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Abstract— We provide a counter example to a conjecture by
Leslie Valiant. Most interestingly the counter example wasfound
by introducing guessing numbers - a new graph theoretical
concept. We show that solvability of information flow problems
of a quite general type is closely related to problems concerning
guessing numbers.

We reduce a few other conjectures by Valiant, to a general
problem about guessing numbers. Valiant’s conjectures have
been shown to be linked to the long standing open question of
proving non-linear size, non-logarithmic depth lower bounds on
unrestricted circuits in Circuit Complexity.

As a by-product we establish (by use of results by Valiant) an
interesting link between Circuit Complexity and Network Coding,
a new direction of research in multiuser information theory.

I. I NTRODUCTION

The problem of proving superlinear lower bounds on the
size of circuits for an explicitly defined sequence of Boolean
functions is still open after more than 30 years of intensive
research in Complexity Theory. The problem is open even if
we consider the case where we look for functions withn input
bits andn output bits, and where the depth of the circuit is in
O(log(n)). For a detailed discussion and further survey of this
class of problems and their link to communication complexity
and matrix ridigity see [6].

In this paper we relate this fundamental problem in Com-
plexity Theory (more specifically we focus on Valiant’s Shift
problem that has been - and is still open, for more than 30
years), to a new type of problem in Graph Theory. Each
directed graph has (for eachs ∈ {2, 3, . . .}) associated a
number (the guessing number), we will define in this paper.
The notion of guessing number (that was first introduced in
[8]) is new. We link the guessing number to solvability of
circuit information flow problems. These are problems that
are closely related to problems in Network Coding. Network
Coding is a new interesting direction of research in multiuser
information theory (see for example [3], [7], [2], [4], [12], [1],
[13]).

Maybe the main contribution of this paper is to link central
problems in Circuit Complexity Theory with the area of
Network Coding (multiuser information theory) and Graph
Theory (guessing numbers).

In [11] Valiant put forward four related conjectures. It turns
out that the two most “risky” of these are not quite valid. We

reduce the two other (and more safe) conjectures to a pure
graph theoretical problem concerning guessing numbers.

In my judgement (and this paper provide some evidence
of this) progress in understanding and bounding guessing
numbers for various natural classes of graphs is needed in
order to solve some of the longstanding open questions in
Circuit Complexity problems.

II. A GAME OF COOPERATION

Consider the following game: assume thatn players each
has a fair s-sided die (each die has its sides labelled as
1, 2, . . . s). The players (simultaneously) throws their dice in
such a manner that no player knows the value of their own
die. Suppose each player has to guess the value of their own
die. The probability that each of then players is able to guess
correctly the value of their own die is(1

s
)n.

Assume now that each player knows the values of all dice
except the value of their own die. What is the probability that
each of the n players correctly guesses the value of their own
die?

From a superficial perspective it might appear that, since
each of the players only has access to "irrelevant" information,
the probability that alln players guess their own die value
correctly remains(1

s
)n. As it happens the question is ill-posed

since the probability actually depends on which "strategy"the
players adopt!

If each player, for example, believes (and acts accordingly)
that the sum of all dice values (including their own die) is
divisible bys, the probability that all players (simultaneously)
guess their own dice value correctly is1

s
.

Thus the players have a collective guessing strategy that
ensures that all players are correct if (and only if) one player
is right. Either all players are right (p = 1

s
), or all players are

wrong (p = 1 − 1
s
).

Intuitively it should be quite clear what a guessing strategy
for the players is. Playerj (j ∈ {1, 2, 3, . . . , n}) receives die
valuesx1, x2, . . . , xj−1, xj+1, . . . , xn and calculates a value
fj(x1, x2, . . . , xj−1, xj+1, . . . , xn) ∈ {1, 2, . . . , s}. This value
represents playerj’s guess. Thus each guessing strategy is
given by n functions f1, f2, . . . , fn. The total number of
guessing strategies issnsn−1

. For each of these strategies there
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is associated a probability that all players simultaneously guess
correctly their own dice values. A strategy that leads to a
probability that is maximal is called an optimal strategy.

An optimal guessing strategy achieves a probability of at
least 1

s
, and since the probability that a given single player

guess correctly is1
s
, this probability is indeed optimal. The

players have actually many different optimal guessing strate-
gies. One type of optimal strategy generalises naturally the
“0 modulo s” strategy we already considered. This strategy
appears if the players agree in advance to fix a groupG with
s elements (so each die value is an element in the group
G). Furthermore the players agree that the product of alln
dice values is1 ∈ G (or any other fixed elementg ∈ G).
Each player can calculate (also ifG is non-commutative) the
unique die value that makes the total product1. If each player
’guesses’ according to this strategy, the players guess their own
die value correctly if and only if the product (in the groupG)
of the dice values is1. This happens with probability1

s
.

Actually, it is not hard to see that the set of successful
guessing strategies consists exactly of the strategies that can
be each defined by an dimensional latin hyper cubes of order
s. A latin hyper cube (of orders) is the obvious generalisation
of a latin square (of orders) to higher dimensions. So a2
dimensional latin hyper cube of orders is an ordinary latin
square of orders, and a3 dimensional latin hyper cube of
orders is a latin cube of orders. In general, we can view an
n-dimensional latin hyper cube of orders as a mappingf :
{0, 1, 2, . . . , s−1}n → {0, 1, 2, . . . , n} that mapsA bijectively
to A whenevern − 1 of the arguments off are fixed.

III. PLAYING THE GUESSING GAME ON A GRAPH

The class of games we considered in the previous section
can be viewed as a subclass of a much wider class of
cooperative games.

