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Abstract— We provide a counter example to a conjecture by reduce the two other (and more safe) conjectures to a pure
Leslie Valiant. Most interestingly the counter example wadound graph theoretical pr0b|em Concerning guessing numbers.
by introducing guessing numbers - a new graph theoretical In my judgement (and this paper provide some evidence

concept. We show that solvability of information flow problens f thi . d di d b di .
of a quite general type is closely related to problems conceing  ©f t is) progress in understanding and bounding guessing

guessing numbers. numbers for various natural classes of graphs is needed in
We reduce a few other conjectures by Valiant, to a general order to solve some of the longstanding open questions in

problem about guessing numbers. Valiant's conjectures ha Circuit Complexity problems.

been shown to be linked to the long standing open question of

proving non-linear size, non-logarithmic depth lower bourds on

unrestricted circuits in Circuit Complexity. Il. A GAME OF COOPERATION
As a by-product we establish (by use of results by Valiant) an ) )
interesting link between Circuit Complexity and Network Coding, Consider the following game: assume thaplayers each
a new direction of research in multiuser information theory. has a fairs-sided die (each die has its sides labelled as
1,2,... s). The players (simultaneously) throws their dice in
|. INTRODUCTION such a manner that no player knows the value of their own

The problem of proving superlinear lower bounds on tH&€. Suppose each player has to guess the value of their own
size of circuits for an explicitly defined sequence of Boaleadi€. The probability that each of theplayers is able to guess
functions is still open after more than 30 years of intensi@rrectly the value of their own die i;)".
research in Complexity Theory. The problem is open even if ASsume now that each player knows the values of all dice
we consider the case where we look for functions witinput ~ €xcept the value of their own die. What is the probability that
bits andn. output bits, and where the depth of the circuit is ifch of the n players correctly guesses the value of their own
O(log(n)). For a detailed discussion and further survey of thi€?
class of problems and their link to communication compiexit From a superficial perspective it might appear that, since
and matrix ridigity see [6]. each of the players only has access to "irrelevant” infoionat

In this paper we relate this fundamental problem in Conthe probability that alln players guess their own die value
plexity Theory (more specifically we focus on Valiant's Shifcorrectly remaing)". As it happens the question is ill-posed
problem that has been - and is still open, for more than 3@hce the probability actually depends on which "stratethg"
years), to a new type of problem in Graph Theory. EadHayers adopt!
directed graph has (for each € {2,3,...}) associated a If each player, for example, believes (and acts accordjngly
number (the guessing number), we will define in this papdhat the sum of all dice values (including their own die) is
The notion of guessing number (that was first introduced #ivisible by s, the probability that all players (simultaneously)
[8]) is new. We link the guessing number to solvability oguess their own dice value correctly §s
circuit information flow problems. These are problems that Thus the players have a collective guessing strategy that
are closely related to problems in Network Coding. Networ&nsures that all players are correct if (and only if) one @lay
Coding is a new interesting direction of research in mudtiusis right. Either all players are righp(= 1), or all players are

information theory (see for example [3], [7], [2], [4], [191L], wrong (p=1— % .

[13]). Intuitively it should be quite clear what a guessing strsiteg
Maybe the main contribution of this paper is to link centrdior the players is. Playej (j € {1,2,3,...,n}) receives die

problems in Circuit Complexity Theory with the area ofaluesxzi,zs,...,2j—1,%41,...,2, and calculates a value

Network Coding (multiuser information theory) and Graplf;(z1,22,...,2j-1,Zj4+1,...,2n) € {1,2,...,s}. This value

Theory (guessing numbers). represents playej’s guess. Thus each guessing strategy is
In [11] Valiant put forward four related conjectures. Ithgr given by n functions f1, fo, ..., f,. The total number of

out that the two most “risky” of these are not quite valid. Wguessing strategies i&" "' For each of these strategies there



is associated a probability that all players simultangogskss all players guess correctly their own die value with probgbi
correctly their own dice values. A strategy that leads to ? This probability is a factos™ ! better than uncoordinated
probability that is maximal is called an optimal strategy. random guessing, a fact that will show us that the guessing
An optimal guessing strategy achieves a probability of aumber of the complete graph is— 1 (sinces is raised to
Ieast%, and since the probability that a given single playehe powern — 1).
guess correctly is};, this probability is indeed optimal. The As an example let us consider the graphrenertex that
players have actually many different optimal guessingtestraforms one oriented cycle. In other words, 16t = (V, E)
gies. One type of optimal strategy generalises naturally ttwhereV = {1,2,...,n} and £ = {(1,2),(2,3),...,(J,j +
“0 modulo s” strategy we already considered. This strategy),...,(n — 1,n),(n,1)}. As in the previous game, it is
appears if the players agree in advance to fix a gri@upith  intuitively clear what is a strategy in this game. Player
s elements (so each die value is an element in the grotgreives the value,_; (and playerl receives the valug,,). A
G). Furthermore the players agree that the product ofall guessing strategy is a set of functiofis f, . . ., f. that each
dice values isl € G (or any other fixed elemerny € G). maps{1,2,...,s} to {1,2,...,s}. In this game the number
Each player can calculate (alsoGf is non-commutative) the of strategies iss”s. The players actually have a strate§y
unique die value that makes the total producif each player that ensures that they are all able to guess their own dice
'guesses’ according to this strategy, the players guegsaiive  values (simultaneously) with a higher probability than eour
die value correctly if and only if the product (in the groGf) uncoordinated random guessing. If each player assumes that
of the dice values i4. This happens with probabilitg. the value of their own die is the same as the value they receive
Actually, it is not hard to see that the set of successfall the players are correct, if and only if all dice values are
guessing strategies consists exactly of the strategi¢sctima identical. This happens with probabilityt)"~1. This is a
be each defined by dimensional latin hyper cubes of ordeffactors times better than pure uncoordinated random guessing.
s. A latin hyper cube (of ordes) is the obvious generalisationThe strategyS is optimal since any easy counting argument
of a latin square (of ordes) to higher dimensions. So 2 shows that foany guessing strategy any subsetof1 players
dimensional latin hyper cube of orderis an ordinary latin cannot do better than uncoordinated random guessing. Thus
square of ordes, and a3 dimensional latin hyper cube ofthe best we can hope for is that every time- 1 players
orders is a latin cube of ordes. In general, we can view an guess correctly, ath players guess correctly.

