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Abstract—A central issue in practically deploying network Here U(r) represents the raw utility when an end-to-end
coding in a shared network is the adaptive and efficient al- throughputr is provided. The cost functiop,, associated

location of network resources. This issue can be formulated ity jink vw maps the consumed bit-rate,, to the charge.
as an optimization problem of maximizing the net-utility — the

difference between a utility derived from the attainable multicast a.Standard aij‘»sumptionuw are'nondecreasing and convex
throughput and the total cost of resource provisioning. functions, andJ is a nondecreasing and concave function.
We develop a primal-subgradient type distributed algorithm to The critical constraint of this maximization is that thréug
solve_ this u_tility maximization problem._ The eff_ectiveness of the put r must be attainable using the resourges. Let g be a
algorithm hinges upon two key properties we discovered: (1) the length{E| vector collectively representing,.,. For network

set of subgradients of the multicast capacity is the convex hull of " . . . L
the indicator vectors for the critical cuts, and (2) the complexity coding based multicasting, this relation is characterizgd

of finding such critical cuts can be reduced by exploiting the
algebraic properties of linear network coding. Extension to

multiple multicast sessions is also carried out. The effectiveness . . . . .
of the proposed algorithm is confirmed by simulations on an Since by assumptiod/(r) is nondecrea§|ng, giveg, we
Internet Service Provider's topology. can always set to be the maximum achievable throughput

Cs,r(g). With this observation, we can turn the problem into
g0 1
|I. INTRODUCTION AND PROBLEM FORMULATION a maximization ovey only:

r<Csr(g) = lgéiql} ps,t(9)- (3

*

We consider multicasting information from a source node Uneté max U (Csr(g)) — Z Pow(Gow)

s to a set of destination nod€B in a network of lossless vweE

links with bit-rate constraints, which is represented by a subjectto: 0 < g <eg, (4)

directed graphG = (V, E) with edge capacity vectoe of

length{E|. The capacity of linkvw € E is denoted byc,,, .

lee_n V. E ¢ 5 andT, the muI.tlca_st .capacnyefers to the as the allocated bit-rate resources at each link. The loligsé

maximum multicast throughput; this is denoted By r(c). ) : S
: : ' .. algorithms should, hopefully, incur low extra communioati

In [1], Ahlswedeet al. established that the multicast capamt)éJ . .

: - . . verhead and be adaptive to network dynamics.

is equal to the minimum capacity of a cut separatinfjom

a destinatiort € T'; i.e., A. Proposed approach

We will show that the objective function of (4) is concave.
Our formulation of the problem, (4), motivates us to apply
. - _ an iterative algorithm that starts with an initial assigmmng
wherep, ¢(c) is the minimums— cut capacity in(V, E, c). and incrementally updates it along certain directions. el

An es_sentla.l ellement needed in a“practlca!, networl.< COd.'Bge of the difficulties is that the objective function is non-
system is a distributed scheme for “properly” allocating bIdifferentiable, due to the non-differentiability of thenfttion
rate resources at each link for each multicast session inCaT(g) To cope with this issue, we resort tabgradient
shared network. From a system perspective, there are @y, qq o subgradient is a generalization of the gradient to

compe_tlng r?ons.llt.jc_aranofns.dOn the gng hg?d’ It 'E deSIr""bler‘lton—differentiable functions; for a concave functign each
ma:jmtmlze(; N ulttl' |t|e? ?h en #setrs Oer;\ée trr?m th N Zuﬁrt subgradient atc corresponds to a linear over-estimator fof
end-to-end multicast throughput. On the other hand, trerey "o ches at .

incentive to economize the consumption of network resaurce 4 subgradient method has been applied to various for-
l:]qllowmbgi an ecoEomlcs _ap_pro_ach t]? netvy?rkfdemgn, We €35l jations of network utility maximization, e.g., in [2H[7
this problem as the maximization ofreet-utility function Lun et al. [6] proposed a subgradient-based distributed algo-
A rithm for minimum cost multicasting using network coding.
Unet(T7 g) = U(T’) - Z p’uw(ng)- (2) g g g

vweE 1In this papera < b is in the element-wise sense.