Graphs in our setting are always directed graphs. Formally
a graphG = (V, E) is a pair of sets withE ⊆ V × V . As
usual there is an edge fromv ∈ V to w ∈ V if and only if
(v, w) ∈ E.

For each graphG and for each values ∈ {2, 3, 4, . . . , } we
define a cooperative game. The game denoted by Game(G, s)
is played as follows: Each node (vertex)v ∈ V corresponds to
a player, and each of the players independently gets assigned a
die value from a finite setA of s elements. As in the previous
game the task of the players (as a group) is to maximise the
probability that they all simultaneously correctly ‘guess’ their
own dice value. The die value of playerv ∈ V is available to
each playerw ∈ V with (v, w) ∈ E. In other words, player
w ∈ V knows the dice value of the playersv ∈ V with
(v, w) ∈ E. If (v, v) ∈ E playerv knows the value of his/her
own die.

A strategy for a playerj in a node of in-degreed is given
by a functionfj that maps{1, 2, . . . , s}d to {1, 2, . . . , s}. The
total number of cooperative strategies is given bysΣn

j=1
s

dj

wheredj denotes the in-degree in nodej.
The guessing game in the previous section corresponds to

the complete graph onn nodes.
In the guessing game that corresponds to the complete

graph, the players have an (optimal) strategy that guarantees

all players guess correctly their own die value with probability
1
s
. This probability is a factorsn−1 better than uncoordinated

random guessing, a fact that will show us that the guessing
number of the complete graph isn − 1 (sinces is raised to
the powern − 1).

As an example let us consider the graph onn-vertex that
forms one oriented cycle. In other words, letG = (V, E)
whereV = {1, 2, . . . , n} and E = {(1, 2), (2, 3), . . . , (j, j +
1), . . . , (n − 1, n), (n, 1)}. As in the previous game, it is
intuitively clear what is a strategy in this game. Playerj
receives the valuexj−1 (and player1 receives the valuexn). A
guessing strategy is a set of functionsf1, f2, . . . , fn that each
maps{1, 2, . . . , s} to {1, 2, . . . , s}. In this game the number
of strategies issns. The players actually have a strategyS̃
that ensures that they are all able to guess their own dice
values (simultaneously) with a higher probability than pure
uncoordinated random guessing. If each player assumes that
the value of their own die is the same as the value they receive,
all the players are correct, if and only if all dice values are
identical. This happens with probability(1

s
)n−1. This is a

factors times better than pure uncoordinated random guessing.
The strategyS̃ is optimal since any easy counting argument
shows that forany guessing strategy any subset ofn−1 players
cannot do better than uncoordinated random guessing. Thus
the best we can hope for is that every timen − 1 players
guess correctly, alln players guess correctly.

Definition:
A graphG = (V, E) has fors ∈ N guessing number
k = k(G, s) if the players in the guessing game
associated toG and s have a strategy that ensures
that they all guess correctly their own dice values
with probability (1

s
)|V |−k.

In other words a graphG has guessing numberk if
the players have a strategy that succeeds with prob-
ability sk times higher than uncoordinated random
guessing.

It turns out that for many graphs the guessing number is
independent ofs and is an integer. However, in general it is
possible to show that there exist graphs wherek = k(G, s)
depends ons, and where the guessing number is not always
an integer.

IV. I NFORMATION NETWORKS UTILISING NETWORK

CODING

In Circuit Complexity the complexity of Computational
Circuits is a key issue. A Computational Circuit is an
acyclic graph with input nodesi1, i2, . . . , in and output nodes
o1, o2, . . . , om. Each input node has indegree0, and each
output node has outdegree0. Usually each input is0 or 1,
and each node (except the input nodes) computes a Boolean
function of its incoming edges. The function value (0 or 1) is
then passed on along each outgoing edge the successor nodes.
In the setting of Boolean circuitsnodes are usually referred to
as (boolean) gates.

In general, there is no reason to restrict the model to a set
of two elements, or even to a finite set. In the general setting
we are given an alphabetA, and for eachd ∈ N a class of
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functionsf : Ad → A. In Algebraic Circuit ComplexityA
could be a fixed field (finite or infinite) and eachf : F d → F
a polynomial.

In this section we introduce a new type of problem that has
not been considered before. We are given a circuitC with n
input gates labelledi1, i2, . . . , in) andn output gates (labelled
o1, o2, . . . , on). The Computational task of the circuit is for
eachj = 1, 2, . . . , n to send inputij to oj

We will refer to such a problem as aCircuit Information
Flow Problem. In this section, we will show that there is an
almost 1-1 correspondence between Circuit information flow
problems, guessing games and guessing numbers.

In attempts to model information flows in general informa-
tion networks (like the Internet and wireless communication
etc) a new field Network Coding has been developed. In
Network Coding the basic concept is the instantaneous infor-
mation network. This is almost equivalent to the circuit model:
An instantaneous information network is an acyclic graph with
input nodesi1, i2, . . . , in and output nodeso1, o2, . . . , om.
Each input node has indegree0 and each output node has
outdegree0. Inputs are selected from a finite alphabetA. Each
node (except the input nodes) computes for each outgoing edge
a function of its incoming messages. The function value (an
element inA) is then passed on along the edge and serves an
input in the successor nodes. Each output node is required to
output one (or more) of the input.

The key difference between the instantaneous information
network and a Computational Circuit is that each gate in a
Computational Circuit computes ONE specific function value.
This value is then is passed on to all successor nodes. In
the instantaneous information network more than one function
(namely one for each outgoing edge) can be computed at each
node. The two models are (from a mathematical point of view)
almost identical and most results can be transferred from one
model to the other.