n-dimensional latin hyper cube of orderas a mappingf : Definition
{0,1,2,...,s—1}" — {0,1,2,...,n} that maps4_ bijectively A graphG = (V, E) has fors € N guessing number
to A whenevem — 1 of the arguments of are fixed. k = k(G,s) if the players in the guessing game

associated td@7 and s have a strategy that ensures

I1l. PLAYING THE GUESSING GAME ON A GRAPH : ;
that they all guess correctly their own dice values

The class of games we considered in the previous section with probability (2)/VI=*,
can be viewed as a subclass of a much wider class of In other words a grapli has guessing numbérif
cooperative games. the players have a strategy that succeeds with prob-
Graphs in our setting are always directed graphs. Formally ability s* times higher than uncoordinated random
a graphG = (V,E) is a pair of sets withE C V' x V. As guessing.
usual there is an edge frome V to w € V if and only if

It turns out that for many graphs the guessing number is
independent ok and is an integer. However, in general it is

, : possible to show that there exist graphs where- (G, s)
Qefme a cooperative game. The game denoted by Gansg depends ors, and where the guessing number is not always
is played as follows: Each node (vertex¥ V' corresponds to an integer

a player, and each of the players independently gets assane
die value from a finite sefl of s elements. As in the previous
game the task of the players (as a group) is to maximise the!V: |NFORMATION NETWORKS UTILISING NETWORK
probability that they all simultaneously correctly ‘guetsir CODING

own dice value. The die value of playerc V is available to  In Circuit Complexity the complexity of Computational
each playew € V with (v,w) € E. In other words, player Circuits is a key issue. A Computational Circuit is an

(v,w) € E.
For each grapldz and for each value € {2,3,4,...,} we

w € V knows the dice value of the playeis € V with acyclic graph with input nodes, i, . . ., i,, and output nodes
(v,w) € E. If (v,v) € E playerv knows the value of his/her o, 0,,...,0,,. Each input node has indegrég and each
own die. output node has outdegr®e Usually each input ig) or 1,

A strategy for a playey in a node of in-degred is given and each node (except the input nodes) computes a Boolean
by a functionf; that maps{1,2,...,s}?to {1,2,...,s}. Ttl_e function of its incoming edges. The function valueqr 1) is
total number of cooperative strategies is given £y=1°"7 then passed on along each outgoing edge the successor nodes,

whered; denotes the in-degree in noge In the setting of Boolean circuitsodes are usually referred to
The guessing game in the previous section correspondsagi(boolean) gates.
the complete graph on nodes. In general, there is no reason to restrict the model to a set

In the guessing game that corresponds to the completietwo elements, or even to a finite set. In the general setting
graph, the players have an (optimal) strategy that guaganteve are given an alphabet, and for eachi € N a class of



functions f : A? — A. In Algebraic Circuit ComplexityA
could be a fixed field (finite or infinite) and eagh F¢ — I
a polynomial. N

In this section we introduce a new type of problem that has Circuit Complexity
not been considered before. We are given a cir€Uivith n — -
input gates labelled,, i-, .. ., 7,) andn output gates (labelled Network Coding
01,09, ...,0,). The Computational task of the circuit is for

eachj =1,2,...,n to send input; to o; \/
_>
We will refer to such a problem as @ircuit Information /\

Flow Problem. In this section, we will show that there is an -

almost 1-1 correspondence between Circuit information flow _ figure 1b
. . Network Coding

problems, guessing games and guessing numbers.

figure 1la

Circuit Complexity fig 1
The simple idea behind Network Coding is usually illus-

trated using the “butterfly” network in figure 2b.

