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Abstract— A central issue in practically deploying network
coding in a shared network is the adaptive and efficient al-
location of network resources. This issue can be formulated
as an optimization problem of maximizing the net-utility – the
difference between a utility derived from the attainable multicast
throughput and the total cost of resource provisioning.

We develop a primal-subgradient type distributed algorithm to
solve this utility maximization problem. The effectiveness of the
algorithm hinges upon two key properties we discovered: (1) the
set of subgradients of the multicast capacity is the convex hull of
the indicator vectors for the critical cuts, and (2) the complexity
of finding such critical cuts can be reduced by exploiting the
algebraic properties of linear network coding. Extension to
multiple multicast sessions is also carried out. The effectiveness
of the proposed algorithm is confirmed by simulations on an
Internet Service Provider’s topology.

I. I NTRODUCTION AND PROBLEM FORMULATION

We consider multicasting information from a source node
s to a set of destination nodesT in a network of lossless
links with bit-rate constraints, which is represented by a
directed graphG = (V,E) with edge capacity vectorc of
length-|E|. The capacity of linkvw ∈ E is denoted bycvw.
Given V , E, c, s, andT , the multicast capacityrefers to the
maximum multicast throughput; this is denoted byCs,T (c).
In [1], Ahlswedeet al. established that the multicast capacity
is equal to the minimum capacity of a cut separatings from
a destinationt ∈ T ; i.e.,

Cs,T (c) = min
t∈T

ρs,t(c), (1)

whereρs,t(c) is the minimums–t cut capacity in(V,E, c).
An essential element needed in a practical network coding

system is a distributed scheme for “properly” allocating bit-
rate resources at each link for each multicast session in a
shared network. From a system perspective, there are two
competing considerations. On the one hand, it is desirable to
maximize the utilities of end users derived from the supported
end-to-end multicast throughput. On the other hand, there is
incentive to economize the consumption of network resources.
Following an economics approach to network design, we cast
this problem as the maximization of anet-utility function

Unet(r, g)
∆
= U(r) −

∑

vw∈E

pvw(gvw). (2)

Here U(r) represents the raw utility when an end-to-end
throughputr is provided. The cost functionpvw associated
with link vw maps the consumed bit-rategvw to the charge.
As a standard assumption,pvw are nondecreasing and convex
functions, andU is a nondecreasing and concave function.

The critical constraint of this maximization is that through-
put r must be attainable using the resourcesgvw. Let g be a
length-|E| vector collectively representinggvw. For network
coding based multicasting, this relation is characterizedby

r ≤ Cs,T (g) = min
t∈T

ρs,t(g). (3)

Since by assumptionU(r) is nondecreasing, giveng, we
can always setr to be the maximum achievable throughput
Cs,T (g). With this observation, we can turn the problem into
a maximization overg only:1

U∗
net

∆
= max U (Cs,T (g)) −

∑

vw∈E

pvw(gvw)

subject to: 0 ≤ g ≤ c, (4)

Our objective is to design efficient distributed algorithms
for finding an optimal solutiong∗ of (4), which will be used
as the allocated bit-rate resources at each link. The distributed
algorithms should, hopefully, incur low extra communication
overhead and be adaptive to network dynamics.

A. Proposed approach

We will show that the objective function of (4) is concave.
Our formulation of the problem, (4), motivates us to apply
an iterative algorithm that starts with an initial assignment g

and incrementally updates it along certain directions. However,
one of the difficulties is that the objective function is non-
differentiable, due to the non-differentiability of the function
Cs,T (g). To cope with this issue, we resort tosubgradient
methods. A subgradient is a generalization of the gradient to
non-differentiable functions; for a concave functionf , each
subgradient atx corresponds to a linear over-estimator off
that touchesf at x.

The subgradient method has been applied to various for-
mulations of network utility maximization, e.g., in [2]–[7].
Lun et al. [6] proposed a subgradient-based distributed algo-
rithm for minimum cost multicasting using network coding.