In figure 1a we show how to convert a Circuit to an
instantaneous information network and in figure 1b we show
how an instantaneous information network can be converted
to a circuit.

Network Coding

Circuit Complexity 

figure 1a

Network Coding

Circuit Complexity

figure 1b

fig 1
The simple idea behind Network Coding is usually illus-

trated using the “butterfly” network in figure 2b.
Consider the following information networks:
x y

y x

s(x,y) s(x,y)

Computational gate

x y

y x

Circuit

s(x,y) send

through
middle

Network coding

Complexity

calculating s(x,y)

channel.perspective

perspective

fig 2a

fig 2b

fig 2
In figure 2b the task is to send a messagex from the upper

left corner to the lower right corner and to send a message
y from the upper right corner to the lower left corner. The
messagesx and y belong to an alphabetA. The channel in
the middle is able to send any functions : A × A → A of x
andy and pass on the values(x, y). In traditional routing (as it
is used on the Internet) only trivial functions likes(x, y) = x
or s(x, y) = y can be used. In that case, there is no way the
lower right (or lower left) receiver node can computey (or x).

If, for example, A is organised as a group(A, ∗) and
s(x, y) := x ∗ y is transmitted through the middle channel
in figure 2b, it is not hard to see thatx can always be
reconstructed fromy and x ∗ y (since x = (x ∗ y) ∗ y−1)
and thatx can always be reconstructed fromx∗ andy (since
y = x−1 ∗ (x∗ y)). Actually, as noticed in [9], the information
network has a solution if and only ifs(x, y) is a "latin"
function. A function is latin if for eachx, y ∈ A, the maps
hy : A → A andkx : A → A given byhy(x) := s(x, y) and
kx(y) := s(x, y) defines injective (bijective) maps.

In figure 2a we have represented the network as a circuit.
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In this case the task of the Circuit is to output the inputx ∈ A
at the lower right output node and output inputy ∈ A in the
lower left output node. The network has a solution if and only
if the gate in the middle calculates a functions(x, y) that is
latin.

In [8] it was shown that each information flow problem is
equivalent to a problem about directed graphs. LetN be a
Circuit information flow problem (as defined above). Assume
that N hasn input nodesi1, i2, . . . , in and n output nodes
o1, o2, . . . , on and that messagexj ∈ A has to be sent from
input nodeij to output nodeoj . Inner nodes can use any
functionsf : Ad → A. Let GN denote the directed graph that
appears by identifying each input node with the corresponding
output node. This conversion of an information network to the
graphGN is unique.

In figure 3 we see a few examples of simple circuit in-
formation networks together with their corresponding directed
graphs.

x y

y x

fig 3a

x y z

z y x

u v

z

x z

y

u v

fig 3b

x

yz

fig 3
The circuit information networkN in figure 3a is the

‘butterfly’ network we already considered. If we identify the
input node (source node)x with the output node (receiver
node) x, and identify input node (source node)y with the
output node (receiver node)y, we getK3 the complete graph
on 3 nodes. The circuit information network in figure 3b, get
converted to the graphGN as illustrated in the figure.

The surprising link between Circuit Network Coding prob-
lemsN and directed graphs is due to the following Theorem:

Theorem(1):
A Circuit information flow problemN with n in-
put/output nodes has a solution over alphabetA with
|A| = s elements if and only if the graphGN has
guessing numberk(G, s) ≥ n.
FurthermoreGN has guessing numberk(G, s) ≥ n
if and only if k(G, s) = n.

A circuit information problem involves mathematically
speaking slightly complicated concepts likeset of source
nodes, set of receiver nodes as well as setof requirements
that specifies the destination of each input. As pointed out in
[8] the main point of the theorem is that it replace the circuit
information flow problem with an equivalent problem that can
be expressed in pure graph theoretic terms (no special input
or output nodes).

Actually the theorem can be stated in a slightly stronger
form:

Theorem(2):
The solutions (over alphabetA with |A| = s)
of a Circuit information flow problemN with n
input/output nodes are in one-to-one correspondence
with the guessing strategies (over alphabetA with
|A| = s) that ensure that the players in the guessing
game played onGN have success with probability
(1

s
)|GN |−n (where |GN | is the number of nodes in

GN ).

Theorem 2 was first stated and proved in [8]. Here we
present a proof in a slightly more compact format.
Proof: Consider the graphGN = (V, E). The setV of nodes
can be divided into two disjoint sets: the setI of nodes in
GN that corresponds to the inner nodes inN (i.e. nodes that
are not input or output nodes inN ), and the setJ of n nodes
in GN that corresponds to then input andn output nodes in
N . The setI consists of|GN | − n nodes. The sub-graph of
GN restricted toI is an acyclic graph (sinceN is acyclic).
Thus as we already noticed for any strategy by the players
(it does not matter which) the nodes inI all guess correctly
their own die value with probability(1

s
)|I|. But, this shows

that the probability all players inGN guess correctly their
own die value is at most(1

s
)|I|. Theorem 1 follows because

this probability can be achieved if and only if the players inJ
(corresponding to the output nodes inN ) are able to work out
their own die value with probability1 (given that all players
in I correctly worked out their own die values).

To prove Theorem 2 consider a guessing strategy (i.e. a set
of specific functions assigned to the nodes inGN ).

If we assign the same functions to the information network
N (the output nodeso1, o2, . . . , on get assigned the specific
functions assigned to the nodesJ in GN ).