Consider the followmg information networks:
In attempts to model information flows in general informa- x

tion networks (like the Internet and wireless communigatio

etc) a new field Network Coding has been developed. In Computational gate

Network Coding the basic concept is the instantaneous-infor calculating s(x,y)

mation network. This is almost equivalent to the circuit ralod

An instantaneous information network is an acyclic grapttwi ) sl

input nodesiy,is,...,i, and output nodew,os,...,0p,. X y

Each input node has indegr@eand each output node has « s(x.y) send
outdegred. Inputs are selected from a finite alphabletEach fig 2a through
node (except the input nodes) computes for each outgoirg edg ;i Complexity middle

a function of its incoming messages. The function value (an  perspective /\ channel.
element inA) is then passed on along the edge and serves an y fig 2b

input in the successor nodes. Each output node is required to

. Network coding
output one (or more) of the input.

perspective fig 2
In figure 2b the task is to send a messageom the upper
left corner to the lower right corner and to send a message
y from the upper right corner to the lower left corner. The

The key difference between the instantaneous informatifiessages: andy belong to an alphabed. The channel in
network and a Computational Circuit is that each gate inthe middle is able to send any functien A x A — A of z
Computational Circuit computes ONE specific function valu@ndy and pass on the valugz, y). In traditional routing (as it
This value is then is passed on to all successor nodes.igriised on the Internet) only trivial functions likéz,y) =
the instantaneous information network more than one fanctior s(z,y) = y can be used. In that case, there is no way the
(namely one for each outgoing edge) can be computed at eé@Mer right (or lower left) receiver node can compytéor ).
node. The two models are (from a mathematical point of view) If, for example, A is organised as a groupA, ) and

almost identical and most results can be transferred froen of{Z,y) := z * y is transmitted through the middle channel
model to the other. in figure 2b, it is not hard to see that can always be

reconstructed fromy and x * y (sincez = (z * y) * y~ 1)
and thatr can always be reconstructed from andy (since
y =x 1x(z*y)). Actually, as noticed in [9], the information
network has a solution if and only if(z,y) is a "latin"

In figure 1a we show how to convert a Circuit to arfunction. A function is latin if for eachr,y € A, the maps
instantaneous information network and in figure 1b we show, : A — A andk, : A — A given by h,(z) := s(z,y) and
how an instantaneous information network can be converted(y) := s(z,y) defines injective (bijective) maps.
to a circuit. In figure 2a we have represented the network as a circuit.



In this case the task of the Circuit is to output the input A Actually the theorem can be stated in a slightly stronger
at the lower right output node and output inpue A in the form:
lower left output node. The network has a solution if and only Theorem(2)
if the gate in the middle calculates a functiefr, y) that is The solutions (over alphabett with [A] = s)
latin. of a Circuit information flow problemN with n

In [8] it was shown that each information flow problem is input/output nodes are in one-to-one correspondence
equivalent to a problem about directed graphs. Metbe a with the guessing strategies (over alphabetvith
Circuit information flow problem (as defined above). Assume |A| = s) that ensure that the players in the guessing
that N hasn input nodesiy, iz, ...,%, andn output nodes game played orGy have success with probability
01,09,...,0, and that message; € A has to be sent from (%)IGN\fn (where |G y| is the number of nodes in
input nodei; to output nodeo;. Inner nodes can use any Gn).
functionsf : A? — A. Let Gy denote the directed graph that Theorem 2 was first stated and proved in [8]. Here we
appears by identifying each input node with the correspmldipresent a proof in a slightly more compact format.
output node. This conversion of an information network ® thooo: Consider the grapli' y = (V, E). The setV of nodes
graphGy is unique. . ~can be divided into two disjoint sets: the sktof nodes in

In figure 3 we see a few examples of simple circuit ingy that corresponds to the inner nodesNn(i.e. nodes that
formation networks together with their corresponding cieel 51 not input or output nodes i), and the set/ of n nodes

graphs. . in Gy that corresponds to the input andn output nodes in

.

y

V. ANALYSIS OF A SPECIFIC CLASS OFGRAPHS

own die value is at most2)’l. Theorem 1 follows because
this probability can be achieved if and only if the players/in
input node (source node) with the output node (receiver @ guessing strategy by the same assignment. Thus the space of
node) z, and identify input node (source nodg)with the coding functions forV is in a natural 1-1 correspondence with
guessing numbek(G, s) > n.
FurthermoreGy has guessing numbéf(G,s) > n

One interesting class of graphs consists of (what | will)call
Clock-graphs. For each pair of numbérs ) with r < | (n—
1)/2] we define a grapl@z ok (n, 7). It has vertex seV :=

(corresponding to the output nodesif) are able to work out
their own die value with probability (given that all players
in I correctly worked out their own die values).
output node (receiver nodg) we getK the complete graph the space of guessing strategies to the g@ph Furthermore,
on 3 nodes. The circuit information network in figure 3b, ge coding function forV solves the information problem fav
converted to the grapf'y as illustrated in the figure. if and only if the conditional probability that the nodes in
if and only if k(G, s) = n. {0,1,2,...,n — 1} and nge sefy ::_{(v,w) tw—v €
A circuit information problem involves mathematicallytl: 2:- -7}, where the difference —v is calculated modulo
speaking slightly complicated concepts lileet of source ™

X Y N. The setI consists of|G x| — n nodes. The sub-graph of
y X z
To prove Theorem 2 consider a guessing strategy (i.e. a set
The surprising link between Circuit Network Coding prob/ 9uess correctly their own die valuegiven that all "inner”
nodes, set of receiver nodes as well as seof requirements  WWe will show:

Gy restricted tol is an acyclic graph (sincé& is acyclic).
Thus as we already noticed for any strategy by the players
(it does not matter which) the nodes Inall guess correctly
fig 3a
X y z X oe———— 7
u \'
\ / of specific functions assigned to the nodesiR).
z y X y If we assign the same functions to the information network
fig 3b fig 3 N (the output nodes, 0, ...,0, get assigned the specific
lems N and directed graphs is due to the following Theorenfodes (i.e. all the nodes if) guess correctly their own die
values) isl. &
Theorem(1)
A Circuit information flow problemN with n in-
that specifies the destination of each input. As pointed mut i Proposition A .
[8] the main point of the theorem is that it replace the circui The graphG'ieck(n, ) has guessing number
information flow problem with an equivalent problem that caRroof: Consider the subgraph a@¥.;...(n,r) that contains

their own die value with probabilityL)//l. But, this shows
that the probability all players iy guess correctly their
The circuit information networkN in figure 3a is the functions assigned to the noddsin Gy).
‘butterfly’ network we already considered. If we identifyeth ~ Conversely, any attempted solutionfocan be converted to
put/output nodes has a solution over alphabetith
|A] = s elements if and only if the grap&'y has
be expressed in pure graph theoretic terms (no special infhe vertex{0,1,2,...,n — r — 1}. This graph is acyclic
or output nodes). (becauser < |(n — 1)/2]) so the players cannot do better



than pure uncoordinated random guessing. Thus the nodes related. In generat(G, s) + b(G, s) > |V| and for many
0,1,2,...,n—r —1 are all correct with probabilitj%)”‘"‘. graphsk(G, s) + b(G, s) = |V].
Thus, the players in the grafh.;..x(n, ) are all correct with Lemma 3
probability at mos(1)"~". Equality appears if and only if the For any graphG = (V, E) and anys € {2,3,4, ...}
players have chosen a strategy that ensures that plihyers V| < k(G,s) + b(G, s).
guess correctly their own die value if and only if player
0,1,2,...,n—r —1 all guess their own dice value.

Using simple linear algebra it is now straight forward foe th
players to derive their own dice values from the- r values

Proof: LetG be a (directed) graph and with information defect
b = b(G,s). Then, by definition, there exists a method by
which we, by broadcasting one af(¢:*) messages to all
, nodes, can insure that each ngdean derive their own die
it i1t i =0modulosforj =0,1,...,n-r-1 valuez; € A. If the dice valuesty, z3,...,z)y| are selected

(public information). . randomly (and independent), each messagis broadcasted
A more general class of clock graphs appears if we, for. . . X -
eachn and for each subse§  {0,1,2 ~ 1) with with a certain probabilityp(m). SinceX,,p(m) = 1, there
" Ly 9 &5 e - s T must exist a message, that is broadcasted with probability
0¢ Sandv € S — —v ¢ S, define a graptG. iock(n, S)

with vertex setV := {0,1,2,...,n — 1} and edge seE := = (é)b(§78)' This is a faCtor.S‘vl.ib(G’s) bette_r than pure
{(ww) : w—v € S}.vT’he’ reéulting graphs have no Self_uncoordlnated random guessing in the guessing gamé&'.on

i : : . _Thus if the players in the guessing game all guess their own
loops (since0 ¢ S) and it has no undirected edges (smcgie value ur?de): the assur?nption tﬁagt the pubEIJic message
(vyw)e E—-w—-veS—v—wgS — (wv)¢E).

We are not sure about the status of the following proposi?- broadcasted, they are all correct if this is indeed the.cas
tion: hus the guessing numbéf(G, s) is > |V| — b(G,s) and

P ttion B b(G, s) + k(G,s) > |V]. L)
ropostion . We will now state and prove a Theorem related to Theorem
The graphGcieck(n, S) has guessing numbet |S|. 1
VI. A GAME WITH PUBLIC INFORMATION Theorem 4

A Circuit information flow problem/V with n input
nodes,n output nodes and internal nodes, has a
solution over alphabefl with |4| = s elements if
and only if the graphGy has information defect

Actually if the players know the sum of the dice values b(G,s) < r. Furthermoré~y has information defect
modulos each player can deduce the value of their own die. b(G,s) < rif and only if b(G, s) = r.
Put in other terms, if each player has access to a public ehanfroof: (only if): Assume first that the flow problenV has a
that can broadcast one of = s possible messages (i.e. thesolution. We want to show th&(G, s) < r. The set of nodes
channel has bandwidth(G, s) := 1) they can all (provided in Gy can be divided into two disjoint sets. The sktof
the message broadcast is the correct one), deduce the ¥alueogles that corresponds to the inner noded’iand the set/

Let us briefly return to the: player game on the complete
graphK,. As we noticed the players have a guessing strategy
so they all guess correctly if the sum of the dice values(are
modulo s.

their own die. of n nodes inG,, that corresponds to theinput andn output
As another example, consider the graph= (V, E) with nodes inN. For each inner node let; denote the actual value
vertex setV := {0,1,2,...,n — 1} and edge setr := of playerj's die. Letz; denote the value the corresponding