1In this paper,a ≤ b is in the element-wise sense.



For the utility maximization problem (4), Wu and Kung [7]
presented a subgradient-based distributed algorithm, which
repeatedly computes shortest paths from the source to each
destination. However, in all these studies, the subgradient
method is applied to the Lagrangian dual problem. In contrast,
our approach in this paper represents aprimal subgradient
method. The unique challenges here lie in deriving an analytic
expression of a subgradient and developing a low-complexity
implementation. As shown in Sections II and III, respectively,
both challenges can be met by using properties of network
coding and following a primal, rather than dual, approach.
The resulting distributed algorithm is presented in Section IV.
The proposed primal approach is more direct than the dual
approaches [6], [7]; it also extends more easily to multiple
multicast sessions. In addition, the primal approach can still be
used to compute a locally optimum resource allocation even
when utility functions become sigmoidal and cost functions
nonconvex under certain application modeling needs, whereas
the dual approach may produce infeasible, oscillatory solu-
tions. The main challenge for primal approach is that the key
step of finding a critical cut (as will be shown in Subsection II-
B) is more complex than the key step of finding the shortest
path in dual approach [7]. Efficient complexity reduction of
this step will be shown in Section III.

When particularizing the subgradient methods to (4), we
need to find a subgradient for the concave functionCs,T (g).
In Sections II-B, we provide a key characterization of the set
of subgradients ofCs,T (g), proving that the set of subgra-
dients of Cs,T (g) is the set of convex combinations of the
indicator vectors for thes–T critical cuts. A cut (U∗, U∗)
is said to bes–T critical if it is a minimum s–t∗ cut for a
critical destinationt∗; a destinationt∗ is said to be critical if
ρs,t∗(g) = mint∈T ρs,t(g).

Thus we can implement the subgradient iterations by seek-
ing ans–T critical cut in each iteration. Finding a minimums–
t cut is a classical combinatorial optimization problem thathas
been well understood. In particular, the preflow-push algorithm
[8] for finding a minimums–t cut is suitable for distributed
implementation. We can certaintly find ans–T critical cut
by finding a minimums–t cut for each destinationt ∈ T .
However, as shown in Section III-B, the algebraic properties of
linear network coding are helpful in reducing that complexity.
Previous studies have shown the multicast capacity in an
acyclic graph with unit edge capacities can be achieved with
high probability by performing random linear coding over a
sufficiently large finite field. Accordingly, if random mixing
is done in a linear space with dimensionh0 slightly less
than the capacityCs,T , then the destinations can recover the
data with high probability. We observe that if mixing is done
in a linear space with dimensionh slightly higher than the
capacityCs,T , then the critical destinations will have lower
ranks than the noncritical destinations. To ensure that the
destinations can still recover the data, we can linearly precode
the original data, e.g., by letting some original data be zero.
In essence, by performing random mixing in a space with
dimentionh > Cs,T while using a signal space with dimension

h0 < Cs,T , the critical destinations are identified and the data
recovery is feasible. As a result, we can find ans–T critical
cut by first finding a critical destinationt∗ and then finding a
minimum s–t∗ cut.

II. OPTIMIZATION VIA SUBGRADIENT ITERATIONS

A. Review: Preliminaries on Subgradient Methods

We first briefly review some preliminaries on subgradient
methods before characterizing the set of all subgradients of
Cs,T (g) in the next subsection.

Definition 1 (Subgradient, subdifferential):
Given a convex functionf , a vector ξ is said to be a
subgradientof f at x ∈ dom f if

f(x′) ≥ f(x) + ξT (x′ − x), ∀x′ ∈ dom f. (5)

For a concave functionf , a vectorξ is said to be a subgradient
of f at x if −ξ is a subgradient of−f .

The set of all subgradients off at x is called thesubdif-
ferential of f at x and denoted by∂f(x).

Lemma 1 (Subgradient calculus):
For a concave functionf : R

+ 7→ R, the following properties
hold.