Conversely, any attempted solution toN can be converted to
a guessing strategy by the same assignment. Thus the space of
coding functions forN is in a natural 1-1 correspondence with
the space of guessing strategies to the graphGN . Furthermore,
a coding function forN solves the information problem forN
if and only if the conditional probability that then nodes in
J guess correctly their own die values (given that all "inner"
nodes (i.e. all the nodes inI) guess correctly their own die
values) is1. ♣

V. A NALYSIS OF A SPECIFIC CLASS OFGRAPHS

One interesting class of graphs consists of (what I will call)
Clock-graphs. For each pair of numbers(n, r) with r ≤ b(n−
1)/2c we define a graphGclock(n, r). It has vertex setV :=
{0, 1, 2, . . . , n − 1} and edge setE := {(v, w) : w − v ∈
{1, 2, . . . , r}, where the differencew−v is calculated modulo
n.

We will show:

Proposition A:
The graphGclock(n, r) has guessing numberr.

Proof: Consider the subgraph ofGclock(n, r) that contains
the vertex {0, 1, 2, . . . , n − r − 1}. This graph is acyclic
(becauser ≤ b(n − 1)/2c) so the players cannot do better
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than pure uncoordinated random guessing. Thus the nodes
0, 1, 2, . . . , n − r − 1 are all correct with probability(1

s
)n−r.

Thus, the players in the graphGclock(n, r) are all correct with
probability at most(1

s
)n−r. Equality appears if and only if the

players have chosen a strategy that ensures that alln players
guess correctly their own die value if and only if players
0, 1, 2, . . . , n − r − 1 all guess their own dice value.

Using simple linear algebra it is now straight forward for the
players to derive their own dice values from then− r values
xj +xj+1+. . .+xj+r = 0 modulos for j = 0, 1, . . . , n−r−1
(public information). ♣

A more general class of clock graphs appears if we, for
eachn and for each subsetS ⊂ {0, 1, 2, . . . , n − 1} with
0 6∈ S and v ∈ S → −v 6∈ S, define a graphGclock(n, S)
with vertex setV := {0, 1, 2, . . . , n − 1} and edge setE :=
{(v, w) : w − v ∈ S}. The resulting graphs have no self-
loops (since0 6∈ S) and it has no undirected edges (since
(v, w) ∈ E → w − v ∈ S → v − w 6∈ S → (w, v) 6∈ E).

We are not sure about the status of the following proposi-
tion:

Proposition B:
The graphGclock(n, S) has guessing number≤ |S|.

VI. A G AME WITH PUBLIC INFORMATION

Let us briefly return to then player game on the complete
graphKn. As we noticed the players have a guessing strategy
so they all guess correctly if the sum of the dice values are0
modulos.

Actually if the players know the sum of the dice values
modulos each player can deduce the value of their own die.
Put in other terms, if each player has access to a public channel
that can broadcast one ofw = s possible messages (i.e. the
channel has bandwidthb(G, s) := 1) they can all (provided
the message broadcast is the correct one), deduce the value of
their own die.

As another example, consider the graphG = (V, E) with
vertex setV := {0, 1, 2, . . . , n − 1} and edge setE :=
{(0, 1), (1, 2), . . . , (j, j + 1), . . . , (n − 2, n − 1), (n − 1, 0)}.
We already notice that its guessing number was1, i.e. that the
players have a strategy that guarantees they all guess correctly
with probability(1

s
)n−1 and that this is the best possible result

they can achieve. Assume that the players know (through
a public broadcast) the valuesx0 − x1, x1 − x2, . . . , xj −
xj+1, . . . , xn−2 − xn−1 where xj denotes the value of die
j. Then each player can deduce their own die value. Player
j + 1 knows the value ofxj andxj+1 − xj from which xj+1

can be calculated. Player0, can calculatex0−xn−1 and know
the value ofxn−1 from which x0 can be derived. Thus if the
public channel has bandwidthb(G, s) := n−1 (can broadcast
sk−1 messages), the players can always derive the value of
their own die.

For an alphabet sizes we define theinformation defect
b(G, s) of a graphG aslogs(w) wherew denotes the smallest
number of public messagesm1, m2, . . . , mw that can be
broadcasted to all players, ensuring that each player is always
able to deduce the value of his/her die.

In general, whereG = (V, E) can be any graph, the
guessing numberk(G, s) and the information defectb(G, s)

are related. In general,k(G, s) + b(G, s) ≥ |V | and for many
graphsk(G, s) + b(G, s) = |V |.

Lemma 3:
For any graphG = (V, E) and anys ∈ {2, 3, 4, . . .}
|V | ≤ k(G, s) + b(G, s).

Proof: Let G be a (directed) graph and with information defect
b = b(G, s). Then, by definition, there exists a method by
which we, by broadcasting one ofsb(G,s) messages to all
nodes, can insure that each nodej can derive their own die
valuexj ∈ A. If the dice valuesx1, x2, . . . , x|V | are selected
randomly (and independent), each messagem is broadcasted
with a certain probabilityp(m). SinceΣmp(m) = 1, there
must exist a messagem0 that is broadcasted with probability
≥ (1

s
)b(G,s). This is a factors|V |−b(G,s) better than pure

uncoordinated random guessing in the guessing game onG.
Thus if the players in the guessing game all guess their own
die value under the assumption that the public messagem0

is broadcasted, they are all correct if this is indeed the case.
Thus the guessing numberk(G, s) is ≥ |V | − b(G, s) and
b(G, s) + k(G, s) ≥ |V |. ♣

We will now state and prove a Theorem related to Theorem
1.