Our objective is to design efficient distributed algorithms
for finding an optimal solutiory™ of (4), which will be used

CS,T(C) = Itlél’]r“l ps,t(c); (l)



For the utility maximization problem (4), Wu and Kung [7]ho < Cs 1, the critical destinations are identified and the data
presented a subgradient-based distributed algorithmgchwhiecovery is feasible. As a result, we can find & critical
repeatedly computes shortest paths from the source to eaahby first finding a critical destinatiott and then finding a
destination. However, in all these studies, the subgradieninimum s—* cut.

method is applied to the Lagrangian dual problem. In cohtras
our approach in this paper representpramal subgradient
method. The unique challenges here lie in deriving an aicalyA. Review: Preliminaries on Subgradient Methods

expression of a subgradient and developing a low-complexit we first briefly review some preliminaries on subgradient
implementation. As shown in Sections Il and Ill, respedive methods before characterizing the set of all subgradiehts o
both challenges can be met by using properties of netwark ..(g) in the next subsection.

coding and following a primal, rather than dual, approach. pefinition 1 (Subgradient, subdifferential):

The proposed primal approach is more direct than the dugjpgradientof f at = € dom f if

approaches [6], [7]; it also extends more easily to multiple ) o )
multicast sessions. In addition, the primal approach Gérbst f@) > flz)+& (' —=x), va'edomf. (5)

used to compute a locally optimum resource allocation EVERr a concave functioffi, a vectorg is said to be a subgradient
when utility functions become sigmoidal and cost function&c fatzif —£isa sul;gradient of f

nonconvex under certain application modeling needs, vasere The set of all subgradients of at z is called thesubdif-
the dual approach may produce infeasible, osciIIatory—solHarentiaI of f atz and denoted by)f(x).
tions. The main challenge for primal approach is that the keyLemma 1 (Subgradient calculus):
step of finding a critical cut (as will be shown in Subsectibn | For a concave functiofi : R+ R, the following properties
B) is more complex than the key step of finding the shorteﬁb . '
ath in dual approach [7]. Efficient complexity reduction of
e stop wil e En]SeCﬁon ey + /s differentiable ate it and only if 0/ (z) = {V/(x)}.
When particularizing the subgradient methods to (4), we * O(af) = adf, it a>0.
need to find a subgradient for the concave functianr(g). * 6(f1 +_f2) :.{.51 +6[8 € 8f1’, £ € 0f>}
In Sections II-B, we provide a key characterization of the se * POINtWise minimum: If f = miniy.m f; where f;,

Il. OPTIMIZATION VIA SUBGRADIENT ITERATIONS

of subgradients of’ r(g), proving that the set of subgra- ¢=1,...,m are concave functions, then

dients of Cs r(g) is the set of convex combinations of the df(x) = conv{df;(x)]i € I(z)}, (6)

indicator vectors for thes—T" critical cuts A cut (U*,U*)

is said to bes—T critical if it is a minimum s—t* cut for a where!(x) 2 {i|fi(x) = f(x} and con{} is the convex

critical destinationt*; a destination* is said to be critical if hull of the argument. In other words, the subdifferential

Ps.t+(g) = minger ps (g). of f ata is the convex hull of the subdifferentials of the
Thus we can implement the subgradient iterations by seek- *“active” functions atz.

ing ans—T critical cut in each iteration. Finding a minimusr In particular, if f;(z) = al'z + b;,i = 1,...,m, then

t cut is a classical combinatorial optimization problem tias

been well understood. In particular, the preflow-push digor 0f(x) = conv{ai|fi(x) = f ()} (7.)

[8] for finding a minimums—¢ cut is suitable for distributed

implementation. We can certaintly find an-T" critical cut H baradi hod 9 - diff iabl
by finding a minimums—¢ cut for each destination € T. € subgradient method [9] maximizes a non-differentiable

However, as shown in Section I1I-B, the algebraic propsrtie concave function in a way similar to gradient methods for dif

linear network coding are helpful in reducing that comptiexi ferennable functions — in each step, the variables aretepgda