• f is differentiable atx if and only if ∂f(x) = {∇f(x)}.
• ∂(αf) = α∂f , if α > 0.
• ∂(f1 + f2) = {ξ1 + ξ2|ξ1 ∈ ∂f1, ξ2 ∈ ∂f2}
• pointwise minimum: If f = mini=1,...,m fi where fi,

i = 1, . . . ,m are concave functions, then

∂f(x) = conv{∂fi(x)|i ∈ I(x)} , (6)

whereI(x)
∆
= {i|fi(x) = f(x} and conv{} is the convex

hull of the argument. In other words, the subdifferential
of f at x is the convex hull of the subdifferentials of the
“active” functions atx.
In particular, if fi(x) = aT

i x + bi, i = 1, . . . ,m, then

∂f(x) = conv{ai|fi(x) = f(x)} . (7)

The subgradient method [9] maximizes a non-differentiable
concave function in a way similar to gradient methods for dif-
ferentiable functions – in each step, the variables are updated
in the direction of a subgradient. However, such a direction
may not be an ascent direction; instead, the subgradient
method relies on a different property. If the variable takes
a sufficiently small step along the direction of a subgradient,
then the new point is closer to the set of optimal solutions.

Consider a generic, constrained concave maximization prob-
lem

maximize f(x)

subject to: x ∈ C, (8)

wheref : R
n 7→ R is concave, andC is a closed and nonempty

convex set. The subgradient method uses the iteration

x(k+1) = P
[

x(k) + αkξ(k)
]

, (9)



wherex(k) is thek-th iterate,ξ(k) is any subgradient off at
x(k), αk > 0 is thek-th step size, andP is the projection on
C:

P [x]
∆
= arg min

x′∈C
‖x′ − x‖2. (10)

Lemma 2 (Convergence of subgradient methods [10]):
Assumex∗ is a maximizer of (8) and there exists aG such
that ‖ξk‖ ≤ G, ∀k. Then

f∗ − max
i=1,...,k

f(x(i)) ≤
‖x(1) − x∗‖ + G2

∑k

i=1 α2
i

2
∑k

i=1 αi

. (11)

In particular,

• if a constant step size is used, i.e.,αk = h, then the right
hand side of (11) converges toG2h/2 ask → ∞.

• if the step sizes satisfy

lim
k→∞

αk = 0,

∞
∑

k=1

αk = ∞, (12)

then right hand side of (11) converges to 0 ask → ∞.
Step sizes that satisfy this condition are calleddiminish-
ing step sizes.

B. Subgradients ofCs,T (g)

Let a length-|E| binary vectorIX be theindicator vector
for edge setX ⊆ E; its e-th entry is 1 if e ∈ X, and 0 if
e /∈ X.

For t ∈ T , an s–t cut (U,U) refers to a partition of the
nodesV = U +U with s ∈ U , t ∈ U . Let δ(U) denote the set
of edges going fromU to U . Thecapacityof the cut refers to
the sum capacity ofδ(U). An s–t cut with minimum capacity
is called aminimums–t cut. The minimums–t cut capacity
is:

ρs,t(g)
∆
= min

U : s∈U, t∈U

∑

vw∈δ(U)

gvw = min
U : s∈U, t∈U

IT
δ(U)g.

(13)
Definition 2 (Critical destination, Critical cut):

A destinationt∗ ∈ T is said to be acritical destination if
ρs,t∗(g) = mint∈T ρs,t(g). The set of critical destinations is

T ∗(g)
∆
=

{

t∗ ∈ T

∣

∣

∣

∣

ρs,t∗(g) = min
t∈T

ρs,t(g)

}

. (14)

A cut (U∗, U∗) is said to be ans–T critical cut if it is a
minimum s–t∗ cut for some critical destinationt∗ ∈ T ∗(g).

The name “s–T critical” comes from the observation that
reducing the capacity of the cut(U∗, U∗) in Definition 2 by
any positive amount reduces the multicast throughputCs,T (g)
from s to T by the same amount.