Theorem 4:
A Circuit information flow problemN with n input
nodes,n output nodes andr internal nodes, has a
solution over alphabetA with |A| = s elements if
and only if the graphGN has information defect
b(G, s) ≤ r. FurthermoreGN has information defect
b(G, s) ≤ r if and only if b(G, s) = r.

Proof: (only if): Assume first that the flow problemN has a
solution. We want to show thatb(G, s) ≤ r. The set of nodes
in GN can be divided into two disjoint sets. The setI of
nodes that corresponds to the inner nodes inN and the setJ
of n nodes inGn that corresponds to then input andn output
nodes inN . For each inner node letzj denote the actual value
of player j’s die. Let z̃j denote the value the corresponding
node inN would take according to the solution where alln
inputs are given by the actual die values assigned to then
nodes inJ . Assume that all players have access to the values
zj − z̃j for eachj ∈ I. This information can be provided by a
public channel of bandwidthr. Each player can now calculate
their own die value. To see this consider first a player that
corresponds to an inner nodej in GN . This player has access
to some inner nodes and possibly to some input nodes (nodes
in J). From these values and the public information, the player
can calculatẽzj . And from zj − z̃j (that is publicly available)
the player can calculatezj .

Consider now a node inj ∈ J . This nodej has access to
nodes inI, as well as possibly some nodes inJ . For each
nodei ∈ I that have a value that is available to nodej, the
node has access tozi as well as the public informationzj− z̃i.
From this nodej can calculatẽzi. But then each nodej ∈ J
can calculatexj .

(if): Assume that we can sendr messages through the
public channel in such a fashion each node inGN can
calculate its own value. But thenGn has information defect
b(GN , s) ≤ r. We already showed that the guessing number
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b(GN , s) + k(GN , s) ≥ |V | = n + r. Thus k(GN , s) ≥
n which according to Theorem 1 ensures that the Circuit
information flow problemN has a solution. Again according
to Theorem 1,k(GN , s) = n and thusb(GN , s) ≥ r. Thus
b(GN , s) = r if and only if b(GN , s) ≤ r. ♣

VII. VALIANT CONJECTURES

In [11] (based on [5] and [10]) Valiant put forward four
conjectures. In this section I will present the conjectures
using Valiant terminology. Valiant introduces his conjectures
as follows:

Let G be a biparte graph with node setX∪Y where
X = {x1, x2, . . . xn} and Y = {y1, y2, . . . yn}
denote input variables and output functions respec-
tively. Suppose that edges are defined implicitly by
a mappingτ whereτ(yi) ⊆ X is the set of input
nodes that are adjacent toyi in the graph. Define
m Boolean functionsf1(x), f2(x), . . . fm(x) and
n further Boolean functionsg1, g2, . . . , gn, where
gi has m + |τ(yi)| Boolean arguments, such that
with some abuse of notation, eachyi can be an
arbitrary function of thesem common bits and
the inputsτ(yi) to which it is connected directly
in G. Valiant goes on to say thatG realizes a
permutationρ with m common bits if there exists
f1, f2, . . . fm, g1, g2, . . . gn such that for alli, 1 ≤
i ≤ n

xρ(i) = gi(f1(x), . . . fm(x), τ(yi)).

In other words (still quoting Valiant), for the fixed
G and givenρ one can find the appropriate Boolean
functions such thatyi realises the permutationρ of
{xi} for all truth assignments of{xi}. Valiant then
goes on to conjecture:

Conjecture(1):
If G has degree≤ 3 (for sufficiently largen) there is
a permutationρ such thatG does not realizeρ with
n/2 common bits.

Conjecture(2):
If G has O(n1+ε) edges for someε > 0, for n
sufficiently large, there is a permutationρ such that
G does not realizeρ with n/2 common bits. .

Conjecture(1’):
If G has degree≤ 3 (for sufficiently largen) there is
a cyclic shiftρ such thatG does not realizeρ with
n/2 common bits.

Conjecture(2’):
If G has O(n1+ε) edges for someε > 0, for n
sufficiently large, there is a cyclic shiftρ such that
G does not realizeρ with n/2 common bits. .

Conjecture 2’ is in some sense the most important of
Valiant’s conjectures. Valiant showed that if this conjecture
have direct consequences and leads to new results in circuit
complexity. These Complexity questions have now been open
for more than 30 years. As it happens, we will show that
Conjecture 2’ is false. However, it can be replaced by a slightly
stronger (and presumably correct) conjecture that essentially
have the desired consequences in Circuit Complexity Theory.

VIII. E XPRESSINGVALIANT ’ S CONJECTURES IN TERMS

OF GUESSING NUMBERS

Assume that we are given a graphG with vertex setV :=
{0, 1, 2, . . . , n − 1} and edge setE ⊆ V × V .

For eachs ∈ {0, 1, 2, . . . , n − 1} we define the graphGs

(G shifted bys) as the graph with vertex setV and edge set
Es := {(i, j+s) : i ∈ V, (i, j) ∈ E} wherej +s is calculated
modulo n. This definition depends on both the graphG as
well as on the labelling of its vertex.

For each permutationπ ∈ Sn we also define the graph
Gπ (G permuted byπ) as the graph with vertex setV and
edge setEπ := {(i, π(j)) : i ∈ V, (i, j)) ∈ E}. Unlike the
shift operation, the permutation operation is independentof
the labelling of the underlying vertex set.

We will now state four conjectures that are equivalent to
the four conjectures discussed in the previous section.

Conjecture 1:
Let G be a graph withn vertex and assume that
all vertex have out-degree (in-degree)≤ 3. Then
(providedn is sufficiently large) there exists a per-
mutationπ ∈ Sn such thatGπ has information defect
b(Gπ, 2) > n/2.