Previous studies have shown the multicast capacity in iy the dwegtlon of a SUbg?d'er_}t' queve(rj, suhch a gwec(';l_o :
acyclic graph with unit edge capacities can be achieved with® not be an ascent direction; instead, the subgradient

high probability by performing random linear coding over 5nethc?d. relies on a different property. l_f the variable ta}kes
sufficiently large finite field. Accordingly, if random mixin a sufficiently small step along the direction of a subgrakiien

is done in a linear space with dimensidn slightly less th? the_:dnew point is closer tp tf(\je set of optlmgl §0IL_lt|ons. A
than the capacity’, 1, then the destinations can recover th onsider a generic, constrained concave maximization-pro

data with high probability. We observe that if mixing is done®™

in a linear space with dimensioh slightly higher than the maximize f(x)
capacity C; 1, then the critical destinations will have lower
ranks than the noncritical destinations. To ensure that the
destinations can still recover the data, we can linearlgguale wheref : R* — R is concave, and is a closed and nonempty
the original data, e.g., by letting some original data bezerconvex set. The subgradient method uses the iteration

In essence, by performing random mixing in a space with i1 . )

dimentionh > C, 1 while using a signal space with dimension ™) = p |z 4 fa7%3 ) )

subject to: x € C, (8)



wherez(%) is the k-th iterate,g(’“) is any subgradient of at Proposition 1 (Subgradients of multicast capacity):
x®), oy, > 0 is the k-th step size, and® is the projection on The subdifferential ol 7(g) at g is

C: —_ . .
conv{ Is« |(U*,U*) is ans—T critical cut in(V, E,
Plz] 2 arg miré |z’ — || (20) sl ) ( g()l}G)
ES

Lemma 2 (Convergence of subgradient methods [10]): C. Subgradient Iterations
Assumex* is a maximizer of (8) and there existsGasuch By the assumptions op,,, andU stated after (2), we have

that ||€*|| < G, Vk. Then the following
i Lemma 3: The objective function of (4)
- (0 (3) < H:c(l) —.’B*H +G2 Zi:l OéZ2 11
A S s P U(Cuir@) = 3 puulgon) )
In particular, =t vwel

is concave irg.
Proof: The functionp, ;(g) is concave, since according to
the definition (13), forA;, A2 > 0

« if a constant step size is used, i.e;, = h, then the right
hand side of (11) converges &°h/2 ask — oc.
« if the step sizes satisfy

0 Ps,t(A1g1 + A2g2) (18)
Jim o =0, Y g =00, (12) s (Nig1) + pst(Nagy) (19)
=1 =A1ps,t(g1) + A2ps.t(g2)- (20)
then right hand side of (.11) converges to Ok_as.—> 2° The pointwise minimum of a family of concave functions is
Step sizes that satisfy this condition are caktehinish- also concave. Thus the lemma follows. -

ing step sizes
i We now look for a subgradient of (17). Lé)t(x) denote a

B. Subgradients o€’ r(g) subgradient ofU/(z) at z. Let p(g) denote a subgradient of

Let a lengthtE| binary vectorI x be theindicator vector > . p..(g.w) at pointg. This vector can be obtained by
for edge setX C F; its e-th entry is 1 ife € X, and 0 if finding a subgradient for each scalar function, (g, )-
e¢ X. Proposition 2 (A Subgradient of Objective Function):

Fort € T, ans—t cut (U,U) refers to a partition of the A subgradient of (17) at any > 0 is given as follows:
nodesV = U+ U with s € U, t € U. Let§(U) denote the set A .
of edges going front/ to U. The capacityéf t)he cut refers to §=U(Car(@) 5w —P(9), (1)
the sum capacity of(U). An s—t cut with minimum capacity where(U*, U*) is ans—T critical cut for (V, E, g). This leads
is called aminimums—¢ cut The minimums—¢ cut capacity to the following subgradient updating rule:

IS:
gt = p g 4+ Ozké'(k)} . (22)

A . .
pst(g) = min Z Jow =  Win I(;T(U)g.

Us seU, teT | Eh U: seU, teT where¢® is a subgradient of (17) at the current solutighy)

(13) formed according to (21). Note that in (22), the projectien i

Definition 2 (Critical destination, Critical cut): onto the Cartesian sdig|0 < g < c} and thus it decouples
A destinationt* € T is said to be acritical destinationif into finding min{max{0, g, }, c.w } for each entryg, .
ps.i-(g) = minger ps(g). The set of critical destinations is Proof:  We just need to show that (Cs r(g)) Isw~) is a
subgradient ofU (Cs r(g)). The following proof essentially
(14) Verifies that a subgradient chain rule holds.