Applying the pointwise minimum rule of subgradient cal-
culus to

Cs,T (g) = min
t∈T

ρs,t(g) = min
t∈T

min
U : s∈U, t∈U

IT
δ(U)g, (15)

we can characterize the subgradients ofCs,T (g) in Proposi-
tion 1.

Proposition 1 (Subgradients of multicast capacity):
The subdifferential ofCs,T (g) at g is

conv
{

Iδ(U∗)|(U
∗, U∗) is ans–T critical cut in (V,E, g)

}

(16)

C. Subgradient Iterations

By the assumptions onpvw andU stated after (2), we have
the following

Lemma 3: The objective function of (4)

U (Cs,T (g)) −
∑

vw∈E

pvw(gvw) (17)

is concave ing.
Proof: The functionρs,t(g) is concave, since according to

the definition (13), forλ1, λ2 ≥ 0

ρs,t(λ1g1 + λ2g2) (18)

≥ρs,t(λ1g1) + ρs,t(λ2g2) (19)

=λ1ρs,t(g1) + λ2ρs,t(g2). (20)

The pointwise minimum of a family of concave functions is
also concave. Thus the lemma follows.

We now look for a subgradient of (17). LetU̇(x) denote a
subgradient ofU(x) at x. Let ṗ(g) denote a subgradient of
∑

vw∈E pvw(gvw) at pointg. This vector can be obtained by
finding a subgradient for each scalar functionpvw(gvw).

Proposition 2 (A Subgradient of Objective Function):
A subgradient of (17) at anyg ≥ 0 is given as follows:

ξ
∆
= U̇ (Cs,T (g)) Iδ(U∗) − ṗ(g), (21)

where(U∗, U∗) is ans–T critical cut for(V,E, g). This leads
to the following subgradient updating rule:

g(k+1) = P
[

g(k) + αkξ(k)
]

. (22)

whereξ(k) is a subgradient of (17) at the current solutiong(k)

formed according to (21). Note that in (22), the projection is
onto the Cartesian set{g|0 ≤ g ≤ c} and thus it decouples
into finding min{max{0, gvw}, cvw} for each entrygvw.
Proof: We just need to show thaṫU (Cs,T (g)) Iδ(U∗) is a
subgradient ofU (Cs,T (g)). The following proof essentially
verifies that a subgradient chain rule holds.

From the definition of subgradients

U(x′) − U(x) ≤ U̇(x)(x′ − x), ∀x′, x ≥ 0 (23)

Cs,T (g′) − Cs,T (g) ≤ Iδ(U∗)(g
′ − g), ∀g′, g ≥ 0. (24)

SinceU is nondecreasing, we havėU(x) ≥ 0. Substitutex and
x′ in (23) with x = Cs,T (g) andx′ = Cs,T (g′), respectively.
Then

U (Cs,T (g′)) − U (Cs,T (g)) (25)

≤U̇ (Cs,T (g)) (Cs,T (g′) − Cs,T (g)) (26)

≤U̇ (Cs,T (g)) Iδ(U∗)(g
′ − g), ∀g′, g ≥ 0. (27)

Now the above chain rule together with Propositions 1 and 2
proves Proposition 3.



III. F INDING AN s–T CRITICAL CUT EFFICIENTLY

Finding a minimums–t cut in graph (V,E) with edge
capacitiesg has been well studied. For example, the preflow-
push algorithm [8], [11] is a distributed algorithm for finding
a minimums–t cut. It is certainly possible to find a minimum
s–t∗ cut for somet∗ ∈ T ∗ by running the minimums–t
cut algorithm for every destination. However, it is possible
to fulfill this task with lower complexity, by exploiting some
algebraic properties of (random) linear network coding.

A. Review: Linear Network Coding For Acyclic Graphs With
Unit Capacity Edges

Assume each edgee ∈ E can carry one symbol from a
certain finite fieldF. Let ye denote the symbol carried by
edgee. Let x1, . . . , xh, denote thesource symbolsavailable at
the source nodes. For notational consistency, we introduceh
source edges, s1, . . . , sh, which all end ins; the source edges
s1, . . . , sh carry theh source symbolsx1, . . . , xh, respectively.