Conjecture 2:
Let ε > 0. Let G be a graph withn vertex and less
than n1+ε edges. Then (providedn is sufficiently
large) there exists a permutationπ ∈ Sn such that
Gπ has information defectb(Gπ, 2) > n/2.

Conjecture 1’:
Let G be a graph withn vertex and assume that
all vertex have out-degree (in-degree)≤ 3. Then
(providedn is sufficiently large) there exists a shift
s ∈ {0, 1, 2, . . . , n} such thatGs has information
defectd(Gs, 2) > n/2.

Conjecture 2’:
Let ε > 0. Let G be a graph withn vertex and less
than n1+ε edges. Then (providedn is sufficiently
large) there exists a shift such thatGs has informa-
tion defectd(Gs, 2) > n/2.

Sparse graphs might have a relatively high guessing number
(i.e. allow a lot of coherence). However, intuitively having a
high guessing number is a “sporadic” property and that in
general gets destroyed when the graph is modified through
shifts or permutations.

Despite this intuition, there is a limit to how much shifts can
insure a drop in guessing numbers of a sparse graph. In the
next section we will show that Conjecture 2’ is actually false
and that it is possible to construct a sparse graphG together
with a labelling such thatG as well as all shiftsGs have
guessing number> n/2 and information defect< n/2.

As we already pointed out, Conjecture 2’ is in some sense
the most important of Valiant’s conjectures. Had it been
correct, this would have had direct consequences for providing
new lower bounds in circuit complexity. None of the other
three conjectures are known to have such strong consequences.
Never-the-less, the conjectures are interesting in their own
right and we will reduce these conjectures to certain questions
about guessing numbers.
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The good news (for proving a non-linear, O(log(n))-depth
lower bound for the shift problem) is that a simple modifi-
cation of Valiant’s Conjecture 2’, does imply such a lower
bound.

This follows (according to Theorem 2.2 in [6]) from [11]
where the following proposition can be extracted:

Proposition C:
For everyε > 0, c andd, there existsK such that if
F (the shift function) can be computed by a circuit of
sizecn and depthd log(n), then it can be computed
by a graphG of degree at mostnε with Kn

log(log(n))
common bits.

IX. COUNTER EXAMPLES TOVALIANT ’ S SHIFT

CONJECTURE

We have restated Valiant four conjectures as propositions
about the behaviours of the information defect under shift and
permutations.

Consider the graphG in fig 4. Later this graph will be
defined asG9,3,1. The graphG(= G0) as well as its8 shifted
versionsG1, G2, . . . , G8 are all isomorphic (disregarding the
labelling). Each of the graphsGj , j = 0, 1, 2, . . . , 8 has
guessing number6 and has information defect3.
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fig 4
In terms of Valiant’s notions ,the biparte graphBG associated
to G has each shift realised by3 common bits (the biparte
BG is the graph containing the18 nodes{i0, i1, . . . , i8} and
{o1, o2, . . . , o8} with an edge(iv, ow) if and only if (v, w) ∈
G). Valiants Conjecture suggest that at leastn/2 bits (i.e.5)
common bits are needed for some shift.
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fig 5a fig 5b

The graphG := G23,5,1 in figure 5a is invariant under shifts
(if we disregard the labelling). The graph in figure 5b is a
subgraph ofG and it has guessing number14 and information
defect9. Thus the graphG = G23,5,1 has guessing number
≥ 14 and information defect≤ 9. In Valiant’s terminology the
biparte graphBG associated to graph the graphG = G23,5,1

has each of its23 shifts realised by9 (rather than at least12
as suggested by the conjecture) common bits.

We now generalise these examples. Considern, d, r ∈ N
with k < n/2 and 0 ≤ r ≤ n − 1 we let Gn,d,r denote
the graph that has vertex set{0, 1, 2, . . . , n − 1} and edge
set E = En,d,r consisting of all edges(i, j) with i + j ∈
{r, r + 1, r + 2, . . . , r + d − 1} (where the sum is calculated
modulon).

Lemma 5:
Let n ∈ N be an odd number and letk < n/2. Then
for eachr = 0, 1, 2, . . . , n−1 the graphsGn,d,r have
guessing numberk(G, s) ≥ n

2 + d
2 and information

defectb(G, s) ≤ n
2 − d

2

Proof: Let W = {r, r + 1, . . . , r + d − 1}. Let n0 := n+1
2

and letd0 := d−1
2 . The graphGn,d,r containsd "self-loops"

since the number of elementsi with i+ i ∈ W is k (sincen is
odd). Assume first thatr = 2v is even. In this case thed vertex
v, v+1, v+2, . . . , v+d0 as well asn0+v, n0+(v+1), . . . n0+
(v + d0 − 1) have self-loops. The edges(v − i, v + d0 + i)
and (v + d0 + i, v − i) for i = 1, 2, . . . , n0 − d0 − 1 form a
partitioning of then − d vertex that have no self-loop.

Thus Gn,d,r contains a disjoint union ofn−d
2 cliques of

size 2, as well asd vertex with self-loop. ThusGn,d,r has
guessing numberk(G, s) at least n

2 + d
2 . The graphGn,d,r

has information defectb(G, s) ≤ n
2 − d

2 , since we can simply
broadcast the messagesxv−i +xv+d0+i for i = 1, 2, . . . , n0−
d0 − 1 through the public channel.♣

Let n ∈ N be an odd number and letk ∈ N be an odd
number. LetG̃n,d denote the class of graphsGn,d,r with r =
0, 1, 2, . . . , n − 1.

