates that there is no loss in generality associated
with restricting our attention to network coding problems with a single transmitter and
a collection of receivers such that each receiver is connected to exactly one other node,
desires exactly one source, and has incoming capacity exactly equal to 1. The remainder
of this paper focuses on network coding problems (henceforth called single-transmitter,
single-demand or STSD systems) that satisfy these conditions.

The following theorem demonstrates a form of equivalence between a collection of
random variables and a family of functions of those random variables that meet a ma-
troidal condition defined there. The result is useful for characterizing the set of achievable
STSD problems and is also potentially interesting in its own right as a property of random
variables.

Theorem 2 Let BK = (B1, . . . , BK) be independent, uniformly distributed bits. Suppose
that there exists a collection {fv}V

v=1 of deterministic functions fv : {0, 1}K → {0, 1}, and
let Xv = fv(B

K) for each v. Then the following statements are equivalent.

• There exist deterministic mappings h : {0, 1}K → {0, 1}K and gv : {0, 1} → {0, 1}
such that

gv(fv(h(BK))) = Bkv

for each v ∈ {1, . . . , V }, where {kv}v∈{1,...,V } is a collection of integers such that the
set {v : kv = k} is non-empty for every k.

• There exists a K × V matrix D = [dk,v] such that
∑K

k=1 dk,v = 1 for all v,

K∑

k=1

dk,{1,...,V } = K,

and for any A ⊆ {1, . . . , V }

H(XA) =
K∑

k=1

dk,A,

where XA = (Xv)v∈A and dk,A = 1 if
∑

v∈A dk,v > 0 and 0 otherwise.

Proof: Given the first condition, we satisfy the second condition by setting dk,v = 1 if
kv = k and 0 otherwise.

Given the second condition, fix an initial A to be a smallest possible subset of
{1, . . . , V } such that d(k,A) = K. Let {v1, . . . , vK} denote the K members of A, where
dk,vj

= 1 if k = j and 0 otherwise. For the given set,

K = H(XA) = H(BK) = H(XA, BK)



since the functions fv are deterministic. Thus H(BK |XA) = H(XA|BK) = 0, and
there is a one-to-one mapping h : {0, 1}K → {0, 1}K such that XA = xA if and only if
BK = h(xA). Given this mapping,

XA = h−1(BK) = (fv1(B
K), . . . , fvK

(BK)).

In this case, for any bK ∈ {0, 1}K , XA = bK is achieved by BK = h(bK), giving

fvk
(h(bK)) = bk

for all k ∈ {1, . . . , K}. Thus setting gv(x) = x for all v ∈ A meets the desired constraint
on the given subset. Now for any v 6∈ A for which dk,v = 1, H(Xv) = H(Xvk

) =
H(Xv, Xvk

) = 1, where Xvk
is again the unique element of A that satisfies dk,vk

= 1.
Again H(Xv|Xvk

) = H(Xvk
|Xv) = 0 implies that there exists a one-to-one mapping

between Xvk
and Xv. Let gv denote the mapping that gives Xvk

= gv(Xv). The given
{gv}V

v=1 and h together satisfy the first condition. 2

Corollary 1 applies Theorem 2 to characterize the family of achievable STSD prob-
lems. The corollary demonstrates that (G,S,D) is achievable if and only if there exists a
collection of deterministic edge codes that achieves the desired entropies at the receivers
in the sense described in Theorem 2.

Following the above notational conventions, Corollary 1 uses d(k,A), where d(k,A) =
1 if

∑
v∈A d(k, v) > 0 and d(k,A) = 0 otherwise, to denote the combined demand for

source k among a collection of nodes A ⊆ V . Similarly, Xn
A = (Xn

v )v∈A describes the
combined source output for all nodes in any A ⊆ V resulting from the application of the
blocklength-n code fn. Finally, Ṽ = {v ∈ V :

∑K
k=1 d(k, v) = 1} to denote the set of

terminal vertices in an STSD graph.

Corollary 1 Given an STSD problem (G,S,D) that satisfies d(k,V) = 1 for every k ∈
K, (G,S,D) is achievable if and only if there exist deterministic encoders fn such that if
the input B = (B1, . . . , BK) is a collection of K independent binary sources drawn from
the Bernoulli(1/2) distribution, then

H(Xn
A) =

K∑

k=1

d(k,A)

for all A ⊆ V.

Proof: To apply the previous theorem directly, we consider, for any fixed n, a represen-
tation of the problem (G,S,D) in which the sources, demands, and capacities associated
with all time-instances t ∈ {1, . . . , n} are separately and explicitly represented. That
is, each source input Bn

k is represented by n individual source inputs Bk(1), . . . , Bk(n),
the demands for the n samples from each source are treated as n separate demands, and
the capacity of edge e is given by nr(e) to denote the total capacity over n channel uses.
Applying the simplification from Theorem 1 to this time-separated graph gives a network
with single-bit inputs and single-bit demands. Theorem 2 then yields the desired result;
in this case, the functions under consideration describe the cumulative effect of the codes
at all nodes through which the source bits have passed enroute to a given receiver. 2



5 Conclusions

This paper poses a conjecture that linear coding suffices for network coding on arbitrary
networks. The conjecture is supported by an example demonstrating that previously
noted problems with linear coding can be addressed using linear network codes on vector
inputs. We introduce a coding theorem for networks, which may be viewed as a coding
theorem for functions of random variables. The coding theorem demonstrates that a
functional input can be reconstructed from its mappings if and only if the entropies of all
subsets of functional outputs have entropies identical to the entropies of the inputs they
attempt to reconstruct. Applying this theorem to the outputs of a network code gives
necessary and sufficient conditions for the achievability of a collection of demands on a
fixed network in terms of the entropies of the received outputs. The coding theorem gives
a new tool for investigating the sufficiency of linear coding in networks with non-multicast
demands.
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