In a linear network coding assignment, the symbol on edge
e is a linear combination of the symbols on the edges entering
tail(e)2, namely

ye =
∑

e′: head(e′)=tail(e)

we,e′ye′ . (28)

We call the coefficients{we,e′} the “mixing coefficients”. By
induction, ye on any edgee is a linear combination of the
source symbols, namely

ye =
h
∑

i=1

qe,ixi. (29)

The vectorqe

∆
= [qe,1, . . . , qe,h] is known as theglobal coding

vectorat edgee. It can be determined recursively as

qe =
∑

e′: head(e′)=tail(e)

we,e′qe′ , (30)

whereqsi
is the ith unit vectorǫi.

Definition 3 (Linear Network Coding Assignment):
Given an acyclic graphG = (V,E), a source nodes, a finite
field F, and a code dimensionh, a linear network coding
assignmentW refers to an assignment of mixing coefficients
we,e′ ∈ F, one for each pair of edges(e, e′) with e ∈ E,
e′ ∈ E ∪ {s1, . . . , sh}, andhead(e′) = tail(e).

The global coding vectorsresulting from a linear network
coding assignmentW , qe(W ), are the set of|E| vectorsqe

determined byW according to (30).
In a linear network coding assignmentW , the rank of a

nodev, rankv(W ), refers to the rank of the span of the global
coding vectors for incoming edges ofv, i.e.,

rankv(W )
∆
= rank{qe(W ), head(e) = v}. (31)

2An edgee from v to w is said to havetail(e) = v andhead(e) = w.

Using the linear network coding result by Li, Yeung, and
Cai [12], we see that

rankv(W ) ≤ min{ρs,v, h}, ∀v ∈ V − {s}. (32)

Now consider multicasting information froms to T using
linear network coding. Using a network code assignment
W , the number of distinct information symbols that can be
multicast toT is

R(W )
∆
= min

t∈T
rankt(W ). (33)

Note that

min
t∈T

rankt(W ) ≤ min{min
t∈T

ρs,t, h} ≤ min
t∈T

ρs,t = Cs,T . (34)

If a code assignmentW satisfiesmint∈T rankt(W ) = Cs,T ,
then W is said to be acapacity-achievingcode assignment,
since it offers a way to multicastCs,T symbols while using
each edge once.

It is known that random linear coding can achieve the
capacityCs,T with high probability, for a sufficiently large
field size; see, e.g., Hoet al. [13], Jaggi et al. [14]. The
following particular result is from [13].

Lemma 4 (Optimality of Random Linear Coding [13]):
Consider an acyclic graphG = (V,E) with edges of unit

capacity, a source nodes, and a set of destinationsT . For a
code dimensionh ≤ Cs,T and a finite field size|F|,

Pr [rankt(W ) = h,∀t ∈ T ] ≥

(

1 −
|T |

|F|

)|E|

, (35)

where W is a random matrix with each mixing coefficient
we,e′ chosen independently and uniformly fromF.

B. Algebraically Identifying Critical Destinations

Previous studies about random linear coding have focused
on achieving the multicast capacity and hence considered using
a code dimensionh ≤ Cs,T . However, we will make use of a
code dimensionh > Cs,T for the purpose of identifying the
critical destinations. First, note the following easy corollary of
Lemma 4.

Corollary 1: Consider an acyclic graphG = (V,E) and
a source nodes. For any dimensionh > 0 and finite fieldF,

Pr [rankv(W ) = min{ρs,v, h}] ≥

(

1 −
1

|F|

)|E|

, ∀v ∈ V.