{(0,1),(1,2),...,(j,5+1),...,(n —2,n —1),(n — 1,0)}. node inN would take according to the solution where all
We already notice that its guessing number Wwaise. that the inputs are given by the actual die values assigned tonthe
players have a strategy that guarantees they all guesstiprrenodes inJ. Assume that all players have access to the values
with probability ()" ~* and that this is the best possible result; — Z; for each;j € I. This information can be provided by a
they can achieve. Assume that the players know (throughblic channel of bandwidth. Each player can now calculate
a public broadcast) the values) — z1,21 — z2,...,2; — their own die value. To see this consider first a player that
Tji1,...,Tn_o — Tn—1 Wherez; denotes the value of die corresponds to an inner nogen Gy. This player has access
j. Then each player can deduce their own die value. Plajiersome inner nodes and possibly to some input nodes (nodes
j + 1 knows the value ofr; andx;1 — z; from whichz;,, in J). From these values and the public information, the player
can be calculated. Playér can calculate:, —x,,_; and know can calculatez;. And from z; — Z; (that is publicly available)
the value ofz,,_; from which z, can be derived. Thus if the the player can calculate;.
public channel has bandwidtfiG, s) := n— 1 (can broadcast Consider now a node i € J. This node;j has access to
s*~1 messages), the players can always derive the valuenoides in/, as well as possibly some nodes.in For each
their own die. node: € I that have a value that is available to noflehe

For an alphabet size we define theinformation defect node has access t¢ as well as the public informatiogy — ;.
b(G, s) of a graphG aslog, (w) wherew denotes the smallest From this nodej can calculates;. But then each nodg € J
number of public messages:;, mo,...,m, that can be can calculater;.
broadcasted to all players, ensuring that each player iayalw (if): Assume that we can send messages through the
able to deduce the value of his/her die. public channel in such a fashion each node Gfy can

In general, whereG = (V,E) can be any graph, thecalculate its own value. But thef¥,, has information defect
guessing numbek(G, s) and the information defedi(G,s) b(Gn,s) < r. We already showed that the guessing number



b(Gn,s) + k(Gn,s) > |V| n+r. Thusk(Gy,s) >

n which according to Theorem 1 ensures that the Circuit

VIll. EXPRESSINGVALIANT 'S CONJECTURES IN TERMS
OF GUESSING NUMBERS

to Theorem 1k(Gn,s) = n and thusb(Gn,s) > r. Thus
b(Gn,s) = if and only if b(Gn,s) <.

VIl. VALIANT CONJECTURES

In [11] (based on [5] and [10]) Valiant put forward four
conjectures. In this section | will present the conjectur

using Valiant terminology. Valiant introduces his conjgets
as follows:
Let G be a biparte graph with node s&tJY where
X = {l‘l,lﬂg, Ce. I'n} and Y = {yl,yQ, ce yn}
denote input variables and output functions respec-
tively. Suppose that edges are defined implicitly by
a mappingr wherer(y;) C X is the set of input
nodes that are adjacent ig in the graph. Define
m Boolean functionsf; (z), f2(x),... fm(z) and
n further Boolean functionsgyy, gs, ..., g,, Where
g; hasm + |7(y;)| Boolean arguments, such that
with some abuse of notation, eagh can be an
arbitrary function of thesen common bits and
the inputst(y;) to which it is connected directly
in G. Valiant goes on to say thafr realizes a
permutationp with m common bits if there exists
fl; fg, . fm;gla,927 .o Gn such that for a”Z', 1<
1 <n
Toiy = 9i(f1(x), ... fm(x), 7(yi))-
In other words (still quoting Valiant), for the fixed
G and givenp one can find the appropriate Boolean
functions such thay; realises the permutation of
{z;} for all truth assignments ofz;}. Valiant then
goes on to conjecture:
Conjecture(1)
If G has degreec 3 (for sufficiently largen) there is
a permutatiorp such thatG' does not realize with
n/2 common bits.
Conjecture(2)
If G hasO(n'*€) edges for some > 0, for n
sufficiently large, there is a permutatignsuch that
G does not realizep with n/2 common bits. .
Conjecture(1’)
If G has degreec 3 (for sufficiently largen) there is
a cyclic shiftp such thatG does not realizep with
n/2 common bits.
Conjecture(2’)
If G hasO(n'*t€) edges for some > 0, for n
sufficiently large, there is a cyclic shift such that
G does not realizep with n/2 common bits. .
Conjecture 2’ is in some sense the most important
Valiant's conjectures. Valiant showed that if this conjget

{0,1,2,...,n—1} and edge seE C V x V.

For eachs € {0,1,2,...,n — 1} we define the grapld*
(G shifted bys) as the graph with vertex sét and edge set
Es:={(i,j+s):i€V,(i,j) € E} wherej+s is calculated
modulo n. This definition depends on both the graghas

es

well as on the labelling of its vertex.

For each permutatiom € S,, we also define the graph
G™ (G permuted byr) as the graph with vertex séf and
edge setE™ := {(i,7(j)) : ¢ € V,(4,4)) € E}. Unlike the
shift operation, the permutation operation is independsnt
the labelling of the underlying vertex set.