T*(g)é{t*eT .
From the definition of subgradients

ps,t+(g) = min ps,(g) } :

A cut (U*,U~) is said to be ans—T critical cut if it is a U@)—U(z) <Ux) (2 —x), Va',z>0 (23)
minimum s—t* cut for some critical destinatiott € T*(g). Csr(g") — Cor(g) < Isw (g —g), Yg',g>0. (24)
The name $-T critical” comes from the observation thatS/in_ceU is nondecreasing, we haffé(x) > 0. ?ubstitutez:_and
reducing the capacity of the cgt/*, U*) in Definition 2 by & N (23) witha = Cr(g) anda’ = Csr(g'), respectively.
any positive amount reduces the multicast througlifuit (g) Then

from s to 7' by the same amount. U(Csr(g") — U (Csr(9)) (25)
Applying the pointwise minimum rule of subgradient cal- <U(C c nN_¢ 26
i <U (Coir(9)) (Cur(s) = Cur(s) (26)
<U (Cs,r(9) Isw~(9' —9), Vg'.g>0. (27)

. . . T
Csr(g) = min pst(g) =min  min _I5Hg, (195)

teT U: seU, teT Now the above chain rule together with Propositions 1 and 2

. . . . proves Proposition 3.
we can characterize the subgradientsCgfr(g) in Proposi- -

tion 1.



[1l. FINDING AN s—T" CRITICAL CUT EFFICIENTLY Using the linear network coding result by Li, Yeung, and

Finding a minimums—¢ cut in graph (V, E) with edge Cai [12], we see that

capacitiesg has been well studied. For example, the preflow- rank,(W) < min{ps ., h}, Yo eV —{s}.  (32)
push algorithm [8], [11] is a distributed algorithm for fimdj
a minimums—t cut. It is certainly possible to find a minimum
s—t* cut for somet* € T* by running the minimums—¢
cut algorithm for every destination. However, it is possibl
to fulfill this task with lower complexity, by exploiting soen

algebraic properties of (random) linear network coding. R(W) 2 rtréi%l rank, (). (33)

Now consider multicasting information fromto 7' using
linear network coding. Using a network code assignment
W, the number of distinct information symbols that can be
multicast toT" is

A. Review: Linear Network Coding For Acyclic Graphs Withlote that
Unit Capacity Edges minrank (W) < minfmin p, ;, h} < minp,; = Cor. (34)
Assume each edge € E can carry one symbol from a

certain finite fieldF. Let y. denote the symbol carried byIf a code assignment” satisfiesmin,cr rank (W) = Csr,

then W is said to be acapacity-achievingcode assignment,

edgee. Let x4, ..., z;, denote thesource symbolavailable at . : . i )
) . : since it offers a way to multicast’; » symbols while using
the source node. For notational consistency, we introdute '
. o each edge once.
source edgessy, ..., sy, Which all end ins; the source edges . . . .
) It is known that random linear coding can achieve the
s1,...,8p carry theh source symbols, ..., z;, respectively.

In a linear network coding assignment, the symbol on edﬁ%&azgg S’;E\;v |t2 gh|gf|j|£[r0al7al[0:ll-|l;]y ’ ;gg; estuzllu[elrl;[;y 1I'ahrge
eisa I2inear combination of the symbols on the edges emeriﬂﬁlowing ,partic,ula-r ;esult is f-rom [’13]_ ’ '
tail(e)”, namely Lemma 4 (Optimality of Random Linear Coding [13]):
Yo = Z We orYer. (28) Congider an acyclic grapty = (V, E) with ed_ges of unit
o'+ head (@) —tail(c) k capacity, a source node and a set of destinatioris. For a
code dimensioth < C, 1 and a finite field sizé[F|,
We call the coefficient§w. -} the “mixing coefficients”. By 7| |E|
induction, y. on any edgee is a linear combination of the Prrank (W) = h,Vt € T] > ( - ) ) (35)
source symbols, namely ||
where W is a random matrix with each mixing coefficient

h . .
we.o» chosen independently and uniformly fraf
Ye = Z e,iTi- (29) ’ P Y Y
i=1 B. Algebraically Identifying Critical Destinations
A i ) Previous studies about random linear coding have focused
The vectorg, = [ge.1, - - -, ge,n] IS known as thglobal coding

on achieving the multicast capacity and hence considelied us

vectorat edgee. It can be determined recursively as a code dimension < C, . However, we will make use of a