(36)

whereW is the structured mixing matrix with each mixing
coefficient we,e′ chosen independently and uniformly from
F. In particular, by using a sufficiently large fieldF, the
probability in (36) can be made arbitrarily small.
Proof: Consider each nodev ∈ V . If ρs,v ≥ h, then (36)
is established upon applying Lemma 4 withT = {v}. If
ρs,v < h, let q′

e be the subvector ofqe consisting of the first
ρs,v entries. Applying Lemma 4 withT = {v} and a code
dimensionρs,v, we see that

Pr [rank{q′
e : head(e) = v} = ρs,v, ] ≥

(

1 −
1

|F|

)|E|

.



Since rankv(W ) ≥ rank{q′
e : head(e) = v}, the result

follows.

Recall that a destinationt is said to be critical ifρs,t = Cs,T

and non-critical ifρs,t > Cs,T . Suppose we use random linear
network coding withh > Cs,T . Then for a sufficiently large
finite field F, the rank of a critical usert∗ ∈ T ∗ will be close
to Cs,T , whereas the rank of a non-critical usert ∈ T − T ∗

will be close tomin{ρs,t, h} > Cs,T . This gives a method to
identify the critical destinations.

There is a note on precoding worth mentioning here. With
random linear coding over a sufficiently large finite field, a
critical destinationt∗ will receive approximatelyCs,T symbols
with linearly independent global coding vectors. Each symbol
corresponds to a linear equation in terms of theh unknowns,
x1, . . . , xh. If h > Cs,T , there are more unknowns than the
equations. How wouldt∗ be able to recover the source infor-
mation? This issue can be solved by performingprecoding;
this technique was used in [15] for robustness in a dynamic
network. If the source symbolsx1, . . . , xh are linearly coded
versions ofh0 ≤ Cs,T underlying variables, then it becomes
possible to recover the underlying variables. The simplestform
of precoding is to setxh0+1, . . . , xh to zero. This is sufficient
for our purpose. The parameterh0 is called thesignal space
dimensionandh is called themixing dimension.

We now come to implications of the above results to the im-
plementation of our distributed utility maximization algorithm
in the practical network coding system. The proposed method
of identifying the critical destinations can be implemented
almost “for free” in the practical network coding system [15].

To implement the proposed method of identifying the crit-
ical destinations, let the source packets in a generation be

x1, . . . ,xh0
,xh0+1 = 0, . . . ,xh = 0. (37)

Thus the payload of a packet with global coding vectorq =
[q1, . . . , qh] will be

h0
∑

i=1

qixi. (38)

Since each payload does not involve[qh0+1, . . . , qh], these
entries of q are not used in the final decoding at each
destination. These amount to the overhead incurred for testing
criticality of destinations.

To leave a margin against temporary network outages, we
should seth0 such that the corresponding rate is slightly below
the nominal multicast capacity. This assures that decodingwill
be successful at each destination with high probability. We
should seth such that the corresponding rate is slightly above
the multicast capacity. In this way, the critical destinations will
exhibit lower ranks than the noncritical destinations.

IV. SUMMARY OF THE PROPOSEDALGORITHM

We now summarize the proposed distributed algorithm. It
is assumed that each node in the network can store data
pertaining to its outgoing edges and perform computations on
them.

For simplicity, let us assume that the algorithm is already
in the steady phase. In other words, we assume that the
practical network coding system is already up running. Thus
we can use the rank information collected at the destinations
for identifying the critical destinations.

Algorithm 1 (Primal subgradient method via critical cuts):
Suppose a current solutiong(k) is just obtained. This vector
is stored in a distributed fashion in the network. Suppose
further that the sources has a coarse estimate of the range of
Cs,T (g(k)), e.g., viaCs,T (g(k−1)). Then the following steps
are performed.

1) Set the practical network coding system with the para-
metersh0 and h at the source such that the multicast
rate associated withh0 is slightly below Cs,T (g(k))
and the multicast rate associated withh is slightly
aboveCs,T (g(k)); see Section III-B for details. Each
destination monitors the rank information for one or
more generations of data multicasting and reports the
information tos.