We will now state four conjectures that are equivalent to
the four conjectures discussed in the previous section.

Conjecture 1
Let G be a graph withn vertex and assume that
all vertex have out-degree (in-degre€) 3. Then
(providedn is sufficiently large) there exists a per-
mutationr € S,, such thatz™ has information defect
b(G™,2) > n/2.

Conjecture 2
Let e > 0. Let G be a graph withn vertex and less
than n'™¢ edges. Then (provided is sufficiently
large) there exists a permutatiane S,, such that
G™ has information defedi(G™,2) > n/2.

Conjecture 1’

Let G be a graph withn vertex and assume that
all vertex have out-degree (in-degre€) 3. Then
(providedn is sufficiently large) there exists a shift
s € {0,1,2,...,n} such thatG*® has information
defectd(G*,2) > n/2.

Conjecture 2’

Let e > 0. Let G be a graph withn vertex and less
than n'*< edges. Then (provided is sufficiently
large) there exists a shift such th@t has informa-
tion defectd(G*,2) > n/2.

Sparse graphs might have a relatively high guessing number
(i.e. allow a lot of coherence). However, intuitively hagia
high guessing number is a “sporadic” property and that in
general gets destroyed when the graph is modified through
shifts or permutations.

Despite this intuition, there is a limit to how much shiftsica
insure a drop in guessing numbers of a sparse graph. In the
next section we will show that Conjecture 2’ is actually éals
and that it is possible to construct a sparse gr&ptogether
with a labelling such thatz as well as all shiftsG* have
guessing number n/2 and information defeck n/2.
of As we already pointed out, Conjecture 2’ is in some sense
the most important of Valiant's conjectures. Had it been

have direct consequences and leads to new results in ciraaitrect, this would have had direct consequences for piroyid
complexity. These Complexity questions have now been opeew lower bounds in circuit complexity. None of the other
for more than 30 years. As it happens, we will show thahree conjectures are known to have such strong conseience
Conjecture 2' is false. However, it can be replaced by a #ijgh Never-the-less, the conjectures are interesting in thein o
stronger (and presumably correct) conjecture that esdignti right and we will reduce these conjectures to certain goesti
have the desired consequences in Circuit Complexity Theoapout guessing numbers.



The good news (for proving a non-linear, O(log(n))-depth
lower bound for the shift problem) is that a simple modifi-
cation of Valiant's Conjecture 2’, does imply such a lower ©
bound. 22

This follows (according to Theorem 2.2 in [6]) from [11] »
where the following proposition can be extracted:
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Proposition C
For everye > 0, c andd, there existds such that if
F (the shift function) can be computed by a circuit of *
sizecn and depthilog(n), then it can be computed 1
by a graphG of degree at most® with bg(ﬁ% N
common bits.
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IX. COUNTER EXAMPLES TOVALIANT 'S SHIFT 713y TN
CONJECTURE
fig 5a fig 5b
We have restated Valiant four conjectures as propositionsthe graph := G351 in figure 5a is invariant under shifts
about the behaviours of the information defect under shiét a(if we disregard the labelling). The graph in figure 5b is a
permutations. subgraph of7 and it has guessing numbgt and information
Consider the graplty in fig 4. Later this graph will be defect9. Thus the grapiG = G351 has guessing number
defined asiy 5 ,1. The graphG(= G°) as well as its3 shifted > 14 and information defect 9. In Valiant's terminology the

versionsG', G?,...,G® are all isomorphic (disregarding thebiparte graphB associated to graph the graph= G351
labelling). Each of the graph&”’, j = 0,1,2,...,8 has has each of it@3 shifts realised by (rather than at least2
guessing numbes and has information defeét as suggested by the conjecture) common bits.
™ 254 We now generalise these examples. Considet,r € N
K 1OY 2 . , with & < n/2 and0 < r < n— 1 we let G, 4, denote
0 2.0 3 the graph that has vertex sé0,1,2,...,n — 1} and edge
3 3 8 4 0 4 setE = E, 4, consisting of all edge$i, j) with i + j €
; PR 5 8 5 {r,r+1,7+2,...,r+d— 1} (where the sum is calculated
, 6 modulon).
o5 0° A o Lemma 5
G=G° G G?

Letn € N be an odd number and I&t< n/2. Then
foreachr =0,1,2,...,n—1 the graph<7, 4, have

D)
'% D) guessing numbek(G, s) > 5 + % and information
2 5 4 3 4 defectb(G,s) < 2 — 4

4

) 5 2 ° Proof: Let W = {r,r +1,...,r +d — 1}. Let ng := 2L

5 1 6 and letdy = %. The graphG,, 4, containsd "self-loops”
6 0 6 0 7 since the number of elemenisvith i +i € W is k (sincen is

8 45 7 odd). Assume first that = 2v is even. In this case thévertex
3 ©7 G4 8

2> 5 v,v+1,v4+2, ..., v+dy as well asig+v, ng+(v+1),...no+
G (v + do — 1) have self-loops. The edgés — i,v + dy + )

40 ? and (v +dog +i,v —i) fori =1,2,...,n9 —dp — 1 form a
5 /®\ s 3 6 4 6 partitioning of then — d vertex that have no self-loop.