_ Z w. (30) code dimensiorh > C; p for the purpose of identifying the
q. . e,e’ et critical destinations. First, note the following easy dtany of
e’: head(e’)=tail(e)
Lemma 4.
wheregq,, is theith unit vectore;. Corollary 1:  Consider an acyclic grap&y = (V, E) and
Definition 3 (Linear Network Coding Assignment): a source nods. For any dimensiork > 0 and finite fieldlF,
Given an acyclic grapli = (V, E), a source nods, a finite 1\ E
field F, and a code dimensioh, a linear network coding Pr [rank,(W) = min{ps,h}] > (1 - m) , YveVW

assignmeni¥ refers to an assignment of mixing coefficients (36)
we e € F, one for each pair of edge@,e’) with e € E,
¢ € EU{s1,...,sr}, andhead(e’) = tail(e). where W is the structured mixing matrix with each mixing

The global coding vectorsesulting from a linear network Coefficient w, .. chosen independently and uniformly from
coding assignmentV’, g, (W), are the set ofE| vectorsq, F. In particular, by using a sufficiently large fiel, the
determined by according to (30). probability in (36) can be made arbitrarily small.

In a linear network coding assignmefit, the rank of a Proof: Consider each node € V. If p,, > h, then (36)
nodew, rank, (1), refers to the rank of the span of the globalS established upon applying Lemma 4 with = {v}. If
coding vectors for incoming edges of i.e., ps.o < h, let g, be the subvector of, consisting of the first

psw entries. Applying Lemma 4 with® = {v} and a code
rank,(W) £ rank{g, (W), head(e) =v}.  (31) dimensionp, ,, we see that
]

|E|
Prrank{q., : head(e) = v} = pso,]| > <1 - |IF1|) .

2An edgee from v to w is said to havetail(e) = v andhead(e) = w.



Since rank(W) > rank{q, : head(e) = v}, the result  For simplicity, let us assume that the algorithm is already
follows. m in the steady phase. In other words, we assume that the
practical network coding system is already up running. Thus

Recall that a destinatiohis said to be critical ifp, , = Cs 7 we can use the rank information collected at the destingtion

and non-critical ifps » > Cs 7. Suppose we use random lineafor identifying the critical destinations.

network coding withh > C, . Then for a sufficiently large  Algorithm 1 (Primal subgradient method via critical cuts):

finite field I, the rank of a critical user* € 7* will be close Suppose a current solutiggi*) is just obtained. This vector

to Cs 1, whereas the rank of a non-critical ugee T'— T* is stored in a distributed fashion in the network. Suppose

will be close tomin{ps, h} > Cs . This gives a method to further that the source has a coarse estimate of the range of

identify the critical destinations. Cor(g™), e.g., viaC, 7(g*~1). Then the following steps
There is a note on precoding worth mentioning here. Witre performed.

random linear coding over a sufficiently large finite field, a 1) Set the practical network coding system with the para-

critical destinatiort™ will receive approximately’s » symbols metershy and h at the source such that the multicast
with linearly independent global coding vectors. Each sgimb rate associated witlh, is slightly below CS,T(g(’“))
corresponds to a linear equation in terms of thenknowns, and the multicast rate associated withis slightly
Z1,...,xp. It b > Cg p, there are more unknowns than the aboveC&T(g(k)); see Section IlI-B for details. Each
equations. How would* be able to recover the source infor- destination monitors the rank information for one or
mation? This issue can be solved by performprgcoding more generations of data multicasting and reports the
this technique was used in [15] for robustness in a dynamic  information tos.
network. If the source symbols,, ...,z are linearly coded  2) Using the reported rank information, the sourcele-
versions ofhg < C, r underlying variables, then it becomes termines C, 7(g*)) (by taking the minimum of the
possible to recover the underlying variables. The simgtest rank of the destinations and dividing it by the time
of precoding is to sety,+1, ..., to zero. This is sufficient interval), as well as a worst destinatiGhwhich has the
for our purpose. The parametgy is called thesignal space worst (minimum) throughput. The soursahen initiates
dimensionand/ is called themixing dimension the execution of the preflow-push algorithm, to find a
We now come to implications of the above results to the im-  minimum s—* cut (U*,U*). This represents ag—t*-
plementation of our distributed utility maximization algbm critical cut.
in the practical network coding system. The proposed method3) The sources conveys the valud/(C, (g*))) to all
of identifying the critical destinations can be implemehte nodes involved inU*, U*).
almost “for free” in the practical network coding system]l15 4) The subgradient update (22) is implemented in parallel.
To implement the proposed method of identifying the crit- For each edgew going fromU* to U*, set

ical destinations, let the source packets in a generation be (k1) *) ) *) )
gU'IU = P'U'w |:g'UU) + ak (U(CsyT(g )) 7p(g'l)1l)):| K