There are, of course, many "sparse" graphs with guessing
number aboven/2. The point of the graphs iñGn,d considered
in the previous lemma is that:
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Lemma 6:
The classG̃n,d is closed under shifts. More specifi-
cally, for any shifts, the graphGn,d,r shifted bys
is identical toGn,d,r+s (i.e. Gs

n,d,r = Gn,d,r+s).

Proof: Let G ∈ G̃n,d and lets ∈ {0, 1, 2, . . . , n − 1} be a
shift. The graphGs

n,d,r (Gn,d,r with the heads of all edges
shifted bys) is given byGn,d,s+r i.e. by a graph inG̃n,d. ♣

This shows that the information defect of the graphsG ∈
G̃n,d (and any shifts of those) is at mostn2 −

d
2 . For1 > ε > 0

and for d = nε the graphs inS̃ are (for large values ofn),
sparse in the sense assumed in Valiant’s conjectures. More
specifically we have shown:

Proposition 7:
Let ε ∈ R with 0 < ε < 1 be any fixed real number.
Let Gn ∈ G̃n,nε , n = 1, 2, 3, . . . be any sequence
of graphs. Then each graphGn has (at most)n1+ε

edges and each graphGn as well as each of its shifts
has information defectb(G, s) with b(G, s) ≤ n

2 −
nε

2 . This violates Valiant’s Conjecture 2’ that implies
that for each sparse graphG with ≤ n1+ε edges there
always exists a shifts such thatGs has information
defect at leastn2 .

X. M ODIFYING VALIANT ’ S CONJECTURES

Valiant’s conjecture 2 for graphs of in-degree (out-degree)
bounded by3 seems to be correct (except that we will have
to changen

2 with n−3
2 for n odd).

What about Conjecture 1 involving graphs of in-degree (out-
degree) bounded by3 and considering permutations instead
of shifts? We will prove that this conjecture follows from the
following statement:

StatementS:
Let G be a directed graph withn nodes anddn edges
(whered ∈ N ). Assume thatG is loop-free and has
no undirected edges. ThenG always has a guessing
number≤ n

2 − n
4d+2 .

There is some evidence that StatementS is valid, and
it is tempting to upgrade statementS to a conjecture. The
main evidence for statementS is that the ‘clock’ graphs
Gclock(2k + 1, k) (with 2k + 1 nodes and out-degreek) have
guessing numberk. StatementS is based on the assumption
that the highest guessing number of a loopfree graphG
without undirected edges and with≤ kn edges, is achieved by
dividing then nodes intob n

2k+1c disjoint clock graphs of type
Gclock(2k + 1, k). This graphG has guessing number close
to kn

2k+1 (equality appears whenevern is divisible by2k + 1).
In the case wherek = 3 we get graphsG with guessing

number3n
7 . This value is≤ n

2 − 11 for n ≥ 154.

Proposition 8:
Assume that StatementS is valid. Then the following
statements are valid:

StatementS1: Assume thatG is a graph withn
nodes, with no selfloops and no unoriented edges.
ThenG has guessing number strictly less thann/2.

StatementS2: Assume that each node inG has in-
degree (out-degree) at most3 and thatG does not
contain selfloops or undirected edges and contain at
least 154 nodes. ThenG has guessing number≤
n
2 − 11.

StatementS3: Assume thatd ∈ N and thatG is a
graph withn nodes and≤ dn edges. Further, assume
that G does not contain self-loops or undirected
edges. ThenG has guessing number≤ n

2 − α for
n ≥ α(4d + 2).

The statementS2 implies that Valiant’s conjecture 1 is valid
for n ≥ 175, while statementS3 for d = nε implies that
Valiant’s conjecture 1’ is valid forn ≥ 4d2(4d + 3) which is
always valid forε << 1

4 andn ≥ 4.
Proposition 9 is a special case of Proposition 10. Though

we could strictly speaking avoid proving Proposition 9 (since
it can be derived from Proposition 10) the proof idea is
somewhat more transparent in the proof of Proposition 9 (since
the proof contains fewer parameters).

Proposition 9:
StatementS2 implies that each graphG with n ≥
175 nodes satisfies Valiant’s conjecture 1.

Proof: First we show that statementS2 implies that for each
graph with n ≥ 175 nodes and in-degree (out-degree)≤ 3
there exists a permutationπ of n such that the graphGπ has
guessing number< n/2. LetG be a graph for which each node
has in-degree≤ 3. Assume thatG hasn ≥ 175 nodes. The
number of edges inG is ≤ 3n. Some of the edges might form
a loop. Two pairs of edges might form an undirected edge.
Let π ∈ Sn be a randomly selected permutation (i.e. assume
that each permutation is selected with the same probability
p = 1

n! ). We want to calculate the expected numbers of loops
in Gπ and the expected number of undirected edges inGπ.
The nice thing about calculating expectation numbers is that
we need not worry about dependence and independence issues.
Any edge(a, b) becomes a loop exactly for permutations with
π(b) = a. Thus the expected number of loops produced by a
single edge is1

n
. The expected number of loops produced bye

edges ise
n

. Thus the expected number of loops in the graphGπ

is exactly e
n
≤ 3n

n
= 3. The expected number of undirected

edges can be calculated as follows: For two edges(a, b) and
(c, d) with a, b, c and d distinct they produce an undirected
edge exactly when(a, π(b)) and(c, π(d)) havea = π(d) and
c = π(b). The expectation value of this is 1

n(n−1) . If b = d

or if a = c, a = π(d) and c = π(b) are not possible if
(a, b) 6= (c, d). If a = c andb = d (i.e when we have two loops
(a, a) and (c, c)), they produce an undirected edge exactly
whenπ(a) = c andπ(c) = a. The expectation value for this
to happen is 1