2) Using the reported rank information, the sources de-
termines Cs,T (g(k)) (by taking the minimum of the
rank of the destinations and dividing it by the time
interval), as well as a worst destinationt∗ which has the
worst (minimum) throughput. The sources then initiates
the execution of the preflow-push algorithm, to find a
minimum s–t∗ cut (U∗, U∗). This represents ans–t∗-
critical cut.

3) The sources conveys the valueU̇(Cs,T (g(k))) to all
nodes involved in(U∗, U∗).

4) The subgradient update (22) is implemented in parallel.
For each edgevw going fromU∗ to U∗, set

g(k+1)
vw = Pvw

[

g(k)
vw + αk

(

U̇(Cs,T (g(k))) − ṗ(g(k)
vw

)]

,

(39)

wherePvw[x] = min{max{x, 0}, cvw}. For each other
edge, set

g(k+1)
vw = Pvw

[

g(k)
vw − αkṗ(g(k)

vw )
]

. (40)

V. EXTENSION TO MULTIPLE MULTICAST SESSIONS

Consider the scenario where there are multiple multicast
sessions in the network. Label them with indicesm =
1, . . . ,M . Denote the source and the destination set of the
mth session bysm and Tm, respectively. Assume themth
multicast session communicates using its exclusive share of
resourcegm. In this case the multicast rate for this session is

Csm,Tm
(gm)

∆
= min

t∈Tm

ρsm,t(gm). (41)

We consider the following optimization, where the variables
are [g1; . . . ; gM ]

maximize
M
∑

m=1

Um (Csm,Tm
(gm))) −

∑

vw∈E

pvw

(

M
∑

m=1

gm
vw

)

subject to: 0 ≤ gm, ∀m

g1 + . . . + gM ≤ c (42)



A subgradient of the objective function can be obtained as the
stacked vector[ξ1; . . . ; ξM ], where

ξm

∆
= U̇m (Csm,Tm

(gm)) ξRm
(gm) − ṗ

(

M
∑

m=1

gm

)

(43)

and

ξCsm,Tm
(gm) ∈ ∂Csm,Tm

(gm). (44)

Now the projection of the updated vectorg(k+1) to the
feasible region of (42) becomes slightly more complicated.
Since the constraints in (42) are decoupled for the edges, we
need to solve the following problem for each edgevw ∈ E

P [gvw]
∆
= arg min

g′

vw

‖g′
vw − gvw‖

2

subject to: 0 ≤ g′
vw,

1
T g′

vw ≤ cvw, (45)

wheregvw is a length-M vector consisting of the current value
of gm

vw, and1 is a vector of all 1’s.

VI. SIMULATIONS

The proposed algorithm has been tested on a large scale
problem. The test graph(V,E) is the topology of an ISP
(Exodus) backbone obtained from the Rocketfuel project at
the University of Washington [16], [17]. There are 79 nodes
and 294 links. We arbitrarily placed a source node at New
York, and 8 destination nodes at Oak Brook, Jersey City,
Weehawken, Atlanta, Austin, San Jose, Santa Clara, and Palo
Alto. The utility function, the link cost functions and link
capacities are set as

U(r) = ln(1 + r), (46)

pvw(g) = 0.005g, ∀vw ∈ E, (47)

cvw = 10, ∀vw ∈ E. (48)

Figure 1 presents the simulation results. The straight lineis
the optimal net-utilityU∗

net and the other curve corresponds to
U

(k)
net generated by the proposed primal subgradient algorithm

for step sizeh = 1.0. The results confirm the convergence of
the proposed algorithm to a small neighborhood of the global
optimum when a constant step size is used, as predicted by
Lemma 2.

VII. C ONCLUSION

For network coding–based multicasting, we have proposed
a net-utility maximization problem to capture the tradeoff
between multicast throughput utility and resource provisioning
costs. By deriving a subgradient through indicator vectors
for s − T critical cuts, we propose a distributed algorithm
to globally solve the utility maximization problem. Further
exploiting the algebraic properties of practical linear network
coding, we show a low-complexity efficient implementation of
the algorithm.
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Fig. 1. Primal subgradient iterations for the large scale test case.
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