Ti, ..., Thy, Tho+1 =0,..., 2, =0. (37) (39)
Thus the payload of a packet with global coding veajot where P, [z] = min{max{z, 0}, c,,}. For each other
[q1, - -, qn] Will be X edge, set
0
> i (38) gt = Py, [95’33 — app(glh) )] . (40)
=1

Since each payload does not involig., 1. .,qs], these V. EXTENSION TOMULTIPLE MULTICAST SESSIONS
entries of g are not used in the final decoding at each Consider the scenario where there are multiple multicast

destination. These amount to the overhead incurred fdntestsessions in the network. Label them with indices =
criticality of destinations. 1,..., M. Denote the source and the destination set of the
To leave a margin against temporary network outages, w&h session bys,, and T, respectively. Assume theith
should set such that the corresponding rate is slightly belownulticast session communicates using its exclusive share o
the nominal multicast capacity. This assures that decodlitig resourceg,,. In this case the multicast rate for this session is

be successful at each destination with high probability. We c (9..) A 9.) (41)
should seth such that the corresponding rate is slightly above smo T \Im) = teT), Pom,t\Gm)-
the multicast capacity. In this way, the critical destioaf will - \ye consider the following optimization, where the variable
exhibit lower ranks than the noncritical destinations. .
arelgy;---;9ul
IV. SUMMARY OF THE PROPOSEDALGORITHM M M

We now summarize the proposed distributed algorithm. f@ximize D Ui (Cap(9)) = D Pow (Z 92"10)

is assumed that each node in the network can store data m=1 vwel m=1

pertaining to its outgoing edges and perform computations §ubject to: 0 <g,,, Vm
them. g, +...+gy <c (42)



A subgradient of the objective function can be obtained as th
stacked vectofé; . . .; €,,], where

é .

M
£ S Unm (Cop 1 (900) €, (@) =D | D g | (43)
m=1

and

€c

Now the projection of the updated vectgf*t! to the
feasible region of (42) becomes slightly more complicated.
Since the constraints in (42) are decoupled for the edges, we
need to solve the following problem for each edge € £

(gm) € aCSm,Tm (gm) (44)

smTm

A .
P[ng] = arg g}m ||g/uw - gmu||2

vw

subject to: 0 <g!,,

1Tg;)w < Cyw, (45)

(1]
whereg,,,, is a lengthd/ vector consisting of the current value
of g™ , and1 is a vector of all 1's.

vw?

[2]
VI. SIMULATIONS 3]
The proposed algorithm has been tested on a large scale
problem. The test graplV, E) is the topology of an ISP [4]
(Exodus) backbone obtained from the Rocketfuel project at
the University of Washington [16], [17]. There are 79 nodes;
and 294 links. We arbitrarily placed a source node at New
York, and 8 destination nodes at Oak Brook, Jersey City,
Weehawken, Atlanta, Austin, San Jose, Santa Clara, and Pak
Alto. The utility function, the link cost functions and link

capacities are set as (7]

U(r)=In(1+r), (46) i8]
Pow(g) = 0.005g, Yow € E, 47
Cow = 10, Yovw € E. (48) 9

Figure 1 presents the simulation results. The straightitine
the optimal net-utilityU,,; and the other curve corresponds t&
U,Sft) generated by the proposed primal subgradient algorittjm]
for step sizeh = 1.0. The results confirm the convergence of
the proposed algorithm to a small neighborhood of the glob[@&]
optimum when a constant step size is used, as predicted by
Lemma 2. (13]

VIl. CONCLUSION [14]

For network coding—based multicasting, we have proposed
a net-utility maximization problem to capture the tradeoff
between multicast throughput utility and resource provisig
costs. By deriving a subgradient through indicator vectors
for s — T critical cuts, we propose a distributed algorithnl6]
to globally solve the utility maximization problem. Furthe
exploiting the algebraic properties of practical lineatwurk
coding, we show a low-complexity efficient implementatidn o
the algorithm.

(17]

Fig. 1.
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