1
0
8

G

Thus G,, 4,» contains a disjoint union 01"2;d cligues of

2 6 2 7 3 ! size 2, as well asl vertex with self-loop. Thus3, 4., has
1 7 8 2 8 guessing numbek(G, s) at leastZ + £. The graphG,, q.
8 1 0 has information defedi(G, s) < 2 — £, since we can simply
o D g0 o P .
6 G7 G8 _ broadcast the messages ; + xy4d,+i fori =1,2,...,ng—
G fig 4 dy — 1 through the public channed

In terms of Valiant’s notions ,the biparte grapl; associated Letn € N be an odd number and lét € N be an odd

to G has each shift realised By common bits (the biparte number. LetG,, 4 denote the class of graplds, 4, with r =

B¢ is the graph containing thes nodes{ig,i1,...,is} and 0,1,2,...,n— 1.

{01, 09, ...,08} with an edge(i,, 0,,) if and only if (v, w) € There are, of course, many "sparse" graphs with guessing
G). Valiants Conjecture suggest that at leag bits (i.e.5) number above /2. The point of the graphs i&n,d considered
common bits are needed for some shift. in the previous lemma is that:



Lemma 6 StatementS,;: Assume that each node @ has in-

The classén,d is closed under shifts. More specifi- degree (out-degree) at mostand thatG does not

cally, for any shifts, the graphG,, 4, shifted bys contain selfloops or undirected edges and contain at

is identical toG,, 4,r+5 (i.€. sz,d,r = Gn,drts)- least 154 nodes. Then has guessing numbeg
Proof: Let G € G, 4 and lets € {0,1,2,...,n — 1} be a 7 — 1L

shift. The grathfhdﬂ, (Gn,q,r with the heads of all edges
shifted bys) is given byG,, 4 s+ i.€. by a graph irén,d. &
_ This shows that the information defect of the graghs
G4 (and any shifts of those) is at mosg — 4. Forl > e > 0 . .
and ford = n¢ the graphs inS are (for large values of), edges. Ther(; has guessing numbet 3 — a for

X ) . X > .
sparse in the sense assumed in Valiant’s conjectures. More "= a(4d{r2). . ) ) )
specifically we have shown: The statemens; implies that Valiant’s conjecture 1 is valid

for n > 175, while statementS; for d = nc implies that
Valiant’s conjecture 1" is valid fon > 4d?(4d + 3) which is
always valid fore << 1 andn > 4.

Proposition 9 is a special case of Proposition 10. Though
. ... _we could strictly speaking avoid proving Proposition 9 ¢gin
edges and each gragh, as well as each of its shifts it can be derived from Proposition 10) the proof idea is

i i i no_
293 mfornjatlon def_eot(,G,s) V_V'th b(G’,s) = 2 somewhat more transparent in the proof of Proposition €€sin
%-. This violates Valiant's Conjecture 2’ that implies

: the proof contains fewer parameters).
that for each sparse graghwith < n'*< edges there P P )

always exists a shift such thatG* has information ~ Proposition 9 o ,
defect at least:. StatementS, implies that each graplyy with n >

175 nodes satisfies Valiant’s conjecture 1.

Proof: First we show that statemenst implies that for each
graph withn > 175 nodes and in-degree (out-degre€)3

Valiant's conjecture 2 for graphs of in-degree (out-depret€re exists a permutatian of n such that the graptv™ has
bounded by3 seems to be correct (except that we will havguessing number n/2. LetG be a graph for which each node
to changeZ with and for n odd). has in-degree< 3. Assume thatG hasn > 175 nodes. The

What about Conjecture 1 involving graphs of in-degree (outtmber of edges - is < 3n. Some of the edges might form
degree) bounded b§ and considering permutations instead 100p. Two pairs of edges might form an undirected edge.

of shifts? We will prove that this conjecture follows frometh Let = € S, be a randomly selected permutation (i.e. assume
following statement: that each permutation is selected with the same probability

p= %). We want to calculate the expected numbers of loops
in G™ and the expected number of undirected edge&'in
The nice thing about calculating expectation numbers is tha
no undirected edges. Thefi always has a guessingwe need not worry about dependence and independgnce is_sues.
number< o — —n_ ' Any edge(a, b) becomes a loop exactly for permutations with
: =2 ddsz ) ) m(b) = a. Thus the expected number of loops produced by a
There is some evidence that Statementis valid, and single edge is};. The expected number of loops producectby
it is tempting to upgrade statemeftto a conjecture. The edges is¢. Thus the expected number of loops in the gré&h
main evidence for statemerfi is that the ‘clock’ graphs g exactﬁ/ﬁ < 3n — 3. The expected number of undirected
Gelock(2k +1, k) (with 2k + 1 nodes and out-degrdg have eqges can be calculated as follows: For two edges) and
guessing numbek. StatementS is based on the assumption. gy with a,b, ¢ and d distinct they produce an undirected
that the highest guessing number of a loopfree gréph edge exactly whefia, 7(b)) and (c, 7(d)) havea = m(d) and
without undirected edges and with kn edges, is achieved by . _ (b). The expectation value of this is—t—. If b = d
dividing then nodes into| ;2 | disjoint clock graphs of type o if 4 — ¢ 4 — n(d) andc = 7(b) are not possible if
Getock(2k + 1, k). This graphG has guessing number close€, ) - (¢, d). If a = ¢ andb = d (i.e when we have two loops
to 5% (equality appears wheneveris dIVISIble_ by2k+1.)- (a,a) and (c,c)), they produce an undirected edge exactly
In the case wheré = 3 we get graphsx with guessing \henr(a) = ¢ and(c) = a. The expectation value for this