n(n−1) . Thus if the number of all pairs(a, b)

and (c, d) of edges inG with b 6= d and a 6= c, is f , the
expected number of undirected edges inGπ is f

n(n−1) . The
maximum number of such pairs of edges is bound by(3n)2 =
9n2. Thus the expected number of undirected edges inGπ is
bound by 9n2

n(n−1) ≤ 9+ 9
n

< 10. And the expected number of
nodes that are involved in a loop or are one of the points in a
undirected edge is≤ 3+2(9+ 1

n
) < 22. Thus there must exist a
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permutationπ such that21 or less points are involved with self
loops or undirected edges. The graphGπ restricted to those
21 points might be a complicated subgraph with a mixture of
un-directed edges and directed edges. The highest contribution
these points can make to the guessing number is21 (if each
of the 21 point, against our expectations, contains a self-loop
). The guessing number never decreases when more edges are
added so we can - without loss of generality - assume that
the 21 points have self loops (producing a guessing number
of 21). Now we restrict the graphGπ to the remainingn−21
nodes. This graph has≥ 175 − 21 = 154 nodes, it has in-
degree≤ 3 and has no self loops and no un-directed edges.
Thus according to our conjecture, it has guessing number≤
n−21

2 − 11. From this it is not hard to show thatGπ has
guessing number≤ n−21

2 − 11 + 21 ≤ n−1
2 < n

2 .
But sinceGπ has guessing numberk(Gπ, s) < n/2 and

sincek(Gπ , s) + d(Gπ , s) ≥ n (Lemma 3), the information
defect d(Gπ , s) is at leastn − k(Gπ , s) > n

2 thus proving
Valiant’s conjecture 1.♣

Proposition 10:
Assume that statementS3 is valid in general. LetG
be a directed graphG with n ≥ 4d2(4d + 3) nodes
and ≤ dn edges. Then there exists a permutation
π ∈ Sn such thatGπ has guessing number< n

2 . In
particular, Valiant’s Conjecture 1’ is valid for each
n > 5 andε < 1

4

Proof: Assume thatG = (V, E) is a graph with|V | = n ≥
(4d2)(4d + 3) and ≤ dn edges. We want to show (using
statementS3) that there there exists a permutationπ of n
such that the graphGπ have guessing number< n/2. Some
of the edges inG might form a loop. And two pairs of edges
in G might form an undirected edge. We want to show that
there exists a permutationπ ∈ Sn such thatGπ has very few
selfloops and undirected edges.

Let π ∈ Sn be a randomly selected permutation (i.e. assume
that each permutation is selected with the same probability
= 1

n! ). We want to calculate the expected number of loops
in Gπ and the expected number of undirected edges inGπ.
Any edge(a, b) becomes a loop exactly for permutations with
π(b) = a. Thus the expected number of loops produced by a
single edge is1

n
. The expected number of loops produced bye

edges ise
n

. Thus the expected number of loops in the graphGπ

is exactly e
n
≤ dn

n
= d. The expected number of undirected

edges can be calculated as follows: For two edges(a, b) and
(c, d) with a, b, c and d distinct they produce an undirected
edge exactly when(a, π(b)) and(c, π(d)) havea = π(d) and
c = π(b). The expectation value of this is 1

n(n−1) . If b = d,
or if a = c, a = π(d) and c = π(b) are not possible (when
(a, b) 6= (c, d)). If a = c and b = d (i.e when we have two
loops (a, a) and (c, c)), the two edges produce an undirected
edge exactly whenπ(a) = c and π(c) = a. The expectation
value for this to happen is 1

n(n−1) . Thus if the number of all
pairs(a, b) and(c, d) of edges inG with b 6= d anda 6= c, is f ,
the expected number of undirected edges inGπ is f

n(n−1) . The
maximum number of such pairs of edges is bound by(dn)2 +

2 d2

n
+2 d2

n2−n
≤ 3d2 (for n ≥ 3). Thus the expected number of

undirected edges inGπ is bound by3d2. The expected number

of nodes that are involved in a loop or in an undirected edge
is ≤ 3d2. Thus there must exist a permutationπ such that
3d2 + d ≤ 4d2 or less points are involved with selfloops or
undirected edges. The graphGπ restricted to those4d2 points
might be very complicated with a mixture of undirected edges
and directed edges. The highest contribution these points can
make to the guessing number is4d2 (if each of the2d4 point,
against our expectations, contains a selfloop). The guessing
number never decreases when more edges are added so we
can - without loss of generality - assume that the4d2 points
have self-loops (producing a guessing number of4d2). Now
we restrict the graphGπ to the remainingn′ := n−4d2 nodes.
This graph has≥ dn = d′n′ = dn

n′
n′ edges, has no self loops

and has no undirected edges. Thus according to StatementS3,
it has guessing number≤ n′

2 − α′ for n′ ≥ α′(4d′ + 2).
The graphGπ has then guessing number< n′

2 − α′ + 4d2

whenn ≥ α′(4d′ +2)+4d2. In other wordsGπ has guessing
numberk(G, s) strictly less thann

2 − α′ + 4d2 when n ≥
α′(4d+2)+4d2. Thus if we letα′ = 4d2, we havek(Gπ, s) <
n
2 for n ≥ 4d2(4d + 2) + 4d2 = 4d2(4d + 3).

But the information defectd(Gπ, s) ≥ n − k(G, s) and
therefored(Gπ , s) > n/2 for n ≥ 4d2(4d + 3). ♣
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