StatementSs: Assume thaid € N and thatG is a
graph withn nodes and< dn edges. Further, assume
that G does not contain self-loops or undirected

Proposition 7
Lete € R with 0 < € < 1 be any fixed real number.
Let G,, € Gn,,be, n = 1,2,3,... be any sequence
of graphs. Then each gragh, has (at mostyh!'**

X. MODIFYING VALIANT 'S CONJECTURES

StatementS
Let G be a directed graph with nodes andn edges
(whered € N). Assume that5 is loop-free and has

number=2. This value is< § — 11 for n > 154. to happen is;-L45. Thus if the number of all pairga, b)
Proposition 8 and (¢, d) of edges inG with b # d anda # ¢, is f, the
Assume that Statemeftis valid. Then the following expected number of undirected edgesdn is ﬁ The
statements are valid: maximum number of such pairs of edges is boundby)? =

9n2. Thus the expected number of undirected edgeSTinis
StatementS;: Assume thatG is a graph withn bound by% < 9+% < 10. And the expected number of
nodes, with no selfloops and no unoriented edgesodes that are involved in a loop or are one of the points in a
ThenG has guessing number strictly less thaf2. undirected edge is 3+2(9+%) < 22. Thus there must exist a



permutationr such thaR1 or less points are involved with self of nodes that are involved in a loop or in an undirected edge
loops or undirected edges. The gra@h restricted to those is < 3d2. Thus there must exist a permutatiansuch that

21 points might be a complicated subgraph with a mixture 84> + d < 4d? or less points are involved with selfloops or
un-directed edges and directed edges. The highest caimnbuundirected edges. The graplf restricted to thosdd? points
these points can make to the guessing numbei i§f each might be very complicated with a mixture of undirected edges
of the 21 point, against our expectations, contains a eelf-l and directed edges. The highest contribution these poarts ¢
). The guessing number never decreases when more edgesvake to the guessing numberdig? (if each of the2d* point,
added so we can - without loss of generality - assume thagainst our expectations, contains a selfloop). The gugssin
the 21 points have self loops (producing a guessing numberumber never decreases when more edges are added so we
of 21). Now we restrict the grapt'™ to the remainingz — 21  can - without loss of generality - assume that ## points
nodes. This graph has 175 — 21 = 154 nodes, it has in- have self-loops (producing a guessing numberdf). Now
degree< 3 and has no self loops and no un-directed edgese restrict the grapty™ to the remainingy’ := n—4d? nodes.
Thus according to our conjecture, it has guessing numberThis graph has> dn = d'n’ = %n’ edges, has no self loops
2=21L _ 11. From this it is not hard to show that™ has and has no undirected edges. Thus according to Statefpent
guessing numbex 2221 — 11421 < 221 < 2, it has guessing numbet Z- — o' for n’ > o/(4d’ + 2).

But since G™ has guessing numbénG™,s) < n/2 and The graphG™ has then guessing number’—g/ — o + 4d?
sincek(G™,s) + d(G™,s) > n (Lemma 3), the information whenn > o’ (4d’ + 2) + 4d?. In other wordsG™ has guessing
defectd(G™,s) is at leastn — k(G™,s) > 4 thus proving numberk(G, s) strictly less than} — o/ + 4d*> whenn >
Valiant's conjecture 1& o' (4d+2)+4d?. Thus if we leta’ = 4d?, we havek(G™, s) <

Proposition 10 2 for n > 4d*(4d + 2) + 4d* = 4d*(4d + 3).

Assume that statemest; is valid in general. Lety ~ But the information defect(G™,s) > n — k(G,s) and
be a directed grapti' with n > 4d2(4d + 3) nodes therefored(G™,s) > n/2 for n > 4d*(4d + 3). &
and < dn edges. Then there exists a permutation
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c = m(b). The expectation value of this i, ;. If b = d,

orif a = ¢, a =7(d) andc = = (b) are not possible (when
(a,b) # (c,d)). If a = candb = d (i.e when we have two
loops (a, a) and (¢, ¢)), the two edges produce an undirected
edge exactly whem(a) = ¢ andn(c) = a. The expectation
value for this to happen '%(nl——n Thus if the number of all
pairs(a,b) and(c, d) of edges inG with b # d anda # ¢, is f,

the expected number of undirected edge§'inis ﬁ The
maximum number of such pairs of edges is bounddy)? +
2%2 +2n§’in < 3d? (for n > 3). Thus the expected number of

undirected edges i@™ is bound by3d?. The expected number




